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Introduction: Parkinson’s disease (PD) is characterized by specific voice disorders

collectively termed hypokinetic dysarthria. We here investigated voice changes by using

machine learning algorithms, in a large cohort of patients with PD in different stages of

the disease, OFF and ON therapy.

Methods: We investigated 115 patients affected by PD (mean age: 68.2 ± 9.2 years)

and 108 age-matched healthy subjects (mean age: 60.2 ± 11.0 years). The PD cohort

included 57 early-stage patients (Hoehn &Yahr ≤2) who never took L-Dopa for their

disease at the time of the study, and 58mid-advanced-stage patients (Hoehn &Yahr >2)

who were chronically-treated with L-Dopa. We clinically evaluated voices using specific

subitems of the Unified Parkinson’s Disease Rating Scale and the Voice Handicap Index.

Voice samples recorded through a high-definition audio recorder underwent machine

learning analysis based on the support vector machine classifier. We also calculated

the receiver operating characteristic curves to examine the diagnostic accuracy of the

analysis and assessed possible clinical-instrumental correlations.

Results: Voice is abnormal in early-stage PD and as the disease progresses, voice

increasingly degradres as demonstrated by high accuracy in the discrimination between

healthy subjects and PD patients in the early-stage and mid-advanced-stage. Also, L-

dopa therapy improves but not restore voice in PD as shown by high accuracy in the

comparison between patients OFF and ON therapy. Finally, for the first time we achieved

significant clinical-instrumental correlations by using a new score (LR value) calculated

by machine learning.

Conclusion: Voice is abnormal in early-stage PD, progressively degrades in mid-

advanced-stage and can be improved but not restored by L-Dopa. Lastly, machine

learning allows tracking disease severity and quantifying the symptomatic effect of L-

Dopa on voice parameters with previously unreported high accuracy, thus representing

a potential new biomarker of PD.
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INTRODUCTION

Patients with Parkinson’s disease (PD) often complain of a
variable impairment of voice emission including hypophonia,
mono-pitch and mono-loudness speech, hypokinetic
articulation, collectively called hypokinetic dysarthria (1–
4). Parkinsonian patients may manifest voice disorders in the
early stage of the disease, with growing evidence showing voice
impairment occurring even in the prodromal phase of PD (2, 5–
9). Also, voice typically worsens over the course of the disease
leading to severe voice impairment in more advanced stages of
PD (1, 2). Furthermore, the standardized clinical assessment of
voice in PD is currently based only on qualitative evaluation
(i.e., a specific subitem of the Unified Parkinson’s Disease Rating
Scale—UPDRS) (2, 10) thus precluding the objective assessment
of the voice impairment in this disorder.

Over recent years, quantitative approaches based on spectral
analysis have been developed to examine objectively voice
samples (11). Spectral analysis in patients with PD allowed
to demonstrate several abnormalities in specific voice features
such as reduced fundamental frequency and harmonics-to-
noise ratio, and increased jitter and shimmer (3, 12–16).
The human voice however, represents a complex phenomenon
characterized by high-dimensional data based on an exponential
number of features. Accordingly, besides the independent
examination through spectral analysis of specific voice features
(i.e., fundamental frequency), more advanced techniques able
to analyse and dynamically combine and high-dimensional
datasets of voice features such as machine-learning algorithms
(17–23) would improve significantly the accuracy of the
objective classification of voice samples in PD. Indeed, machine
learning has allowed to classify voice impairment objectively
and automatically in a number of neurologic disorders, with
previously unreported high accuracy (19, 21, 22).

To date, concerning the application of machine learning
analysis in PD, only a few preliminary studies in rather
small and clinically heterogeneous cohorts of patients have
been reported (24–26). It is therefore important to examine
instrumentally voice impairment in a large and clinically well-
characterized cohort of PD. Also, it is relevant to verify whether
machine learning can recognize the effect of disease severity by
discriminating patients in different stages of the disease. Still,
given that the symptomatic effect of L-Dopa on voice is still
largely a matter of debate (1, 10, 27–33), it is relevant to compare
the instrumental voice analysis with machine learning in patients
under and not under L-Dopa treatment.

We here investigated voice in a large and clinically well-
characterized cohort of patients with PD. Then, to examine the
effect of disease severity on voice, we compared voices collected
in patients in early and mid-advanced stage of PD. Still, to
investigate the effect of L-Dopa on voice, we compared patients
OFF and ON therapy. To verify the effect of the specific speech
tasks, we compared voice recordings during the emission of
a vowel and a sentence, according to standardized procedures
(19, 21, 22). We assessed the sensitivity, specificity, positive and
negative predictive values, and accuracy of all diagnostic tests
and calculated the area under the receiver operating characteristic

(ROC) curves. Lastly, by providing a machine learning measure
of voice impairment severity for each patient, we also assessed
possible clinical-instrumental correlations. Our hypothesis is
that machine learning analysis of speech samples is able to
discriminate PD patients from controls, patients in early and
mid-advanced stages, and finally patients OFF and ON therapy,
with previously unreported high accuracy.

METHODS

Subjects
We enrolled a total of 115 patients affected by PD (68.2 ± 9.2
years, range 47–91 years) and 108 age-matched healthy subjects
(HS) (60.2± 11.0 years). Participants were recruited at the IRCCS
Neuromed Institute and at the Department of Systems Medicine,
Tor Vergata University of Rome, Italy. All participants (HS and
PD patients) were native Italian speakers and non-smokers. None
of the participants reported bilateral/unilateral hearing loss,
respiratory disorders, other non-neurologic disorders affecting
the vocal cords. Participants gave written informed consent,
which was approved by the institutional ethics committee
(0026508/2019), according to the Declaration of Helsinki.

The clinical diagnosis of PD was made according to current
standardized clinical criteria (34). Symptoms and signs associated
with PD were scored using Hoehn & Yahr scale (H&Y),
UPDRS part III (10). None of the patients manifested atypical
parkinsonian symptoms. In all participants (HS and PD patients),
we assessed cognitive function and mood using the Mini-Mental
State Evaluation (MMSE) (35), the Hamilton Depression Rating
Scale (HAM-D) (36) and the Frontal Assessment Battery (FAB).
None of the patients were treated with deep brain stimulation
or infusional therapies. The clinical evaluation of speech was
achieved by two independent raters using two separate clinical
scales: (1) the Voice Handicap Index (VHI), Italian version
(37), which consists of a patient-based, self-assessed, 30-item
scale examining the functional, physical, and emotional aspects
of voice disorders; (2) the specific item for speech evaluation
included in the UPDRS-III scale (UPDRS-III-v) (10).

The study cohort was designed to include a subgroup of 57
early stage patients with PD (H&Y scores ≤2) (38) who never
took L-Dopa for their disease at the time of the study (drug
naïve)(64.2 ± 8.6 years), and a subgroup of 58 mid-advanced-
stage patients (H&Y scores>2) (38) who were chronically-treated
with L-Dopa (72.1 ± 8.1 years). We evaluated 31 out of 58 mid-
advanced-stage patients (71.4 ± 8.7 years) when OFF (after at
least 12 h of L-Dopa withdrawal) and ON therapy (1–2 h after the
intake of L-Dopa). Participant demographic and clinical features
are reported in Table 1.

Voice Recordings
Voice recordings were performed by asking participants to
produce a specific speech task with their usual voice intensity,
pitch, and quality. The speech tasks consisted of the sustained
emission of a close-mid front unrounded vowel /e/ for at least
5 s and of the emission of a standardized Italian sentence (19,
22). Voice recordings were collected by using a high-definition
audio-recorder H4n Zoom (Zoom Corporation, Tokyo, Japan),
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connected with a Shure WH20 Dynamic Headset Microphone
(Shure Incorporated, USA), which was placed at a distance of
5 cm from the mouth. Voice samples were recorded in linear
PCM format (.wav) at a sampling rate of 44.1 kHz, with 16-bit
sample size.

Machine Learning Analysis
Each voice sample underwent feature extraction pre-process by
using OpenSMILE (audEERING GmbH, Germany) (39). For
each voice sample, we extracted 6,139 voice features included
in the INTERSPEECH2016 Computational Paralinguistics
Challenge (IS ComParE 2016) feature dataset (39). To identify a
subset of the most relevant features, the extracted voice features
underwent feature selection pre-process using the Correlation
Features Selection algorithm (CSF) (40). CFS was applied in
order to select (uncorrelated) voice features highly correlated
with the class. As a result, redundant and/or irrelevant features
were removed from the original dataset. All the selected features
were then ranked in order of relevance, by measuring the
information gain concerning the class, through the Information
Gain Attribute Evaluation (IGAE) algorithm, which is based
on the Pearson’s correlation method. To further increase the
accuracy of results, we used the discretization pre-process,
which is an optimization procedure consisting in calculating
the best splitting point from the two classes and assigning
a binary value to the features. Discretization was achieved
using the Fayyad & Irani’s discretization method, according to
standardized procedures.

Given the relatively small dataset analyzed in the study,
the Support Vector Machine (SVM) classifier based on linear
kernel was used to achieve a binary classification, reducing the
likelihood for “overfitting.” We used only the first 30 most
relevant features ranked by the IGAE (22). This approach
was applied to reduce the number of selected features needed
to perform the machine learning analysis, in according to
standardized procedures (18, 19, 21, 22). A list of the first
30 features which represent functionals applied to audio
low-level descriptors (LLDs)—extracted from the vowel and
the sentence for the comparison between HS and PD is
reported in Table 2. The SVM was trained using the sequential
minimal optimization method. Both the procedures of feature
selection and classification were performed through MATLAB
(MathWorks, USA). The training was performed using an
optimization procedure aimed to find the best hyperparameter
values for binary classification (i.e., box constraint “C” value,
for linear kernel). Different combinations of hyperparameter
values were tested by using an optimization scheme that seeks
to minimize the model classification error (41, 42).

We performed a furthermachine learning analysis for clinical-
instrumental correlation purposes, after achieving feature
extraction and selection, in parallel to the SVM classification
procedures. We used a feed-forward artificial neural network
(ANN), consisting of a 30-neurons input layer, a 10-neurons
hidden layer and a one-neuron output layer. Input for ANN
consisted of the first 30 most relevant selected features, which
thus matched the 30-neurons input layer. Then, the ANN was
trained to calculate a continuous numerical value (the likelihood
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TABLE 2 | List of the first 30 selected features for the comparison between HS and PD.

Vowel Sentence

Ranking

position

Families of LLDs LLDs Functionals Families of LLDs LLDs Functionals

1 RASTA coefficients Coefficient of band 22 Standard deviation of

falling slope

Spectral LLD Spectral Roll Off point 0.90 Absolute peak range

2 Voicing Related LLD Fundamental Frequency

(fo)

Minimum segment

length

Spectral LLD Spectral Roll Off point 0.50 Inter-quartile 1–3

3 Energy Related LLD Sum of auditory spectrum Flatness Spectral LLD Spectral Roll Off point 0.50 Quartile 3

4 Spectral LLD Spectral Flux Quadratic regression

coefficient 1

Energy Related LLD Zero Crossing Rate 99% percentile

5 RASTA coefficients Coefficient of band 2 Linear prediction

coefficient 4

Spectral LLD Spectral Variance Range

6 RASTA coefficients Coefficient of band 21 (de) Standard deviation of

rising slope

Spectral LLD Spectral Roll Off point 0.25 Quartile 3

7 Spectral LLD Spectral Slope (de) Position of max Spectral LLD Spectral Roll Off point 0.25 Linear prediction

coefficient 0

8 RASTA coefficients Coefficient of band 25 Flatness Spectral LLD Psychoacoustic Sharpness 1% percentile

9 Spectral LLD Spectral energy

250–650Hz

Relative min range RASTA coefficients Coefficient of band 8 (de) Flatness

10 Energy Related LLD RMS Energy (de) Linear prediction

coefficient 0

Spectral LLD Spectral Centroid 99% percentile

11 Spectral LLD Spectral Flux Standard deviation of

falling slope

Spectral LLD Spectral Roll Off point 0.75 Absolute peak range

12 Voicing Related LLD Fundamental Frequency

(fo)

1% percentile RASTA coefficients Coefficient of band 1 Mean of rising slope

13 MFCC 8th Mel Coefficient Inter-quartile 1–2 Spectral LLD Spectral Roll Off point 0.25 Quadratic regression

coefficient 2

14 RASTA coefficients Coefficient of band 25 (de) Gain of linear prediction MFCC 2nd Mel Coefficient Quadratic regression

quadratic

15 Spectral LLD Spectral Flux Range Spectral LLD Spectral Roll Off point 0.25 Inter-quartile 2–3

16 Spectral LLD Spectral Flux Quadratic regression

coefficient 2

Spectral LLD Spectral Entropy Range

17 Spectral LLD Spectral Slope Gain of linear prediction Energy Related LLD Zero Crossing Rate Standard deviation of

rising slope

18 Spectral LLD Spectral Slope Standard deviation of

rising slope

Spectral LLD Spectral Roll Off point 0.50 Quadratic regression

coefficient 3

19 Spectral LLD Spectral Variance (de) Relative peak mean Voicing Related LLD Fundamental frequency Inter-quartile 2–3

20 MFCC 5th Mel Coefficient (de) Skewness Spectral LLD Spectral Entropy Absolute peak mean

21 RASTA coefficients Coefficient of band 4 (de) Skewness MFCC 3rd Mel Coefficient 1% percentile

22 Energy Related LLD RMS Energy Mean of falling slope Spectral LLD Spectral Variance Inter-quartile 2–3

23 Spectral LLD Spectral Roll Off point

0.75

Linear prediction

coefficient 3

RASTA coefficients Coefficient of band 18 Position of min

24 RASTA coefficients Coefficient of band 5 Linear prediction

coefficient 4

MFCC 3rd Mel Coefficient Relative peak mean

25 Energy Related LLD Zero Crossing Rate Linear prediction

coefficient 0

Spectral LLD Spectral Kurtosis Absolute peak range

26 MFCC 4th Mel Coefficient (de) Relative peak range RASTA coefficients Coefficient of band 9 (de) Flatness

27 Voicing Related LLD Shimmer (Local) Position of max RASTA coefficients Coefficient of band 4 Position of min

28 RASTA coefficients Coefficient of band 2 Linear prediction

coefficient 3

Spectral LLD Spectral Centroid 1% percentile

29 RASTA coefficients Coefficient of band 1 (de) Standard deviation Spectral LLD Spectral Skewness Mean segment length

30 Voicing Related LLD Shimmer (Local) (de) Quadratic regression

coefficient 2

RASTA coefficients Coefficient of band 22 Position of min

The table refers to selected voice features for the comparison between healthy subjects and patients with Parkinson’s disease. Ranking of the first 30 features (functionals applied to

low-level descriptors—LLDs) extracted using a dedicated software (OpenSMILE) and selected using Information Gain Attribute Evaluation (IGAE) algorithm for the comparison between

healthy subjects and the whole group of patients with PD, during the sustained emission of the vowel and sentence. MFCC, mel-frequency cepstral coefficient; de, first derivative of

the LLD.
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ratio—LR), ranging from 0 to 1 and reflecting the degree of voice
impairment in each patient with PD (i.e., the closer the LRs to
1, the higher the degree of voice impairment). ANN was trained
by using the same selected features used to train the SVM. The
experimental paradigm is also summarized in Figure 1 (39–42).

Statistical Analysis
The normality of all parameters was assessed using the
Kolmogorov-Smirnov test. The Mann-Whitney U test was used
to compare demographic and anthropometric parameters in HS
and PD patients. The Mann-Whitney U test was also used to
compare demographic parameters and clinical scores in early-
stage and mid-advanced-stage patients. The Wilcoxon signed-
rank test was used to compare UPDRS-III, UPDRS-III-v, and

FIGURE 1 | Experimental design. (A) recording of voice samples through a

high-definition audio recorder; (B) narrow-band spectrogram of the acoustic

voice signal; (C) feature extraction; (D) feature selection; (E) feature

classification; (F) ROC curve analysis; (G) LR values calculated through ANN.

VHI scores in mid-advanced-stage patients when OFF and
ON therapy. The Wilcoxon signed-rank test was also used to
compare the possible L-Dopa-induced improvement of voice
(UPDRS-III-v-ON/OFF∗100) and motor symptoms (UPDRS-
III-ON/OFF∗100) inmid-advanced-stage patients.

ROC analyses were calculated to identify the optimal
diagnostic cut-off values to discriminate between HS and PD,
early-stage and mid-advanced-stage patients, and finally mid-
advanced-stage patients OFF and ON therapy. We reported in
detail the Sensibility (Se), Specificity (Sp), Positive Predictive
Value (PPV), Negative Predictive Value (NPV), Accuracy (Acc.).
Also, we showed the output of the ROC analysis by calculating the
Youden Index (YI) and its optimal criterion value, the associated
criterion (Ass. Crit.). We also compared the independent ROC
curves referring to the emission of the vowel and the sentence.

Spearman’s rank correlation coefficient was used to assess
correlations between clinical scores and LR values.

A p-value <0.05 was considered statistically significant.

RESULTS

Demographic and anthropometric parameters were normally
distributed in HS, in PD as well as in early-stage and mid-
advanced-stage patients (p > 0.05). Weight, height, and BMI
were comparable among groups (p > 0.05). Mean age was
comparable between HS and mid-advanced-stage patients (p >

0.05), whereas it was higher in HS and mid-advanced-stage
patients than in early-stage patients (p < 0.05). MMSE, HAM-
D and FAB were comparable among groups (p > 0.05 for
all comparisons). Mid-advanced-stage patients showed higher
scores on the H&Y, UPDRS-III, UPDRS-III-v and VHI scales
than early-stage patients (p < 0.05 for all comparisons). The L-
Dopa-induced improvement of voice was lower than that in the
remaining motor symptoms (p < 0.05) (Table 1).

Voice Impairment in PD
We found that 84% of the patients included in our cohort (97 out
of 115 patients) manifested a variable degree of clinically overt
voice impairment (UPDRS-III-v ≥1). Also, we found a clinically
overt voice impairment in 68% of early-stage patients and 100%
ofmid-advanced-stage patients.

Voice samples collected in 7 patients with PD (3 patients from
the early-stage subgroup and 4 patients from the mid-advanced-
stage subgroup including voice recordings collected in 2 patients
ON and OFF therapy) were excluded from the instrumental
analysis owing to file corruption. We first compared voice
samples recorded during the emission of vowel and sentence
in HS and the whole group of patients. This analysis showed
a significant and comparable diagnostic performance between
speech tasks (delta-AUC = 0.002, z = 0.605, SE = 0.036, p =

0.54) (Figure 2A, Table 3).
When discriminating HS and early-stage patients, ROC

analyses identified high accuracy with comparable results
between speech tasks (delta-AUC= 0.024, z =0.520, SE= 0.046,
p= 0.60) (Figure 2B, Table 3).

When comparing HS and mid-advanced-stage patients OFF
therapy, ROC analyses again showed high classification accuracy
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FIGURE 2 | ROC curves calculated through SVM classifier in Parkinson’s disease. (A) HS vs. the whole group of PD patients; (B) HS vs. early-stage patients; (C) HS

vs. mid-advanced-stage patients OFF therapy; (D) Early-stage vs. mid-advanced-stage patients OFF therapy. Gray lines refer to the emission of the vowel, whereas

black lines refer to the sentence.

but the analysis showed higher results for the vowel than the
sentence (delta-AUC = 0.083, z = 2.429, SE = 0.034, p = 0.02)
(Figure 2C, Table 3).

Also, when discriminating early-stage and mid-advanced-
stage patients, ROC curves showed high and comparable results
between speech tasks (delta-AUCs = −0.034, z = −1.198, SE =

0.028, p= 0.23) (Figure 2D, Table 3).

The Effect of L-Dopa on Voice
We found that pharmacological treatment with L-Dopa induced
a significant clinical improvement of both motor and voice
impairment, as demonstrated by reduced UPDRS-III (PD-ON:
28.3 ± 13.8; PD-OFF: 32.3 ± 13.5; z = −4.9; W = 0; p < 0.01),
UPDRS-III-v (PD-ON: 2.4 ± 0.5; PD-OFF: 2.7 ± 0.6; z = −2.9;

W= 0; p< 0.05) and VHI scores (PD-ON: 20.0± 17.7; PD-OFF:
25.9± 21.4; z =−4.9; W= 0; p < 0.01).

When comparing mid-advanced-stage patients OFF and ON,
ROC analysis showed comparable results between speech tasks
with high accuracy (delta-AUC = −0.032, z = −0.364, SE =

0.088, p= 0.72) (Figure 3A, Table 3).
When discriminating HS and mid-advanced-stage patients

ON therapy, ROC analysis showed high classification
performance (delta-AUC = −0.072, z = −1.678, SE = 0.043, p
= 0.09) (Figure 3B, Table 3).

Finally, concerning the comparison between early-stage and
mid-advanced-stage patients when ON therapy, ROC analysis
showed high statistical results for both the speech tasks (delta-
AUC = −0.007, z = −0.537, SE = 0.013, p = 0.59) (Figure 3C,
Table 3).
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TABLE 3 | Performance of the machine learning algorithm.

Comparisons Speech-task Instances Cross

validation

Associated

criterion

Youden

index

Se (%) Sp (%) PPV (%) NPV (%) Acc (%) AUC

HS vs. PD Vowel 98 10 folds −0.03 0.60 82.7 77.1 75.0 84.3 79.6 0.870

Sentence 94 10 folds 0.02 0.57 72.5 84.7 88.0 66.7 77.3 0.848

HS vs. early-stage PD Vowel 67 10 folds −0.36 0.64 87.0 77.4 74.1 88.9 81.5 0.900

Sentence 93 10 folds 0.16 0.66 75.8 90.5 92.6 70.4 81.5 0.876

HS vs.

mid-advanced-stage PD

Vowel 100 10 folds 0.16 0.87 92.7 94.3 94.4 92.6 93.5 0.980

Sentence 82 10 folds 0.18 0.63 82.7 80.4 79.6 83.3 81.5 0.897

Early-stage vs.

mid-advanced-stage PD

Vowel 119 10 folds 0.16 0.76 87.2 88.7 88.9 87.0 88.0 0.934

Sentence 102 10 folds 0.10 0.85 91.1 94.1 94.4 90.7 92.6 0.981

Mid-advanced-stage PD

OFF vs. ON

Vowel 22 10 folds 0.02 0.46 69.7 76.0 79.3 65.5 72.4 0.754

Sentence 6 10 folds 0.03 0.49 71.9 76.9 79.3 69.0 74.1 0.786

HS vs.

mid-advanced-stage PD

ON

Vowel 82 10 folds 0.97 0.66 85.2 80.6 79.3 86.2 82.8 0.913

Sentence 69 10 folds −0.01 0.93 96.6 96.6 96.6 96.6 96.6 0.985

Early-stage PD vs.

mid-advanced-stage PD

ON

Vowel 71 10 folds −0.18 0.94 100 93.5 93.1 100 96.6 0.992

Sentence 78 10 folds 0.62 0.97 100 96.7 96.6 100 98.3 0.999

Performance of SVM linear classifier elaborating the 30 most relevant selected features during the sustained emission of the vowel and the sentence for seven independent conditions:

(1) HS vs. the whole group of PD patients; (2) HS vs. early-stage patients; (3) HS vs. mid-advanced-stage patients; (4) Early-stage vs. mid-advanced-stage patients; (5) Mid-advanced-

stage patients OFF vs. ON therapy; (6) HS vs. mid-advanced-stage patients ON therapy; (7) Early-stage patients vs. mid-advanced-stage patients ON therapy. Selected features refer

to the number of features able to obtain the best results; instances refer to the number of subjects considered in each comparison; cross validation refers to standardized validation

procedures (see methods for details). Se, sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive value; Acc, accuracy; AUC, area under the curve.

Correlation Analysis
In the whole group of PD patients, the Spearman test disclosed a
positive correlation between disease duration and VHI (r = 0.64,
p < 0.01) (Figure 4A), H&Y and UPDRS-III-v scores (r = 0.76,
p < 0.01), and between H&Y and VHI (r = 0.64, p < 0.01), i.e.,
the greater disease duration and disability, the higher impairment
of voice. We also found a positive correlation between UPDRS-
III and UPDRS-III-v scores (r = 0.81, p < 0.01), and between
UPDRS-III and VHI (r = 0.64, p < 0.01) (Figure 4B), i.e.,
the greater disease severity, the higher impairment of voice.
Furthermore, there was a positive correlation also between
LEDDs and VHI scores (r = 0.34, p < 0.01), and UPDRS-
III-v scores (r = 0.44, p < 0.01), i.e., the higher LEDDs, the
higher impairment of voice. Lastly, MMSE and FAB negatively
correlated with VHI scores (r = −0.37, p < 0.01 and r = −0.28,
p < 0.01, respectively), i.e., the greater cognitive impairment, the
higher impairment of voice.

Concerning the clinical-instrumental correlations, we found a
positive correlation between LRs collected in the overall group
of PD patients and disease duration (r = 0.35, p < 0.01)
(Figure 4C), H&Y (r = 0.34, p < 0.01), UPDRS-III (r = 0.41,
p < 0.01) (Figure 4D), UPDRS-III-v (r = 0.33, p < 0.01), and
VHI (r = 0.33, p < 0.01) (Figure 4E). When considering mid-
advanced-stage PD patients ON therapy, we found a positive
correlation between LRs and UPDRS-III scores (r = 0.47, p <

0.05) (Figure 4F). Accordingly, the higher LR values attributed

by machine learning, the higher disease duration, disability, and
severity of motor as well as voice symptoms.

DISCUSSION

We here report the objective and automatic recognition, by
means of machine learning, of voice abnormalities in a large
and clinically well-characterized cohort of patients with PD. We
demonstrated the effect of disease severity on voice changes in PD
by discriminating early-stage and mid-advanced-stage patients.
Also, we clarified the effect of L-Dopa on voice in PD by
recognizing voice changes in patients OFF and ON therapy. The
significant clinical-instrumental correlations further support the
high diagnostic accuracy of our voice analysis.

All the subjects here enrolled were non-smokers and native
Italian speakers. HS and PD had comparable demographic,
anthropometric and cognitive characteristics including MMSE
scores corrected for years of education. We recruited a balanced
number of patients in the two patients’ subgroups (early-stage
and mid-advanced stage) (38). Moreover, since all early-stage
patients were also drug-naïve, we excluded possible confounding
on voice recordings from chronic treatment with L-Dopa
thus allowing the objective and automatic recognition of PD-
related voice disorders per se. Concerning the specific speech
tasks, we compared the sustained emission of a vowel and
a sentence by using standardized procedures (11, 17–19, 22,
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FIGURE 3 | ROC curves calculated through SVM classifier in Parkinson’s disease: the effect of L-Dopa. (A) Mid-advanced-stage patients OFF vs. ON therapy; (B) HS

vs. mid-advanced-stage patients ON therapy; (C) Early-stage patients vs. mid-advanced-stage patients ON therapy. Gray lines refer to the emission of the vowel,

whereas black lines refer to the sentence.

43) thus also verifying the effect of PD on voice samples of
different complexity.

The clinical observation that 84% of the PD patients (68% of
early-stage and 100% ofmid-advanced-stage patients) manifested
voice impairment (UPDRS-III-v ≥1), agrees with the estimated
prevalence of hypokinetic dysarthria in PD, which ranges from 70
to 90% (1–4, 44). Furthermore, the severity of voice impairment
correlated with disease duration and the overall motor disability
and severity, and finally, with the degree of cognitive impairment
in PD. Hence, our findings demonstrate that PD patients
manifest voice disorders in the early-stage of the disease (2, 5),
with significant worsening of speech over the course of the
disease (1, 2).

The application of machine learning analysis showed that
voice is abnormal in PD as demonstrated by high diagnostic

accuracy in the discrimination of voices between PD patients
and HS. Our findings confirm and expand preliminary machine
learning studies only focused on specific methodological aspects
of voice analysis, achieved in pre-existing datasets or in rather
heterogeneus cohorts of patients with PD (24–26). Our study
is therefore the first one to provide a thorought classification
of voice in PD patients, according to the stage (i.e., de novo)
and severity of the disease as well as the effect of chronic
L-Dopa treatment. Also, supporting the biological plausibility
of our results, the most relevant voice features selected by
our machine learning algorithms (among the large dataset
of features examined), include those previously identified by
spectral analysis such as the fundamental frequency (3, 12–16,
26, 45). Moreover, our study showed for the first time significant
clinico-instrumental correlations: the higher LR values attributed
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FIGURE 4 | Clinical-instrumental correlations. (A) Disease Duration and VHI; (B) UPDRS-III and VHI; (C) Disease Duration and LRs; (D) UPDRS-III and LRs; (E) VHI

and LRs; (F) UPDRS-III ON and LRs. Note that the correlation analysis only refers to the emission of the vowel. Similar results have been achieved when analyzing the

emission of a sentence (data not shown). In addition, correlation analysis shown in (A–E) refers to the whole group of PD patients, whereas (F) shows the correlation

assessed in the subgroup of mid-advanced stage patients ON therapy.

Frontiers in Neurology | www.frontiersin.org 9 February 2022 | Volume 13 | Article 831428

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Suppa et al. Voice Analysis in Parkinson’s Disease

by machine learning, the longer the disease duration, the higher
severity of motor symptoms, and finally the greater voice
impairment in patients with PD. Hence, we demonstrated for
the first time that the degree of voice changes in PD correlates
with disease duration and severity and finally, LR values can
be considered reliable scores to express the complexity of voice
impairment in PD.

A further relevant finding of the study concerns the subclinical
impairment of voice in early-stage PD as demonstrated by
high statistical accuracy achieved by machine learning in
discriminating early-stage patients from HS (2). Given that
32% of early-stage patients did not manifest a clinically overt
voice impairment, we speculate that the high accuracy in
discriminating early-stage patients and HS would reflect the
ability of machine learning to recognize subclinical voice
impairment in PD.

As the disease progresses, voice increasingly degrades in PD
as demonstrated by our ROC analysis achieving high statistical
accuracy in discriminating mid-advanced-stage patients OFF
therapy from HS. Again, for the first time we demonstrate
significant clinico-instrumental correlations: the higher LR
values, the greater severity of voice symptoms in mid-advanced-
stage patients.

Another important finding in this study concerns the effect
of L-Dopa on voice abnormalities in PD which is still a matter
of debate given previous reports on beneficial (28, 29, 31–
33) or null effect (27, 30). We here demonstrated that L-
Dopa exerts significant improvement of voice in mid-advanced-
stage patients. Furthermore, our clinical evaluation allowed us
to demonstrate that L-Dopa improved voice less than other
motor symptoms, a finding pointing to the weaker clinical
effect of L-Dopa on axial signs in PD, as also shown by
the correlations between LEDDs and VHI as well as UPDRS-
III-v (1, 27, 30). By using an objective and automatic voice
analysis, we demonstrated the significant effect of L-Dopa on
voice in PD as suggested by high diagnostic accuracy in the
comparison of patients OFF and ON therapy. Still, we found for
the first time significant clinico-instrumental correlations also in
patients ON therapy: the greater LR values, the higher severity
of motor symptoms. However, although L-Dopa improved
voice in PD, it failed to restore it as demonstrated by high
diagnostic accuracy in the discrimination between HS and
patients ON therapy.

The diagnosis of PD is currently based on clinical examination
with the aid of several standardized clinical scales (34). Hence,
the development of innovative disease biomarkers in PD would
gain tremendous advances in the field. According to the FDA,
an ideal disease biomarker would imply the identification of a
certain biological variable specific for PD and able to allow early
and objective diagnosis and track the severity of the disease. Also,
an ideal disease biomarker in PD would require a safe, easy,
and cheap methodology enabling an accurate diagnosis of PD.
A relevant finding here is that our machine learning algorithm
can recognize PD even in the early-stage of the disease, track
the disease severity and evaluate the symptomatic effect of L-
Dopa using a safe, easy, and cheap methodology. Accordingly,
the data reported in the present study would suggest the possible

use ofmachine learning voice analysis as an innovative biomarker
in PD.

A final comment deserves the specific speech tasks here used
to assess voice in PD. In agreement with our previous studies
(19, 22), when comparing voice samples during the emission of a
vowel and a standardized sentence, our analysis disclosed similar
ROC curves in PD. We therefore demonstrated a similar degree
of PD-related voice impairment regardless of the complexity
of the speech tasks used. Accordingly, given that the sustained
emission of the vowel represents a language- and culture-free
speech task, we suggest the voluntary emission of a vowel as
the preferred speech task for the worldwide assessment of PD
(19, 22).

We recognize that the present study has several limitations.
As we have not recorded vocal samples in each patient serially,
we cannot exclude the possibility of daily fluctuations in vocal
features in PD. Also, in this study early-stage patients were
slightly younger than mid-advanced-stage patients and HS.
Hence, we cannot exclude that age differences between early-stage
andmid-advanced-stage patients orHSwould have contributed at
least in part to the high accuracy achieved in the discrimination
between the two subgroups of patients (19). Concerning the
clinical-instrumental correlations, given that machine learning
analysis requires a large amount of data, we speculate that
future studies with larger sample size will report higher r values
than those here reported. Furthermore, the uncertain association
between specific aspects of hypokinetic dysarthria in PD (i.e.,
hypophonia, mono-pitch and mono-loudness speech) and the
specific voice features selected by the machine learning algorithm
requires further investigation in depth.

In conclusion, in the present study in a large and clinically
well-characterized cohort of patients, we provide clinical and
instrumental evidence supporting voice changes occurring early
in PD and worsening significantly over the course of the disease.
Also, L-Dopa improves but does not restore voice in PD. Overall,
given that machine learning objectively recognizes PD even in
the early-stage of the disease, tracks the disease severity and
detects the effect of L-Dopa with previously unreported high
diagnostic accuracy, we speculate that machine learning-based
voice analysis would represent in a near future an innovative
disease biomarker able to support the clinical management of
PD. Lastly, we speculate that our study would promote the future
homebound application of machine learning voice analysis for
telemedicine approaches in PD.
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analysis of connected speech reveals early biomarkers of Parkinson’s disease
in patients with rapid eye movement sleep behaviour disorder. Sci Rep. (2017)
7:12. doi: 10.1038/s41598-017-00047-5

8. Rusz J, Tykalová T, Novotný M, Zogala D, RuŽička E, Dušek P. Automated
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