
 

 

 

 

 

Edinburgh Research Explorer 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Voice liveness detection algorithms based on pop noise caused
by human breath for automatic speaker verification

Citation for published version:
Shiota, S, Villavicencio, F, Yamagishi, J, Ono, N, Echizen, I & Matsui, T 2015, Voice liveness detection
algorithms based on pop noise caused by human breath for automatic speaker verification. in
INTERSPEECH 2015 16th Annual Conference of the International Speech Communication Association.
International Speech Communication Association, pp. 239-243. <http://www.isca-
speech.org/archive/interspeech_2015/i15_0239.html>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
INTERSPEECH 2015 16th Annual Conference of the International Speech Communication Association

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

http://www.isca-speech.org/archive/interspeech_2015/i15_0239.html
http://www.isca-speech.org/archive/interspeech_2015/i15_0239.html
https://www.research.ed.ac.uk/en/publications/7fe37df9-a7ce-4caf-8b2c-4e6d2e4e9b25


Voice liveness detection algorithms based on pop noise

caused by human breath for automatic speaker verification

Sayaka Shiota1, Fernando Villavicencio2, Junichi Yamagishi2,

Nobutaka Ono2, Isao Echizen2, Tomoko Matsui3

1Tokyo Metropolitan University, Hino, Tokyo, 191-0065, Japan.
2National Institute of Informatics, Chiyoda, Tokyo, 101-8430, Japan.

3The Institue of Statistical and Mathematics, Tachikawa, 190-8562, Japan.

Abstract

This paper proposes a novel countermeasure framework to

detect spoofing attacks to reduce the vulnerability of auto-

matic speaker verification (ASV) systems. Recently, ASV sys-

tems have reached equivalent performances equivalent to those

of other biometric modalities. However, spoofing techniques

against these systems have also progressed drastically. Exper-

imentation using advanced speech synthesis and voice conver-

sion techniques has showed unacceptable false acceptance rates

and several new countermeasure algorithms have been explored

to detect spoofing materials accurately. However, the counter-

measures proposed so far are based on the acoustic differences

between natural speech signals and artificial speech signals, ex-

pected to become gradually smaller in the near future. In this

paper, we focus on voice liveness detection, which aims to vali-

date whether the presented speech signals originated from a live

human. We use the phenomenon of pop noise, which is a dis-

tortion that happens when human breath reaches a microphone,

as liveness evidence. This paper proposes pop noise detection

algorithms and shows through an experimental study that they

can be used to discriminate live voice signals from artificial ones

generated by means of speech synthesis techniques.

Index Terms: automatic speaker verification, voice liveness de-

tection, anti-spoofing, countermeasure, pop noise

1. Introduction

It is well known that biometric authentication has an important

role in reliable management systems nowadays [1, 2]. Auto-

matic speaker verification (ASV) is also an easy-to-use biomet-

ric authentication system using only speakers’ voice samples.

Recently, the performance of the ASV techniques has been im-

proved as a result of e.g. i-Vector [3, 4] or PLDA (probabilistic

linear discriminant analysis) [5] developments, and there are a

lot of reports regarding state-of-the-art schemes that show po-

tential to support mass-market adoption. Meanwhile, speech

synthesis [6, 7] and speech transformation [8], which are tech-

nologies to generate natural-sounding artificial speech with the

targeted speaker’s voice from a given text or an inputted speech

waveform uttered by someone else, have progressed. They are

also active and important research topics in speech informa-

tion processing because the technologies may help individuals

with vocal or communicative disabilities for instance. However,

such technologies can be used to falsify profiles or identities

and perform spoofing attacks against ASV systems, represent-

ing a serious challenge to the successful operation of these sys-

tems [9–11]. Research on the definition and development of

countermeasures for the detection of spoofing attacks already

exists [12–15]. Conventionally, attacks of three different na-

tures are considered: replay, speech synthesis, and voice con-

version. Countermeasure strategies are mainly based on com-

paring acoustic features of artificial signals with those of natu-

ral ones [16–18]. Spectral, F0 and modulation-related features

are among the features used to compute the countermeasures.

However, we expect the acoustic differences between artificial

and natural speech to gradually become smaller and eventually

marginal in the near future.

Looking at other biometrics fields, we see that face, finger-

print, and even iris recognition systems also suffer from spoof-

ing attacks, and researchers have continued to develop several

countermeasures to overcome this problem [19–21]. One of the

most effective countermeasures in other biometrics fields is to

use a “liveness detection” framework that ensures that the per-

son attempting authentication is alive. For image processing

fields, it has been reported that liveness detection frameworks

have reduced vulnerability significantly [22–24]. We can use

the same concept for the ASV system and propose a counter-

measure algorithm based on voice liveness detection (VLD),

so we can detect spoofing materials more robustly. An impor-

tant question is how we ensure the liveness of presented speech

signals to validate whether the presented signals are originated

from a live human or not. For this purpose, in this paper we

focus on pop noise detection. Since pop noise is a common dis-

tortion in speech occurring when human breath reaches a mi-

crophone and is poorly reproduced by loudspeakers [25, 26],

it seems reasonable to consider it as natural evidence of live-

ness at the input of an authentication system. A measure that

takes into account the presence of pop noise phenomena might

therefore represent therefore a good basis to discriminate be-

tween live or played speech (via loudspeakers). This paper pro-

poses two VLD detection strategies to reduce the vulnerability

of ASV systems. To evaluate the effectiveness of the proposed

VLD frameworks, we have recorded some speech on a small

database including voice samples with pop noise. An experi-

mental evaluation was carried out to explore the performance

of the proposed techniques, showing, as it will be furthermore

reported, significant benefits when incorporating them as VLD

modules within the ASV process.

The outline of this paper is as follows. In section 2, the

framework of the voice liveness detection is showed, and pop

noise extraction algorithms are illustrated in section 3. Section 4

describes design of database that includes pop noise. Section 5

and section 6 presents the experimental results and conclusions.
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Figure 1: Overview of automatic speaker verification system

including VLD module

2. Voice liveness detection for speaker
verification system

2.1. Attack to speaker verification systems

The potential for ASV to be spoofed is well recognized and

there is growing interest in assessing the vulnerabilities of ASV

systems and developing countermeasures [9, 10]. The counter-

measures target three main types of spoofing attacks: replay,

speech synthesis, and voice conversion. Each type of attack is

defined as follows:

• Replay: replay of pre-recorded utterances of the target

speaker.

• Speech synthesis: automatic generation of synthesized

speech signals of the targeted speaker based on any input

text.

• Voice conversion: conversion of attacker’s natural voice

towards that of the targeted speaker.

Several countermeasures against each type of spoofing attack

have been reported. We can simply use text-prompted ASVs

and change prompts every time to protect against replay attacks

[27, 28]. However, no methods have reached a fundamental so-

lution against the spoofing attacks using speech synthesis and

voice conversion. Considering the actual procedures for spoof-

ing attacks, all spoofing attacks have to play spoofing speech via

loudspeakers. In other words, if we can distinguish speech pro-

duced by a live human from speech played via loudspeakers, we

can protect against all types of spoofing attacks including even

attacks using unknown voice conversion and speech synthesis

methods.

2.2. Framework of voice liveness detection

Figure 1 shows a diagram of an automatic speaker verification

system including the VLD module. The VLD module aims to

reject all speech signals that do not include liveness evidence

regardless of spoofing type. Speaker verification is conducted

as usual in a subsequent module. Although this figure illus-

trates a sequential combination of VLD and ASV modules, it is

also possible to carry out the VLD and ASV modules simulta-

neously.

What is the liveness evidence included in a speech wave-

form? The VLD needs to detect and capture characteristics in-

cluded only in speech produced by a live human. The human

voice can be briefly described as a result of acoustic shaping in

the vocal tract of the airflow produced following the interaction

between various elements such as lungs, vocal chords, and lips.

Then, to record the sound, the resulting airflow is transformed

Figure 2: Spectrogram comparison of recording using (top) or

not using pop filter (bottom). Significant differences can be seen

at low frequency at locations perceived to have pop noise.

to an acoustical signal when it is captured via a microphone. As

a consequence of spontaneous strong breathing the convolution

process between the airflow and the vocal cavities may result in

a sort of perceived plosive burst, commonly know as pop noise,

which can be captured via a microphone. On the other hand,

the acoustic conditions change when this same sound is played

via loudspeakers, commonly resulting in a poor reproduction

of pop noise phenomena. Thus, by detecting pop noise events,

we may be able to distinguish live human voices from playback

sound via loudspeakers.

3. Voice liveness detection algorithms

To capture the phenomenon of pop noise as liveness evidence,

this paper proposes two VLD detection strategies to reduce the

vulnerability of ASV systems.

3.1. Low-frequency-based single channel detection

Pop noise in single channel signals are found in speech wave-

forms as sudden irregular modulations of strong energy within

varying durations typically ranging between 20 and 100 msec.

This phenomenon appears as high energy regions at very low

frequency compared to when using a pop noise filter, as shown

in Figure 2. This gives us a clue to define a simple strategy for

detection.

More precisely, we firstly define the measure LFnrg(k) as

the average of the Fourier transform (FT) bins within the inter-

val [0, LFmax]. The frequency precision should be high enough

to explore a very low-band with more than a single FT bin. Ac-

cordingly, an analysis window of size N , corresponding to a

precision of 10Hz in the FT and LFmax = 40Hz was found

as a sufficient choices. Note that LFmax might be set below ex-

pected pitch values in order to not consider energy contributions

from harmonic content. Following, LFnrg(k) was computed

over frames of size N with a hop-size of M = N/8 and pop

noise events Ploc(i) were identified as the maxima of LFnrg(k)
with values larger than three times its standard-deviation, keep-

ing a minimum distance of D = 1.5N between candidates.

The boundaries are estimated by approximation in the

neighbourhood of each Ploc(i) according to two conditions:

firstly, a drop in LFnrg(k) of LFdr = 0.35 times the value at

Ploc(i). Then, the boundaries are extended if the absolute value

of the derivative of LFnrg(k) is higher than LFddr = 0.35
times its value at Ploc(i). With these conditions we aim to as-



1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

−5

0

5

10
s
(n

)

 

 

No pop filter

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

200

400

600

L
F

N
 (

k
)

 

 

Low−Freq. energy

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
−200

−100

0

100

200

Time (sec)

L
F

N
 ’
 (

k
)

 

 

Derivative

Figure 3: Example of pop noise detection based on single chan-

nel method. Time-domain signals (top), average low-band en-

ergy (middle), its derivate (bottom), and the detected pop noise

boundaries (red dotted).
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Database
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Figure 4: Recording process in two channel method

sert a minimum/maximum energy variation (velocity) once it

is ensured: similarly, there will be a relative increment/drop in

the pop noise energy. An example can be seen in Figure 3,

which shows the waveform of the recording version (top). It

also shows the computed LFnrg(k) for the waveform with pop

noise (middle) and its derivate (bottom). The detected bound-

aries are denoted by the red dotted intervals.

Although the configuration of the processing parameters

should be manually verified for significant pop noised cases,

the suggested parameters, empirically found, showed sufficient

performance on samples of several speakers of our database.

3.2. Subtraction-based pop noise detection with two chan-

nels

The pop noise detection algorithm using a single channel mi-

crophone is focused on low-frequency energy. To capture the

whole frequency components of the pop noise, another pop

noise detection algorithm is proposed here.

In the second algorithm, two microphones are used and

only one of them has a pop filter as shown in Figure 4. Let

Fx(b, w) and Fp(b, w) be the short-time Fourier transforms

(STFT) of the filtered speech and non-filtered speech respec-

tively, where b and w stand for the indices of time frame and an-

gular frequency. In the two channel method, assuming that only

Fp(b, w) includes pop noise, it is estimated by subtracting the

ordinary speech component from Fp(b, w) by using Fx(b, w)
as follows.

D(b, ω) = Fp(b, ω)− C(ω)Fx(b, ω), (1)

where C(ω) represents a compensation filter between the fre-

quency characteristics of the two channels. An estimate of

C(ω) to minimize
∑

b,ω
|D(b, ω)|2 can be represented as fol-

lows.

C(ω) =

∑
b
Fp(b, w)Fx(b, w)∗
∑

b
|Fx(b, w)|2

, (2)

where ∗ denotes complex conjugate.

4. Design of database

Since the proposed framework focuses on speech signals that

include pop noise, a database of speech signals that includes

pop noise is required. Recently, the NIST SRE database [29]

has been used globally for the evaluation sets of ASV sys-

tems. However, the database provides conversational telephone

speech and it contains no pop noise, so the proposed frame-

work could not evaluate the conventional databases. Therefore,

a new database including pop noise signals is required to be

constructed. It is well know that some kinds of microcphones

are very sensitive to breath noise [30, 31]. However, there is

no preliminary information about pop noise recording and mi-

crophone types to be used. Then, we have used three types of

microphones as below:

• Microphone with a voice recorder (VOICE) (SONEY

ECM-DM5P)

• Compatible microphone with camcorder (CAM) (SONY

ECM-XYST1M)

• Microphone with a headset (HEADSET) (SHURE

SM10A-CN)

Two microphones of each type are used where one has a pop

filter and the other does not (Fig. 4). That is, we designed a six-

channel microphone system (Fig. 5). The characteristics of the

microphones are as follows. The VOICE microphone is most

sensitive to pop noise, and even when using a pop filter, pop

noise is often obtained. There is a clear difference between the

waveforms of the CAM microphone with a pop filter and those

without any pop filter when compared to those of the VOICE

microphones. The waveforms of the HEADSET microphones

are almost the same with a pop filter and without any pop filter;

nevertheless, the HEADSET microphones were set closest to

the speaker’s mouth. The speech signals were sampled at a 48

kHz with a 16 bit rate.

We have recorded a total of 17 female speakers of Japanese.

Each speaker reads out 100 sentences in total. Half of the sen-

tences are know to all the speakers and the other half are ran-

domly selected from Japanese News paper Article Sentences

(JNAS) [32], and each speaker uses a different set of randomly

selected sentences. The 50 common sentences are chosen based

on phonetic coverage. We also pre-selected relatively short sen-

tences from the JNAS corpus before the random selection of the

rest of the 50 sentences.

5. Evaluation experiments

5.1. Experimental conditions

We used 30 randomly selected utterances for each microphone

without the pop filter for each speaker as live samples of test

data. The spoofing materials used in our experiments were

constructed based on the statistical parametric speech synthesis

framework described in [6]. Its speaker adaptation techniques

in this framework allow the generation of a synthetic voice us-

ing as little as a few minutes of recorded speech from the target

speaker [33]. The speaker adaptation algorithm used is struc-

tural variational Bayesian linear regression [34]. We used 50



Figure 5: Six microphones are used simultaneously for record-

ing speech data with and without pop filters. Distance from and

position in relation to speaker’s mouth for each microphone are

fixed roughly.

common sentences recorded via the headset microphone with

the pop filter to perform the speaker adaptation of speech syn-

thesis systems (because the pop filter is always used for normal

recordings of speech synthesis data). Using the speech syn-

thesizers of individual target speakers, we synthesized artificial

speech signals for spoofing. The texts used for speech synthesis

are the above randomly selected utterances of each speaker. The

spoofing materials were then played with a loudspeaker (BOSE

111AD) toward the video camera and condenser microphones.

For the ASV system, we used the standard GMM-UBM-

based speaker verification method [35], and the speaker-

dependent models of individual speakers in the ASV system

were constructed using the 50 common and 20 randomly se-

lected sentences of each speaker recorded via the headset mi-

crophone with a pop filter. In this paper, we investigate the

effectiveness of the VLD module, and we do not focus on using

the state-of-the-art ASV system. The number of mixtures were

set to 2048, and the UBM was trained by about 23000 utter-

ances from JNAS database [32], which is the standard speech

database for automatic speech and speaker recognition area in

Japan. For the STFT analysis, the Hamming window is selected

as a window function, and the window width and the window

shift are set to 4096 and 2048 points.

5.2. Experimental results

Table 1 shows the equal error rate (EER) of the VLD meth-

ods with the test date with a single channel algorithm and two

channels algorithms. For each algorithm, the EER is calculated

when the percentage of misclassified live voice (false positive

rate) is equal to the percentage of misclassified artificial voice

(false negative rate). From the results of the single channel algo-

rithm, we were able to be capture, significantly, human liveness

information via voice recorder microphone and headset micro-

phone. Even though the performance of the VLD module is

dependent on the microphone types, this result illustrates that

the VLD framework is effective to reduce the vulnerability of

ASV systems. In the single channel method, we assume that the

phenomenon of pop noise is strongly affected at low frequency.

The two channel method also shows the effectiveness of using

pop noise for VLD module. However, comparing the single

channel method with the two channel method, the two channel

method was obtained small improvement. This means that pop

noise affects to the voice at low-frequency. Consequently, the

proposed VLD framework is precisely effective method against

Table 1: EERs of VLD algorithms with some microphones

Microphone Single ch. Two ch.

VOICE 4.73% 29.11%

CAM 36.06% 45.52%

HEADSET 3.95% 5.88%

Table 2: EERs of the ASV system with test data which includes

Spoofing Attacks data (w/ SA) or not (w/o SA). And the EERs

of the VLD+ASV system.

VLD+ASV

microphone w/o SA w/ SA single ch. two ch.

VOICE 5.49% 5.53% 5.48% 5.49%

CAM 4.69% 6.61% 5.23% 5.30%

HEADSET 4.28% 6.61% 4.45% 4.28%

the spoofing method.

Secondary, VLD+ASV system which was combined the

VLD module with the ASV system was evaluated. The proce-

dure of the VLD+ASV system is shown in Figure 1. Table 2 il-

lustrates the EERs of the ASV system with or without pop noise,

and the EER of the VLD+ASV system. From the results, the

spoofing attacks degrade the ASV performance. In this experi-

ment, since the spoofing attacks are made by enrollment speech

recorded with HEADSET microphone, the spoofing attacks be-

came weak via the VOICE microphone. However, the EERs via

HEADSET or CAM microphones is strongly affected from the

spoofing attacks. Besides, the EER of the VLD+ASV system

is reduced the vulnerabilities to the spoofing attacks adequately.

These results indicate that the proposed framework is definitely

effective against the spoofing attack sounds.

6. Conclusion

In this paper, novel VLD algorithms are proposed To reduce

the vulnerabilities to spoofing attacks using speaker verification

systems, the ASV systems have to recognize whether an input

voice is live. This quality is known as liveness and ensures that

the measured characteristics come from a live human being and

are captured at the time of verification. The proposed algo-

rithms focused on capturing the pop noises in an input voice

because live humans produce pop noises unconsciously when

they speak. One algorithm based on a single microphone was

proposed to capture the distortion at low frequency as pop noise.

Another algorithm based on two microphones was proposed to

capture the pop noises by comparing the filtered channel with

the non-filtered channel. To evaluate our proposed algorithms,

a database that contains the pop noises was constructed. From

the experimental results, we showed that the VLD algorithms

could capture the pop noises accurately and hence can discrim-

inate live voice signals from artificial ones. Our future work

includes trials using a larger database and extension of the VLD

algorithms to the time series settings. We also need to as-

sess the robustness of the proposed method against a waveform

concatenation-based synthesis method that uses speech record-

ings with pop noise or voice conversion where the input speech

has pop noises.
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