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Abstract
Diseases can affect organs such as the heart, lungs, brain, 
muscles, or vocal folds, which can then alter an individual’s 
voice. Therefore, voice analysis using artificial intelligence 
opens new opportunities for healthcare. From using vocal 
biomarkers for diagnosis, risk prediction, and remote moni-
toring of various clinical outcomes and symptoms, we offer 
in this review an overview of the various applications of voice 
for health-related purposes. We discuss the potential of this 
rapidly evolving environment from a research, patient, and 
clinical perspective. We also discuss the key challenges to 
overcome in the near future for a substantial and efficient use 
of voice in healthcare. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

The human voice is a rich medium which serves as a 
primary source for communication between individuals. 
It is one of the most natural, energy-efficient ways of in-
teracting with each other. The voice, as complex arrays of 

sound coming from our vocal cords, contains various in-
formation and plays a fundamental role for social interac-
tion [1] by allowing us to share insights about our emo-
tions, fears, feelings, and excitation by modulating its 
tone or pitch.

With the purpose of reaching a human-like level, the 
development of artificial intelligence (AI), technologies, 
and computer sciences has led the way to new opportuni-
ties for the field of digital health, the ultimate purpose of 
which is to ease the lives of people and healthcare profes-
sionals through the leverage of technologies. This is no 
difference regarding voice. Today, voice technology is 
even considered as one of the most promising sectors, 
with healthcare being predicted to be a dominant vertical 
in voice applications. By 2024, the global voice market is 
expected to represent up to USD 5,843.8 million [2].

Virtual/vocal assistants on smartphones or in smart 
home devices such as connected speakers are now main-
stream and have opened the way for a considerable use of 
voice-controlled search. In 2019, 31% of smartphone us-
ers worldwide used voice tech at least once a week [3], and 
20% of queries on Google’s mobile app and Android de-
vices were voice searches. If current voice searches are 
mostly restricted to basic questions, perspectives for rap-
id expansion in the healthcare sector are numerous. The 
evolution of voice technology, audio signal analysis, and 
natural language processing/understanding methods 
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have opened the way to numerous potential applications 
of voice, such as the identification of vocal biomarkers for 
diagnosis, classification, or patient remote monitoring, or 
to enhance clinical practice [4].

In this review, we offer a comprehensive overview of 
all the present and future applications of voice for health-
related purposes, whether it be from a research, patient, 
or clinical perspective. We also discuss the key challenges 
to overcome in the near future for a large, efficient, and 
ethical use of voice in healthcare (Table 1).

Search Strategy

References for this review were identified through 
searches of PubMed/Medline and Web of Science with 
search terms related to voice, vocal biomarker, voice sig-
nature, conversational agents, chatbot, and famous 
brands or vocal assistants (see the full list of keywords in 
online suppl. material 1; for all online suppl. material, see 
www.karger.com/doi/10.1159/000515346). The search 
was performed on December 26, 2020. Only articles, re-
views, and editorials referring to studies in humans and 
published in English were finally considered. Articles 
were also identified through searches of the authors’ own 
files and in the grey literature. The final reference list was 
generated on the basis of originality and relevance to the 
broad scope of this review.

Vocal Biomarkers

A biomarker is a factor objectively measured and eval-
uated which represents a biological or pathogenic pro-
cess, or a pharmacological response to a therapeutic in-
tervention [5], which can be used as a surrogate marker 

of a clinical endpoint [5]. In the context of voice, a vocal 
biomarker is a signature, a feature, or a combination of 
features from the audio signal of the voice that is associ-
ated with a clinical outcome and can be used to monitor 
patients, diagnose a condition, or grade the severity or the 
stages of a disease or for drug development [6]. It must 
have all the properties of a traditional biomarker, which 
are validated analytically, qualified using an evidentiary 
assessment, and utilized [7].

Parkinson’s Disease
Work on vocal biomarkers have mainly been per-

formed in the field of neurodegenerative disorders so far, 
on Parkinson’s disease in particular, where voice disor-
ders are very frequent (as high as 89% [8]) and where 
voice changes are expected to be utilized as an early diag-
nostic biomarker [9, 10] or marker of disease progression 
[11, 12], and could one day supplement the state-of-the 
art manual exam to assess symptoms to guide treatment 
initiation [9] or to monitor its efficacy [13]. These voice 
disorders are mostly related to phonation and articula-
tion, including pitch variations, decreased energy in the 
higher parts of the harmonic spectrum, and imprecise ar-
ticulation of vowels and consonants, leading to decreased 
intelligibility. Even though changes in voice are often 
overlooked by both patients and physicians in early stag-
es of the disease, the objective measures show changes in 
voice features [14] in up to 78% of patients with early 
stage Parkinson’s disease [15].

Alzheimer’s Disease and Mild Cognitive Impairment
Subtle changes in voice and language can be observed 

years before the appearance of prodromal symptoms of 
Alzheimer’s disease [16] and are also detected in early 
stages of mild cognitive impairment [17]. Both mild cog-
nitive impairment and Alzheimer’s disease are proven to 

Table 1. Definitions of key concepts

Keyword Definition Example

Audio signal 
decomposition

Extraction and separation of features from raw audio signals Decomposition using MFCC for audio feature extraction

Voice feature One component of the voice audio signal (such as linguistic or acoustic 
features)

Voice pitch

Vocal biomarker A feature (or a combination of features) in the voice that has been 
identified and validated as associated with a clinical outcome

Differentiate people with Parkinson’s disease from 
healthy controls

Vocal assistant A software agent that performs tasks based on vocal commands or 
questions

Use voice to manage medication, set up reminders, ask 
what medication to take at a given moment, and request a 
prescription refill
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affect the verbal fluency, reflected by the patient’s hesita-
tion to speak and slow speech rate, or other impairments, 
such as word finding difficulties, leading to circumlocu-
tion and frequent use of filler sounds (e.g., uh, um), se-
mantic errors, indefinite terms, revision, repetitions, ne-
ologisms, lexical and grammatical simplification, as well 
as loss of semantic abilities in general [18]. Discourse in 
Alzheimer’s disease patients is characterized by reduced 
coherence, with implausible and irrelevant details [19]. 
Alterations have been also perceived in prosodic features 
(pitch variation and modulation, speech rhythm) and 
may affect the patient’s emotional responsiveness [17, 
20]. Voice features have the potential to become simple 
and noninvasive biomarkers for the early diagnosis of 
conditions associated with dementia [21].

Multiple Sclerosis and Rheumatoid Arthritis
Voice impairment and dysarthria are frequent comor-

bidities in people with multiple sclerosis [22]. It has also 
been suggested that voice characteristics and phonatory 
behaviors should be monitored in the long term to indi-
cate the best window of time to initiate a treatment such 
as deep brain stimulation in people with multiple sclero-
sis [23]. Some voice features have already been identified 
as top candidates to monitor multiple sclerosis: articula-
tion, respiration, and prosody [24]. In people with rheu-
matoid arthritis, pathological changes in the larynx occur 
with disease progression; therefore, tracking voice quality 
features has already been shown to be useful for patient 
monitoring [25].

Mental Health and Monitoring Emotions
Stress is an established risk factor of vocal symptoms. 

It was shown that smartphone-based self-assessed stress 
was correlated with voice features [26]. A positive corre-
lation between stress levels and duration of verbal inter-
action [27] has also been reported. Voice symptoms seem 
more frequent in people with high levels of cortisol [28], 
which is common in patients with depression; therefore, 
voice characteristics are used to discover depression 
symptoms [29] or estimate depression severity. The sec-
ond dimension of a Mel-Frequency Cepstrum Coefficient 
(MFCC) audio signal decomposition has been shown to 
discriminate depressive patients from controls [30]. An 
automated telephone system has been successfully tested 
to assess biologically based vocal acoustic measures of de-
pression severity and treatment response [31] or to com-
pute a post-traumatic stress disorder mental health score 
[32]. Beside acoustic measures, the linguistic aspects of 
voice are likely to be affected in mental diseases. Dis-

course tends to be incoherent in schizophrenia, manifest-
ed by disjointed flow of ideas, nonsensical associations 
between words, or digressions from the topic. Circum-
stantial speech is prominent in patients with bipolar and 
histrionic personality disorders [33]. Recent method-
ological developments have also allowed for improved 
emotion recognition accuracy [34], which enables suffi-
cient maturity to be reached for medical research to mon-
itor patients in between visits or to gather real-life infor-
mation in clinical or epidemiological studies.

Cardiometabolic and Cardiovascular Diseases
A team from the Mayo Clinic has identified several vo-

cal features associated with a history of coronary artery dis-
ease [35]. Regarding diabetes, only one study has studied 
vocal characteristics in people with and without type 2 dia-
betes showing differences between the 2 groups for many 
features (jitter, shimmer, smoothed amplitude perturba-
tion quotient, noise to harmonic ratio, relative average per-
turbation, amplitude perturbation quotient [36]). It has 
been demonstrated that people with type 2 diabetes with 
poor glycemic control or with neuropathy had more strain-
ing, voice weakness, and a different voice grade [37], and 
that the most common type 2 diabetes phonatory symp-
toms were vocal tiring or fatigue and hoarseness [38].

COVID-19 and Other Conditions with Respiratory 
Symptoms
More recently, considerable research activity has 

emerged to use respiratory sounds (e.g., coughs, breath-
ing, and voice) as primary sources of information in the 
context of the COVID-19 pandemic [39]. COVID-19 is a 
respiratory condition, affecting breathing and voice, and 
causing, among other symptoms, dry cough, sore throat, 
excessively breathy voice, and typical breathing patterns. 
These are all symptoms that can make patients’ voices 
distinctive, creating recognizable voice signatures and 
enabling the training of algorithms to predict the pres-
ence of a SARS-COV-2 infection or as a tool to grade the 
severity of the disease. Results on vocal biomarkers to aid 
the diagnosis of COVID-19 by Cambridge University 
(Area Under the ROC Curve, AUC = 80%), or more re-
cently by MIT scientists (AUC = 97%, based on cough 
recordings only) are promising [40]. Other projects based 
on cough sounds are ongoing [41] with the objective of 
developing a robot-based COVID-19 infection risk eval-
uation system. Future work should focus on the impact of 
the age category or the cultural background on the per-
formances of cough-based algorithms, before launching 
such pre-screening tools on a large scale.
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The Process to Identify a Vocal Biomarker

Below is a description of the typical approach to iden-
tify a vocal biomarker (Fig. 1).

Types of Voice Recordings
There is no standard protocol for voice recording to 

identify vocal biomarkers, but one can classify the sounds 
emitted from a human’s mouth and analyze them for dis-
ease diagnostics into 3 main categories: verbal (isolated 
words, short sentence repetition, reading passage, run-
ning speech), vowel/syllable (sustained vowel phonation, 
diadochokinetic task), and nonverbal vocalizations 
(coughing, breathing). In a paper from the Mayo Clinic, 
study participants were asked to perform three 30-s sepa-
rate voice recordings [35]: read a prespecified text, de-
scribe a positive emotional experience, and describe a 
negative emotional experience. There is an ongoing de-
bate on the efficiency of use of isolated words or text, that 
are read aloud, and spontaneous conversational speech 
recordings [15, 42]. In order to have control over the re-
corded vocal task, but to allow patients to choose their 
own words to preserve the naturalness, semi-spontane-
ous voice tasks are designed where the patient is instruct-
ed to talk about a particular topic (e.g., picture description 
or story narration task). Sustained vowel phonations are 
another common type of recording, where participants 
are requested to sustain voicing of a vowel for as long and 
as steadily as they can. Sustained vowel phonations carry 
information for evaluating dysphonia, and enable esti-
mating a patient’s voice without articulatory influences, 
unaffected by speaking rate, stress, or intonation, and less 
influenced by the dialect of the speaker [43]. This is par-
ticularly helpful for multilingual analyses [44], to avoid 
confusion caused by different languages or accents. Di-

adochokinetic tasks are frequently used for the determi-
nation of articulatory impairment and include fast repeti-
tion of syllables, which combine plosives and vowels (e.g., 
/pa/-/ta/-/ka/). This task requires rapid movements of the 
lips, tongue, and soft palate, and reveals the patient’s abil-
ity to retain their speech rate and/or intelligibility [45].

Sustained vowels and diadochokinetic tasks provide 
a greater level of control in comparison to conversa-
tional speech since they have reduced psychoacoustic 
complexity with less variability in vocal amplitude, fre-
quency, and quality. However, voice performance is al-
tered to a greater extent in spontaneous speech than in 
controlled tasks [46]. For example, voice disruptions 
and voice quality fluctuations are much more evident 
in conversational speech [43]. It better elicits the dy-
namic attributes of voice and varying voice patterns 
that occur in daily voice use, but the feature extraction 
is more difficult. Thus, the choice of a type of voice re-
cording also depends on the objective: is it primarily 
diagnostic or developing a more comprehensive under-
standing of voice disorder.

Data Collection Techniques
Different data collection techniques have been devel-

oped over the past decades. They can be grouped into 4 
main categories:
1.	 Studio-based recording includes speech recording 

into a controlled environment which leads to reduced 
unwanted acoustics and avoid proximity effects. This 
often induces an exaggeration of low-frequency sounds 
due to the proximity of the sound source from a mi-
crophone. In general, the recommended distance is 
between 15 and 30 cm. The collected data via this tech-
nique are in general not suitable for a speech applica-
tion environment. 

Clinical data

Voice recording Harmonization of
audio quality 

1. Data Collection 2. Data Processing 2. Data Analysis 4. Use

Labelled dataset of
gold-standard outcome of

interest and covariates  

Filters, noise
reduction...

Audio signal
decomposition (MFCC...)

& dimensionality reduction

In smartphone apps,
medical devices,
vocal assistants...

Identification of vocal
biomarker

candidates in the
training set

Internal validation in
the test set &

external validation
on new datasets

Feature
extraction &

selection

Training of
Machine Learning

algorithms 

Validation &
Replication 

Device
integration 

Clinical
Research &

Epidemiology 

Remote
patient/study

participant
monitoring

Diagnosis or
severity

grading tool

Clinical practice

Fig. 1. Pipeline for vocal biomarker identification, from research to practice.
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2.	 Telephone-based recording which requires data col-
lection from a variety of speakers and handsets where 
several disadvantages, such as handset noise, a lack of 
control over the speaker’s environment, and band-
width limitations, are frequent.

3.	 Web-based recording is a very popular technique for 
large-scale data collection campaigns and relies on in-
ternet access, which is becoming readily available. 

4.	 Smartphone-based recording provides broadband 
quality using smartphone devices, which are becom-
ing widely available and at a low cost. Smartphone/
web-based recording has the same potential draw-
backs of telephone-based recording apart from the 
bandwidth limitation. 
A pre-processing step is therefore necessary to over-

come most of these limitations.

Audio Pre-Processing
A first step before analyzing the data is the audio pre-

processing. This includes steps such as resampling, nor-
malization, noise reduction, framing, and windowing the 

data [47], as described in Figure 2. The normalization step 
improves the performance of feature detection by reduc-
ing the amount of different information without distort-
ing differences in the ranges of values. Moreover, in tra-
ditional non-machine-learning-based approaches for 
noise detection and reduction, a clean voice estimation is 
obtained by passing the noisy voice through a linear filter. 
However, many recent methods work to define mapping 
functions between clean and noisy voice signals using 
neural networks. The framing step consists of dividing 
the voice signal into a number of samples. These are mul-
tiplied by a window function to reduce signal leakage ef-
fects, which are the discontinuous signals that can cause 
noise in the subsequent fast Fourier transform. Once 
these steps have been performed, feature extraction can 
start.

Audio Feature Extraction
Prior to data analysis, there is a need to convert the 

audio signal into “features,” meaning the most dominat-
ing and discriminating characteristics of a signal which 
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Proportion of auxiliary verb …..

num_word
noun_verb_ratio

…
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Fig. 2. Representation of a typical voice signal pre-processing and 
feature extraction using MFCCs. Representation of a typical voice 
signal pre-processing and linguistic and acoustic feature extraction. 
Voice signal represents the sound of the following sentence (e.g., 
“Luxembourg is a resolutely multilingual environment”). ASR re-
fers to automatic speech recognition. Linguistic annotation in-
cludes part-of-speech, dependency and constituency parses, and 
sense tagging. In this diagram, linguistic annotation is applied us-
ing tools like CoreNLP. The number of pauses, speech rate, and 

noun rate are linguistic features and extracted using the BlaBla 
package, which is a clinical linguistic feature extraction tool. Acous-
tic features are extracted using MFCCs. The framing step refers to 
a signal segmentation into N samples. Windowing is multiplying of 
the signal sample by a window function like Hamming to minimize 
discontinuous signals that can cause noise in the subsequent fast 
Fourier transform (FFT) step. In this diagram, dimension reduc-
tion is represented by the principal component analysis (PCA) 
method, reducing feature space to a one-dimensional vector.
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will later contribute to training machine learning algo-
rithms [48]. Various methods are proposed in the litera-
ture to identify acoustic features from the temporal, fre-
quency, cepstral, wavelet, and time-frequency domains 
[48]. The prosodic (pitch, formants, energy, jitter, shim-
mer) or spectral characteristics (spectral flux, slope, cen-
troid, entropy, roll-off, and flatness), voice quality (zero-
crossing rate, harmonic-to-noise ratio, noise-to-harmon-
ic ratio), or phonation (fundamental frequency, pitch 
period entropy) [49] parameters can be extracted and an-
alyzed. Nonlinear dynamic features, such as correlation 
dimension, fractal dimension, recurrence period density 
entropy, or Lempel-Ziv complexity, are able to describe 
the generation of nonlinear aerodynamic phenomena 
during voice production. Segmental features, such as MF-
CCs, may be the most frequently used in speech analysis 
[35], followed by perceptual linear prediction coeffi-
cients, and linear frequency cepstral coefficients [34]. 
Usually, the first 8–13 MFCC coefficients are sufficient to 
represent the shape of the spectrum even if some applica-
tions need a higher order to capture tone information.

Contrary to acoustic features which are able to capture 
the motor speech impairments, cognitive impairments 
may require analyzing linguistic features which reflect the 
parts of speech, vocabulary diversity, lexical and gram-
matical complexity, syntactic structures, semantic skills, 
and sentiment [4]. Before starting linguistics feature ex-
traction and analyzing, linguistic annotation is a neces-
sary step to define the sentence boundaries, parts of 
speech, named entities, numeric and time values, depen-
dency, and constituency parses. Linguistic analyses often 
require extended speech production to extract features at 
all linguistic levels: phonetic and phonological (number 
of pauses, total pause time, hesitation ratio, speech rate), 
lexico-semantic (average rate of occurrence for each part 
of speech, number of repetitions, semantic errors, and 
closed-class word errors), morphosyntactic and syntactic 
(number of words per clause, number of dependent and 
simple clauses, number of clauses per utterance, mean 
length of utterances), and discourse-pragmatic (cohe-
sion, coherence [19]). 

The correct choice of features heavily depends on the 
voice disorder, disease, and type of voice recording. For 
example, acoustic features extracted from sustained vow-
el phonations or diadochokinetic recordings are com-
mon in the detection of Parkinson’s disease, whereas lin-
guistic features extracted from spontaneous or semi-
spontaneous speech may be a more appropriate choice 
for the estimation of Alzheimer’s disease or mental health 
disorders.

Audio Feature Selection and Dimensionality 
Reduction
Feature selection methods such as the mRMR (mini-

mum redundancy maximum relevance) [50], Gram-
Schmidt orthogonalization [44] allow a subset of the orig-
inal feature set to be selected without changing them, as 
illustrated in Figure 2. It removes highly correlated fea-
tures as well as features with missing values or low vari-
ance. This helps to select, for a given outcome of interest, 
the most relevant set of features to consider for the pre-
diction or classification task. Besides, to avoid a “curse of 
dimensionality,” dimensionality reduction methods such 
as principal component analysis, linear discriminant 
analysis, random forests, or stochastic neighbor embed-
ding can be used to transform features and perform data 
visualization [51].

Training of Algorithms
Following the selection of features, machine or deep 

learning algorithms, such as support vector machines, 
hidden Markov models, convolutional or recurrent neu-
ral networks, just to name a few, can be trained to auto-
matically predict or classify any clinical, medical, or epi-
demiological outcome of interest, from vocal features 
alone or in combination with other health-related data 
[47]. Algorithms are usually trained on one dataset and 
then tested on a separate dataset. External validation is 
still rare in the literature, mainly due to a lack of available 
data. Although supervised learning algorithms are com-
monly used as predictive models, extracting the implicit 
structures and patterns from the voice data using unsu-
pervised learning techniques is also possible. Transfer 
learning is another promising approach which benefits 
from pre-training the model on a large voice dataset in a 
different domain where data are easier to collect, and 
fine-tuning the model in a target voice dataset, which is 
typically much smaller.

Testing of Algorithms
Collection of large-scale datasets for people with voice 

impairments is rarely feasible; therefore, in order to have 
reliable estimates of the performance, cross-validation 
and out-of-bootstrap validation techniques can be used. 
In cross-validation the dataset is randomly partitioned 
into k approximately equally sized subsets (folds), one be-
ing used for testing and the remaining ones for training. 
The performance is averaged over all folds. Leave-one-
out cross-validation is an extreme case of cross-validation 
when the number of folds is equal to the number of data 
instances, meaning that the model is trained on all data 
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except one data instance. In bootstrap validation data in-
stances are sampled with replacement from the original 
dataset, thus producing the surrogate datasets of the same 
size that may contain repeated data instances or miss data 
instances from the original dataset. If the unsampled data 
instances are used for testing, the method is called out-of-
bootstrap validation.

Performance Metrics
Various performance metrics are used depending on 

specific application and the dataset, including accuracy, 
specificity, sensitivity (recall), precision, F measure, and 
AUC, just to name a few. The right choice of the metrics 
is very important since it guides the selection of the pre-
diction model, but also affects interpretation of the re-
sults. For example, using accuracy for a heavily imbal-
anced classification problem could be misleading, since 
high performance can be reached by a model that always 
predicts the majority class. Sensitivity-specificity and pre-
cision-recall metrics are better choices in that case.

From Research to Clinical Practice
Once a vocal biomarker has been identified, as with 

any biomarker, the path is still long to a clinical routine 
use. For vocal biomarkers there are additional challenges, 
as their validity may be restricted to some languages or 
accents. The US Food and Drug Administration or Euro-

pean Medicines Agency have not approved any vocal bio-
markers yet. Therefore, we can only speculate on the the-
oretical framework of such a process in the future, taking 
into account close cases in traditional biomarkers [7] and 
challenges in digital health. The first step would be to de-
velop standards for vocal biomarker collection and create 
large-scale voice sample repositories for clinical use. This 
should be followed by integrating the algorithm into a 
user-friendly device (smartphone app, smart home de-
vice, connected medical device, etc.), co-designed with 
the end-users if possible. It should then enter sequential-
ly into a feasibility study, one or several clinical trials, as 
well as real-world studies. It will not be the algorithm 
alone but its embedding in a connected medical device 
which will be approved by the agencies, and this major 
step has not been taken yet. Besides, given the technical 
constraints, we suspect that the first vocal biomarkers to 
be validated will be restricted to a specific language or a 
specific sub-group of the population. A relevant template 
to help standardizing and evaluating speech-based digital 
biomarkers has recently been proposed [4]. Health check-
ups could one day be performed directly on an everyday 
device such as a smart mirror to track digital biomarkers,  
including vocal biomarkers, activity, healthcare status, 
and body movement [52]. For seniors, voice can also be a 
preferred medium to communicate inside a smart home 
to exchange with remote family members, in case of an 

Voice assistant

Clinical Practice

Diagnosis

Stratification (risk, severity)

Clinical Research
Remote monitoring in
clinical studies 

Digital health interventions

• Neurodegenerative diseases
• Inflammatory diseases
• Cardiometabolic diseases
• Cardiovascular diseases
• Voice disorders
• Covid-19
• Respiratory syndromes
• Larynx disorders
• Mental Health
• Emotions
• Fatigue...

Vocal chatbot

Smart devices
(TV, mirror, car...)

Smartphone

Integrated in

Vocal biomarkers

Conditions/Symptoms

Telemedicine / Telemonitoring 

Applications

Fig. 3. Overview of present and future use of vocal biomarkers for health.
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emergency or for telemedicine [53, 54]. In pilot studies, it 
has been shown that it is overall well accepted but highly 
dependent on the task complexity and the cognitive abil-
ities of the individuals [55].

Future of Voice for Health

In this review, we have summarized the main fields of 
use today and in the coming years. Soon, the field will 
likely move from audio only to video; adding images to 
the voice will help to better characterize patients, includ-
ing their emotions or other health characteristics from 
facial recognition, which, in combination with vocal bio-
markers, will ease the remote monitoring of health [56–
61]. The increase in data transfer capabilities, using the 
5G networks and future updates, combined with an in-
creasing proportion of the population with a smartphone 
equipped with a vocal assistant or at-home devices, will 
ease the collection and processing of large vocal samples 
in raw format or high definition [62]. From a research 
point of view, we can expect further inclusion of voice-
related secondary endpoints in trials and real-world stud-

ies. From a healthcare point of view, the inclusion of voice 
analysis in health call centers will enable augmented con-
sultations, a more accurate authentication of the caller, 
and real-time analysis of health-related features. Voice 
technologies will soon be further integrated into the de-
velopment of virtual doctors and virtual/digital clinics 
[63] (Fig. 3).

Ethical and Technological Challenges to Tackle

Voice technologies and vocal biomarkers have to take 
the language and accent into account before being used 
on a large scale, otherwise they may increase systemic bi-
ases towards people from specific regions, backgrounds, 
or with a specific accent, and could increase a pre-existing 
digital and socioeconomic divide already present in some 
minorities (Table 2). To that extent, the voice technology 
field can learn from other fields, such as radiology for 
which the use of AI is much more advanced and where 
systemic biases have already been documented [64]. On 
top of that, some voice-specific issues will have to be dealt 
with, as for many applications of vocal biomarkers it is 

Table 2. Technical and ethical challenges for the field of voice technology to move from research to clinical practice

Challenges Type of studies needed

technical ethical

Building and sharing large databanks of highly 
qualified audio recordings with clinical data and 
identifying key vocal biomarker candidates

Secure data collection and storage, rely on high-
quality, gold-standard clinical data to train 
algorithms. Transparent definition of the types and 
frequency of data collected. Privacy preservation and 
protection of personal data. Article 4.1 of the General 
Data Protection Regulation of the European Union 
(GDPR EU) considers the voice as non-anonymous 
data

Proof of concept studies

Increase audio data harmonization and 
standardization across studies

Ensure high variability in the profiles to avoid 
systemic biases

Replication studies

Move from language-, accent-, age-, and culture-
specific vocal biomarkers to more universal ones

Maximize open data and open source initiatives to 
ensure transparency, cross-comparison, and 
interoperability

Improve algorithm accuracy Increase algorithmic explainability

Embed algorithms into medical devices (apps, vocal 
assistants, smart mirrors...) and prototyping

Qualitative studies and co-design sessions 
with end-users

Usability and pilot studies

Integration within existing IT or telehealth systems Do not increase existing digital divides and ensure a 
universal access to innovation

Clinical utility evaluation (randomized 
controlled trials, marker-based strategy-
designed trials) and real-world evaluation 
studies
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likely that language-, accent-, age-, or culture-specific fea-
tures are identified first, before moving to more universal, 
language- and accent-independent features. The right 
balance will have to be found between hyper-personaliza-
tion for a given user and universal assessment of the clin-
ical benefit of a vocal biomarker. There is also a need to 
improve natural language processing and understanding 
capabilities, relevance, and the accuracy of answers of vo-
cal assistants, increase the fluidity in human-vocal chat-
bots interaction, and include emotions and empathy in 
the dialogue, if we ever want to reach massive and long-
term adoption.

The validation of vocal biomarkers against gold-stan-
dards is mandatory for a safe use of voice to monitor 
health-related outcomes. Too few studies are available yet 
to enable a switch from novelty in small feasibility studies 
to large-scale clinical development [65].

One now needs proper evaluation of usability, adapt-
ability, efficacy, and safety, but also sociological and ethi-
cal implications of using vocal biomarkers and voice tech-
nologies. The question of interoperability with existing 
technologies, integration within the various health sys-
tems, and long-term business models remains to be 
solved. Gathering more data is required to make reliable 
estimates; therefore, we strongly recommend the estab-
lishment of large data banks of labelled audio datasets 
with associated clinical outcomes. The next step will be to 
embed the algorithms in a digital device (should it be a 
vocal assistant, a smartphone, or a smart mirror [52]) and 
run prospective randomized controlled trials, real-world 
evaluation, and qualitative studies before envisaging a 
scale-up. The field needs to move towards a standardiza-
tion of vocal biomarker collection in terms of data and 
formats to work with, to ensure cross-comparisons, com-
patibility, and transferability. Sharing data is also needed, 
as it will ensure the development of more accurate vocal 
biomarkers and voice technologies. As any field impacted 
by AI, voice technologies or vocal biomarkers need to rely 
on algorithms trained on diverse datasets to limit biases 
towards under-represented groups of the population.

Voice data is considered sensitive as it can be used to 
reveal the person’s identity, demographic or ethnic ori-
gin, or in cases of vocal biomarkers also the health status. 
Measures, such as encrypting voice data, splitting data 
into random components, each of them independently 
processed to securely process voice data without privacy 
leakage, or learning data representations from which sen-
sitive identifiable information is removed, just to name a 
few, should be used to address ethical concerns related to 
voice data collection and processing.

Conclusion

We have discussed numerous applications in health-
care, both for patients and for healthcare professionals. It 
becomes clear that voice will be increasingly used in fu-
ture health systems: vocal biomarkers will track key health 
parameters remotely and will be used for deep phenotyp-
ing patients or designing innovative trials, opening the 
way to precision medicine [9], while voice technologies 
will be integrated into clinical practice to ease the lives of 
both patients and healthcare professionals. For the field 
to reach maturity, we need to move from a technology-
oriented approach to a more health-oriented one, by cre-
ating studies and high-value datasets for providing evi-
dence of the benefits of such an approach.
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