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about 95%, while the second threshold provides a classifica-
tion rate of 87.8%. Furthermore, estimated short-term jitter 
values from reading text were found to confirm the studies 
showing a decrease of jitter with increasing fundamental 
frequencies, and the more frequent presence of high jitter 
values in the case of pathological voices as time increases. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 One of the most prominent phenomena among those 
we seek to measure in the context of voice quality assess-
ment is jitter. Jitter may occur during voice production, 
especially in vowel phonation, and it is defined as small 
fluctuations in glottal cycle lengths  [1, 2] . Jitter and shim-
mer (amplitude perturbations) over successive speech cy-
cles help give the vowel its naturalness in contrast to con-
stant pitch and amplitude that can result in a machine-
like sound. Moreover, jitter (and shimmer) contributes to 
the voice quality of a speaker. In terms of signal process-
ing, jitter is a form of modulation noise. Specifically, jitter 
is a modulation of the periodicity of the voice signal. A 
high degree of jitter results in a voice with roughness that 
is usually perceived in recordings of pathological voices. 
Therefore, a reliable estimation of jitter can be used to 
discriminate between healthy and dysphonic speakers. 
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 Abstract 

 In this paper, we investigate the use of jitter estimation over 
short time intervals (short-term jitter) for voice pathology 
detection in the case of running or continuous speech. 
Short-term jitter estimations are provided by the spectral  
jitter estimator (SJE), which is based on a mathematical de-
scription of the jitter phenomenon. The SJE has been shown 
to be robust against errors in pitch period estimations, which 
makes it a good candidate for measuring jitter in continuous 
speech. On two large databases of sustained vowel record-
ings from healthy and pathological voices, we suggest a 
threshold for the SJE for pathology detection based on cross-
database validation. Applying that to a database of con-
tinuous speech (reading text) from normophonic and dys-
phonic speakers, a second threshold and new features are 
suggested for monitoring jitter in continuous speech. De-
tection performance of the suggested thresholds and fea-
tures was evaluated using receiver operating characteristic 
curves and their discriminative efficiency between healthy 
and pathological voices was judged using the area under the 
curve index. In terms of area under the curve, the suggested 
features for reading text provide a discrimination score of 
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There are also other forms of induced noise that occur, 
similarly, in voices with a pathological condition, such as 
additive noise which results in a breathy voice quality. 
The human ear indeed perceives jitter as noise. Note that 
humans cannot differentiate between the noise produced 
by jitter and shimmer, while they are able to differentiate 
modulation from additive noise  [3] .

  Based on the definition of jitter, many methods have 
been proposed for the computation of a value that quan-
tifies the aperiodicity that is introduced to the voice sig-
nal on account of jitter  [4–7] . Usually they are applied on 
recordings of sustained vowels where perturbations are 
expected to be steady. These methods are based on the 
estimation of pitch periods and therefore they are sensi-
tive to error in the estimation of pitch period; for a given 
voiced speech segment, different pitch period estimators 
will lead to quite different jitter estimates. This means 
that the suggested methods for jitter estimation are quite 
unstable. To minimize the variance of jitter estimations, 
the majority of the methods provides an average mea-
surement, usually over a series of pitch period estima-
tions. Methods based on the averaging of jitter are statis-
tically biased, since it has been found that they underes-
timate jitter  [2] . Also, averaging implies that pitch cycle 
perturbations are generated by an independent and iden-
tically distributed (gaussian) stochastic process. Howev-
er, it has been shown that there is a correlation between 
successive values of jitter  [8] . Therefore, this correlation 
should be removed before applying the average operator 
 [2] .

  The choice of applying jitter estimation methods on 
sustained vowels rather than on continuous (running) 
speech is mostly driven by the lack of robustness in the 
automatic extraction of the fundamental frequency of 
speech and the limitations of the suggested estimators of 
jitter  [9, 10] . However, there are arguments in favor of us-
ing continuous speech or isolated sentences, such as read-
ing text, for voice pathology detection, since difficulties 
in abducting or adducting, or asymmetries in the vocal 
folds, because of pathology, may be revealed during non-
stationary areas of speech  [11, 12] . Processing of continu-
ous speech for voice pathology detection was studied be-
fore  [10, 12–15] . In Askenfelt and Hammarberg  [14] , pa-
tients read a tale for approximately 40 s, and then 7 
acoustic measures of cycle-to-cycle perturbations in the 
speech waveform were investigated. It was suggested that 
the standard deviation of the distribution of the relative 
frequency differences between consecutive pitch periods 
provides a useful acoustic measure of waveform pertur-
bations. Since these approaches are based on pitch period 

estimation, their accuracy is a function of the accuracy of 
the pitch period estimators. Given the pseudo-periodic 
character of voiced speech there is an ambiguity in pitch 
period estimation and therefore an ambiguity in the es-
timation of jitter. Moreover, there is no control if the per-
turbations observed in the speech waveform are due to 
jitter, or shimmer, or other sources (vocal folds and vocal 
tract interactions)  [14] . In Umapathy et al.  [10] , a time-
frequency representation based on matching pursuit de-
composition with Gabor time-frequency atoms of vari-
ous scale factors was used. It was found that the distribu-
tion of these scale factors was a potential feature for the 
discrimination of normal and pathological speech sig-
nals. In Fourcin and Abberton  [12] , hearing and phonet-
ic criteria in voice measurement were discussed. Various 
features were considered, taking into account functions 
of the estimated fundamental frequency and vocal fold 
closed quotient during connected speech. It was found 
that these measurements were related both to vocal fold 
function and to the perceptual attributes of pitch, loud-
ness, and voice quality.

  In this paper, we suggest new features for the analysis 
of continuous speech for voice pathology detection based 
on short-term measurements of jitter which are robust 
against the ambiguities of pitch period estimators. Vasi-
lakis and Stylianou  [16,   17]  presented a novel short-term 
jitter estimator, referred to as spectral jitter estimator 
(SJE), that estimates the jitter phenomenon based on a 
mathematical model. This model transforms the jitter 
estimation problem from the time domain to the fre-
quency domain showing that jitter leads to beat spec-
trum. The SJE allows for time-varying measurement 
with a high local accuracy, as demonstrated on synthetic 
signals with known jitter. In Vasilakis and Stylianou  [16] , 
it was shown how jitter manifests in the magnitude spec-
trum of a speech frame. Specifically, it was shown that 
jitter can be estimated by counting the number of inter-
sections between harmonic and subharmonic spectra. 
Although the SJE uses pitch period information, it was 
shown that this is not crucial in counting the number of 
intersections between the harmonic and subharmonic 
spectra  [17] . The performance of the SJE in discriminat-
ing between normal and pathological voice status was 
compared to jitter measurements obtained by two estab-
lished systems for quantitative acoustic assessment of 
voice quality, namely Praat  [18]  and the Multidimension-
al Voice Program (MDVP)  [19]  of KayPENTAX. On two 
different databases of sustained vowel recordings, the es-
timates of the SJE were shown to be more correlated with 
pathology than the estimates by Praat and MDVP. Let us 
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note here that classification between normophonic and 
dysphonic cases using various features is a necessary step 
for the evaluation, but by no means sufficient for pathol-
ogy detection.

  As mentioned earlier, it has been shown that methods 
that produce an average estimate for jitter are statistical-
ly biased and actually underestimate jitter  [2] . For short-
term jitter estimators, however, averaging is not neces-
sary. Actually, the generated sequence of local measure-
ments of jitter can be used to gain further insight into the 
temporal behavior of jitter, for both healthy and patho-
logical voices. In this paper, we extend the use of the SJE 
on reading text recordings by suggesting features based 
on the short-term measurements of jitter as provided by 
the SJE. For this purpose, we determine a relevant thresh-
old for pathology which leads to high discrimination for 
normal versus pathological voices, in databases of either 
sustained vowel recordings or reading text recordings. 
Using this threshold and based on the time series of local 
jitter estimations from the SJE, three new features are 
suggested. It is shown that they are all highly correlated 
with the existence of pathology while they are ideal for 
running speech signals. Furthermore, we show examples 
on how one of these three features can be efficiently used 
for monitoring the jitter effect in running speech. Please 
note that by the term ‘running speech’ in this paper, we 
mean only voiced segments of the speech signal and not 
regions with unvoiced consonants or lack of voice.

  The paper is organized as follows. In the next section, 
we present an overview of the SJE by providing the math-
ematical model that it is based on, and its properties in 
the time and frequency domain. Thereafter, the proce-
dure for threshold selection for the SJE is developed. In 
the following section, the application of the SJE on read-
ing text recordings is presented and useful features are 
proposed that consider the short-term behavior of jitter. 
Finally, the last section concludes the paper and provides 
information on future work and possible extensions of 
this work.

  Overview 

 In this section, a short overview of the SJE and the 
mathematical model of jitter is presented. More details 
can be found in Vasilakis and Stylianou  [16,   17] . We also 
summarize the results for discriminating between healthy 
and dysphonic speakers on two speech databases, using 
the absolute jitter measurement, as implemented by Praat 
 [18] , MDVP  [19]  and SJE  [17] .

  Spectral Jitter Estimator  
 Jitter is defined as cycle-to-cycle perturbations of the 

glottal cycle lengths, which lead to a local aperiodicity. 
This kind of perturbations can be modeled and generated 
by considering two periodic phenomena, which, when 
combined appropriately, may produce the observed per-
turbations. Let’s consider a mathematical model that de-
scribes two periodic events. The local aperiodicity of jit-
ter can be defined then, in relation to these two events, as 
the shift of one of the two with respect to the other. This 
shift can be measured to provide us with a quantitative 
value for jitter. Therefore, a jittered impulse train can be 
obtained by applying a constant pitch deviation every 
second impulse, achieving thus a cyclic perturbation that 
creates the two aforementioned events  [20] . We can then 
model the glottal airflow signal under the presence of jit-
ter as the convolution of the glottal signal over one glottal 
cycle with such a jittered impulse train. The jittered im-
pulse train can be expressed as  [16] 

2 2 1
k k

g n n k P n k P� � �          (1)

  where  P  is the pitch period and  �  is the pitch deviation, 
both in samples. In this model, shown in  figure 1 ,  �  is the 
shift that corresponds to jitter. The value of  �  can range 
from 0 (no jitter) to  P  (pitch halving). 

 The square of the magnitude spectrum  g [ n ] can be 
shown to be  [17] 

2
2 0 0 01 cos  

2 2 2k
G P k k� � �

� � ��  (2)

  where 
 

0
2
P

�
�

  is the fundamental frequency in rad. The cosine term in-
side the sum corresponds to a beat spectrum described by 
the formula 

 
01 cos 1 cos cos

2
P k k k

P
�

� ���                         (3)

  The frequency interval between intersections of the en-
velope in the beat spectrum is  � / �  (rad) and since both 
cosines in formula 3 have zero phase, we can then locate 
the intersections at frequencies 

 
1
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                                                                              (4)

  with  �  k   ̂    � . 
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 Furthermore, the log magnitude spectrum of  g [ n ] can 
be shown to be

2
0
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, 2 , 2 1

20 log 10 log 1 cos
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2l k l l k l
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l l
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� �
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�
 

(5)

  Based on formula 5, we can divide the spectrum into a 
harmonic and a subharmonic part, by sampling this beat 
spectrum at frequencies  l  �  0 , which are multiples of the 
fundamental frequency and at frequencies ( l  + 1/2) �  0 , 
which are in between the harmonic locations, respective-
ly. The harmonic part is described by 

 
2
0

0 10 0, 10 log 1 cos ,
2

H l P l l�
� � N� �             (6)

  and the subharmonic part is given by 
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  Examples of these two parts for various values of  �  are 
depicted in  figure 2 . We can observe that the harmonic 
and subharmonic parts follow a certain pattern, where 
for a specific value of  �  the two parts intersect  �  times. As 
mentioned previously, the locations of the intersections 
are provided in formula 4. Since jitter, using formula 6 
and 7, is estimated in the spectral domain, the jitter esti-
mator is referred to as spectral jitter estimator (SJE). It is 
interesting to note that this spectral property has been 
confirmed previously in a heuristic manner for synthetic 

jittered glottal airflow signals, with either cyclic or ran-
dom variation of the fundamental frequency  [21] . 

 If a jittered impulse train, such as in formula 1, is used 
as the input of a linear system, then the aforementioned 
spectral structure remains visible also in the output. 
Therefore, we expect to observe such a spectral behavior 
in phonation recordings, whenever jitter is present. 
Based on this fact, a short-term jitter estimator has been 
developed in Vasilakis and Stylianou  [17] . By applying a 
sliding window on the signal a sequence of local jitter 
values is obtained. The size of the window is chosen to 
be a multiple of the pitch period, usually 3 or 4 times 
that. The pitch period is estimated beforehand and we 
can either use the local value of the pitch period or the 
average pitch period of the signal, especially in cases 
where we examine sustained phonation recordings. The 
hop size is one pitch period. We use a Hanning window 
for analysis, which allows us to avoid the appearance of 
alias frequencies in the spectrum (because of disconti-
nuities in time), and to also concentrate on the 2 middle 
periods. The magnitude spectrum of the Fourier trans-
form of the windowed speech segment is then computed 
and using the local pitch period (or the average pitch pe-
riod) estimate, the magnitude spectrum is split into the 
harmonic and subharmonic spectra. Next, the total 
number of intersections between the harmonic and sub-
harmonic spectra is computed. The computed number 
of intersections is further enhanced by rejecting some 
intersections and grouping others. First, intersections 
that may appear due to a lack of resolution are rejected, 
based on a minimum threshold of difference between 
the two subspectra after a potential intersection. This 
threshold has been set through experiments at 3 dB. The 
remaining accepted intersections may be further elimi-
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  Fig. 1.  Jittered impulse train of the two-event model for jitter. 
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nated or grouped together, taking into account the prior 
knowledge of their expected locations, for each possible 
jitter value, as illustrated in  figure 2 . This action is re-
quired to suppress any spurious crossings that may arise, 
especially in higher frequencies. More details about the 
intersection computation and enhancement process are 
provided in Vasilakis and Stylianou  [17] . The algorithm 
of the SJE is shown as a block diagram in  figure 3 , while 
examples of its usage on a frame from a synthetic jitter 
signal and a frame from an actual speech signal are pre-

sented in  figures 4  and  5 , respectively. The validity of the 
estimator has been demonstrated also using synthetic 
jittered signals where the method produced zero error in 
estimating jitter  [17] .

  Evaluation of the SJE 
 In this subsection, we provide results from the evalu-

ation of the SJE in the task of discriminating between 
normophonic and dysphonic speakers using as feature 
the absolute jitter. Absolute jitter is a widely implemented 
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  Fig. 2.  log magnitude spectra of the harmonic and subharmonic parts. It is worth noting that the circled inter-
sections between the two parts reveal each time the value of jitter. 
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  Fig. 3.  Block diagram of the short-term SJE algorithm. 
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measurement of the period-to-period variability of pitch 
in time  [4] :

1

1

1Jitt Abs 1  
1

N

n
u n u n

N
                                       (8)

  where  N  is the total number of pitch periods and  u ( n ) is 
the pitch period sequence. This type of jitter estimation 
is implemented by two of the most established systems for 
acoustic voice quality assessment, the Praat  [18]  system 
and the MDVP  [19] . Praat implements it as the  Jitter (lo-
cal, absolute)  function, while MDVP provides the  Jita  
analysis parameter. Both systems produce a single jitter 
estimate for the whole input signal in microseconds. The 
SJE was compared to the above methods by converting 
the estimates of  �  to microseconds accordingly, and aver-
aging the produced sequence of local values to a single 
absolute jitter measurement per signal (this averaging 
was only performed for the purpose of comparison). The 
discriminative ability of each method on the problem of 
normal versus pathological classification based on the 

absolute jitter estimation, can be examined through re-
ceiver operating characteristic (ROC) analysis  [22] . The 
ROC curve for each method, that is the true positive rate 
(TPR) versus false positive rate (FPR) curve, is deter-
mined by a variable discrimination threshold. The dis-
criminative efficiency of a method can be summarized in 
an accuracy index referred to as area under the curve 
(AUC), which is the area under the ROC curve produced 
for the method. Considering the problem of two-class 
discrimination, such as the normal versus the pathologi-
cal voices, AUC is an index with analogous discrimina-
tion power. AUC is preferred over other measurements of 
discrimination performance, because it is free from any 
bias due to the size of each class. The standard error of 
the AUC index provides information regarding its confi-
dence interval for each case it is applied  [23] . 

 The three methods, the absolute jitter estimator as im-
plemented by Praat and MDVP, and the SJE, were applied 
on two databases of recordings of sustained phonation of 
/a/ from healthy and pathological voices. The Massachu-
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setts Eye and Ear Infirmary (MEEI) Disordered Voice 
Database  [24]  contains recordings of the sustained vowel 
/a/. Recordings from 53 subjects with healthy voice and 
631 subjects with a wide variety of pathological condi-
tions were used for our comparison experiments. All nor-
mal signals in MEEI have a sampling frequency of 50 
kHz, while the pathological signals have either 25 or 50 
kHz, all with 16 bits per sample. In order to avoid poten-
tial correlation of the results with the sampling frequen-
cy, all 50-kHz signals used were resampled to 25 kHz. 
The duration of the normal signals ranges from 2 to 3 s, 
while that of the pathological ones from 0.4 to 1.4 s. For 
SJE in MEEI, a frame size of 4 times the average pitch pe-
riod, as provided by MDVP, was used in our experiments. 
The Príncipe de Asturias (PdA) Hospital in Alcalá de 
Henares of Madrid database  [25]  was the second database 
used. PdA consists of recordings of the sustained vowel 
/a/, with the first and last part of the utterance removed 
to avoid onset and offset effects. Similar to MEEI, the 
speech signals were labeled accordingly by clinical doc-

tors. It was found that 238 samples were from normopho-
nic speakers and 201 samples were from dysphonic speak-
ers with a wide range of disorders. All signals in PdA have 
a sampling frequency of 25 kHz, with 16 bits per sample, 
and their duration ranges from 1.5 to 4 s. For PdA we 
again used a frame size of 4 times the average pitch pe-
riod, this time provided by Praat. The ROC curves of the 
three methods for MEEI and PdA are depicted in  figures 
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Table 1. AUC score (standard error) for SJE and the two imple-
mentations of absolute jitter by MDVP and Praat, when applied 
on two databases containing normal and pathological voices 
(MEEI and PdA)

AUC, %

SJE MDVP Praat

MEEI 94.82 (0.92) 90.66 (1.42) 90.47 (1.44)
PdA 84.65 (1.92) 70.65 (2.50) 62.94 (2.67)
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6  and  7 , respectively. In  table 1 , for each method and for 
each database, the AUC score and its standard error is 
provided. It is worth noting that the SJE outperforms 
both implementations of absolute jitter in discriminating 
the normal from the pathological voices.

  Pathology Threshold for SJE 

 We can take advantage of the results of the experi-
ments presented in the previous section, in order to sug-
gest a threshold for pathology when using the SJE. Since 

we use two databases, it will be very interesting to exam-
ine the consequences of using one database to determine 
the threshold, and then applying the result to the other 
database. This will allow us to perform cross-database 
study comparisons which is quite rare in the literature of 
voice pathology detection. A threshold can be deter-
mined by taking into account the ROC curve for the SJE, 
separately for each database, therefore providing two 
thresholds, one per database. Given the ROC curve, the 
discrimination instance that provides the best classifier 
is the one where the difference of the TPR to the FPR is 
the largest. For the case of SJE on the MEEI database, the 
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largest difference is achieved when TPR = 89.07% and 
FPR = 7.55%, leading to a threshold of 124.24  � s, which 
we will refer to as Thr MEEI . Similarly, the ROC curve re-
garding SJE for the PdA database suggests a threshold of 
161.08  � s (we will refer to this threshold as Thr PdA ), when 
TPR = 80.10% and FPR = 24.37%. To compare the two 
thresholds we performed a series of experiments on the 
two databases. Initially, we measured the classification 
rate, which is the number of correct detections from both 
classes divided by the total number of detections, using 
each threshold.

  Since SJE provides us with a short-term sequence of 
jitter values for each signal, we also calculated three fea-
tures that make use of the thresholds we presented above. 
Having in mind that each short-term value corresponds 
to an analysis frame, then the three features are defined 
as (1) the percentage of frames that are over the threshold 
 (Over);  (2) the maximum number of consecutive frames 
that are over the threshold  (Max Over),  and (3) the maxi-
mum number of consecutive frames that are under the 
threshold  (Max Under). 

  The three features are based on frames rather than 
time, since for each signal all frames were equal in size, 
because the analysis window per signal was determined 
by the average pitch period of the signal (3 or 4 times the 
average pitch period), and a fixed hop size was used (hop 
size was equal to the average pitch period of the signal). 
Consequently, we calculated the AUC index for these 
three features for each threshold on each database. All the 
results are summarized in  table 2 . Using Thr MEEI  pro-
vides, in general, better results than Thr PdA . Given also 
that it represents a low FPR of 7.55%, we concluded that 
Thr MEEI  is the preferred value for our following experi-
ments. It is interesting to add that the threshold of 83.20 
 � s provided by MDVP  [26]  for its own implementation 
offers a classification rate of 60.23% for MEEI and 64.46% 

for PdA, both lower than those provided by Thr MEEI  
(89.33% for MEEI and 67.88% for PdA) and Thr PdA  
(75.15% for MEEI and 77.68% for PdA) in the case of SJE. 
As it was expected, the threshold which was defined in a 
specific database provides the best classification score for 
that database. Therefore, Thr MEEI  gives a better classifica-
tion score for the MEEI database, while in PdA the best 
classification score is obtained by Thr PdA . For all the ex-
periments conducted hereinafter, the threshold Thr MEEI  
(124.236  � s) will be used.

  Reading Text Experiments 

 Jitter analysis is preferably performed on sustained 
vowels, because during phonation the radiated speech 
signal is expected to be quasi-periodic and therefore in 
the presence of jitter the aperiodicities that occur are 
more easily perceived. However, sustained phonation re-
cordings are limited by nature to a small duration. After 
the first few seconds of voicing, pathological speakers 
may feel discomfort, while even healthy speakers may not 
be able to maintain a steady voice. To consider the behav-
ior of jitter for a longer period of time we may use record-
ings of reading text. Speakers reading a text with a nor-
mal pace are able to breathe occasionally, while in sus-
tained phonation a single intake of breath is involved. 
This allows us to attain longer recordings for examina-
tion and since SJE provides a short-term sequence of jitter 
estimates, it is ideal for the examination of jitter in run-
ning speech signals.

  The MEEI Disordered Voice Database, apart from sus-
tained vowel recordings, also includes reading text re-
cordings of the standard text ‘The Rainbow Passage’. 
These recordings are limited to 12 s, usually including up 
to the two first sentences of the text. For our experiments, 

Table 2. Cross-database evaluation of thresholds determined by SJE in terms of classification rate (CR), and 
AUC (standard error) for number of frames which are over a threshold (Over), and maximum consecutive 
frames that are over (Max Over) or under (Max Under) a threshold

Database CR, % Over AUC, % Max Over AUC, % Max Under AUC, %

ThrMEEI 124.24 �s
MEEI 89.33 94.52 (0.96) 82.97 (2.22) 96.48 (0.70)
PdA 67.88 83.93 (1.96) 81.98 (2.07) 79.62 (2.18)

ThrPdA 161.08 �s
MEEI 75.15 92.79 (1.17) 81.44 (2.36) 97.50 (0.55)
PdA 77.68 83.86 (1.97) 79.14 (2.20) 81.28 (2.10)



 Vasilakis   /Stylianou   

 

Folia Phoniatr Logop 2009;61:153–170162

53 signals from healthy voices and 660 signals from path-
ological voices were used. 683 of these signals have a sam-
pling frequency of 25 kHz and 30 have a sampling fre-
quency of 10 kHz, all with 16 bits per sample. We will 
refer to this database as MEEI Rainbow . Using a 10-ms in-
terval from frame to frame, an autocorrelation-based 
pitch estimator was employed to determine the local pitch 
period of all voiced frames  [27]  for each recording in 
MEEI Rainbow . To eliminate any onset and offset effects in 
the voiced areas, we disregarded any voiced frames that 
do not have at least two voiced neighboring frames in 
each direction, along of course with the unvoiced frames. 
For the remaining voiced frames, referred to hereafter as 
 valid frames,  the short-term jitter estimator SJE was used 
to measure the local absolute jitter value, using a window 
of 4 times the local pitch period. Next, the terms  frame  
and  valid frame  will be used interchangeably unless ex-
plicitly specified.

  An initial examination of the local estimates from SJE 
shows that these are in accordance with documented sta-
tistical behavior. It is expected that on average jitter de-
creases with increasing fundamental frequencies  [28–31] . 
We verified this expectation by calculating the correla-
tion coefficient between estimated jitter and fundamen-
tal frequency, with confidence intervals at 95%. Specifi-
cally, we found a correlation of –73.89% for the normal 
signals, –71.32% for the pathological signals, and –84.33% 
for the database as a whole. In  figure 8 , the average abso-
lute jitter per fundamental frequency, for frequencies be-
tween 80 and 400 Hz, is illustrated for the two classes of 
normal and pathological voices.

  The sequence of local estimates of jitter was used to 
calculate several features that reflect the average and 
short-term behavior of jitter.

  The average value of jitter is only computed here for 
comparison purposes. Specifically, if  j ( n ) is the aforesaid 
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sequence with length  N , then for each signal the following 
features were computed.
  • The average absolute jitter from all valid frames which 

will be referred to as  Jit Mean . 

1Jit Mean

N

n
j n

N
�s

 • The percentage of valid frames that have an absolute 
jitter value over Thr MEEI , which will be referred to as 
 Over . 

MEEI: Thr
Over 100 %

j n j n

N

�

 where  �  A  �  denotes the cardinality of  A , or otherwise the 
number of elements in the  A  set. 

 • The maximum number of consecutive valid frames 
that have an absolute jitter value over Thr MEEI , which 
will be referred to as  Max Over . 

 Max Over =
max( � { j ( n ) :  j ( n )  1  Thr MEEI  and consecutive frames} � ) (scalar)

  • The maximum number of consecutive valid frames 
that have an absolute jitter value under Thr MEEI , which 
will be referred to as  Max Under . 

 Max Under =
max( � { j ( n ) :  j ( n )  ̂   Thr MEEI  and consecutive frames} � ) (scalar)

  Note that there is no need to convert values that rep-
resent a number of frames to time units, because the fixed 
interval used from frame to frame makes them equiva-
lent. The short-term absolute jitter estimations for two 
signals from MEEI Rainbow , one normal and one patholog-
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ical, are illustrated in  figure 9 . In the same figure, the 
threshold Thr MEEI  is also depicted (dashed line). It is 
worth noting the number of frames that are over this 
threshold in the case of the pathological signal compared 
to the corresponding number of frames for the normal 
signal. More than 80% of the valid frames are over the 
threshold in case of pathology, while only 13% of the val-
id frames are above the same threshold for the normal 
signal. The  Max Over  and  Max Under  intervals for each 
signal are also indicated by arrows in  figure 9 . Specifi-
cally, for this example of pathological voice, 11 consecu-
tive valid frames are under the threshold, while 33 con-
secutive valid frames are above the threshold. It is evident 
that the suggested threshold Thr MEEI  correctly separates 
the majority of the local jitter estimates. The AUC indices 
for the aforementioned features are given in  table 3 . Note 

that all cases show very good discriminative ability with 
an AUC index over 90%.

  Since we have based the above features on a sequence 
of short-term jitter estimations, we are able to examine 
their gradual development in time, in terms of value and 
discrimination. In what follows, when we apply a feature 
gradually in time using a sliding analysis window of 
fixed size, we will refer to it as ‘local’. If instead we apply 
a feature using an analysis window that starts from the 
origin and its duration is gradually extended up to the 
current time instant, then we will refer to it as ‘run-
ning’.

  To further investigate, and to some extent visualize the 
above results regarding the AUC scores, we computed the 
running average number of frames that are over the 
threshold Thr MEEI  for normal and pathological voices by 
analyzing the entire MEEI Rainbow  database. As an exam-
ple, let’s consider a running analysis window of 2 s for the 
case of the normal class of speakers. Then, for each re-
cording in this class we compute the number of frames 
that are over the threshold in the current analysis window 
(from 0 to 2 s). If  L  is the number of recordings, obvious-
ly we compute  L  values. The running average of number 
of frames over the threshold for the current window is 
obtained by computing the average of these  L  values. 
Then, the running window is increased by 0.5 s (covering 
now the time interval between 0 and 2.5 s) and the cor-
responding running average is again computed. This 

Table 3. AUC score (standard error) for the four features based on 
the SJE short-term sequence in the MEEIRainbow database that 
contains recordings of reading text from normal and pathological 
voices

AUC of features on MEEIRainbow using ThrMEEI, %

Jit Mean Over Max Over Max Under

96.26 (0.72) 95.69 (0.80) 93.32 (1.10) 91.61 (1.30)
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procedure is repeated until the running window spans 
the whole duration of the signal (12 s).

  In  figure 10 , the running average of frames that are 
above the threshold Thr MEEI  is depicted for a running 
analysis window from 1 to 12 s, for the normal voices (sol-
id line) and for the pathological voices (dashed line). This 
running average is equivalent to an average accumulator 
of the number of pathological frames. Therefore, as ex-
pected, the computed values are monotonously increas-
ing. It is worth noting that for all running windows, the 
values computed for the pathological voices are always 
higher than the values for the normal voices. More inter-
estingly, the increase rate of the pathological class is much 
higher than the corresponding increase rate of the normal 
one. In  figure 11 , the normalized per analysis duration 
running averages are depicted. Since the hop size of the 
jitter estimation is constant and equal to 10 ms, it means 
that there are 100 frames per 1 s (considering both voiced 
and unvoiced). Therefore, the numbers shown in the or-
dinate axis of  figure 11  can be interpreted as percent. We 
observe that on average a bit less than 25% of frames in 
the normal signals may be above the threshold for pathol-
ogy, while for pathological signals about 45% of the frames 
may be above the threshold. Considering short running 
windows (2–3 s, for example in the case of short phona-
tion), the number of frames that are above the threshold 

are reduced (just above 15%) in the case of normal voices, 
while for the pathological signals the corresponding num-
ber of frames remains about the same (45%).

  In  figure 12 , the running average  Max Over  and  Max 
Under  values, for both normal and pathological signals, 
are depicted. As it was explained before, we calculated the 
average  Max Over  and the average  Max Under  for the two 
classes of recordings, starting from the first second and 
incrementing by half a second, until the full 12-second 
length is reached. It can be observed that for normal sig-
nals the related  Max Under  feature rises with a higher rate 
than  Max Over . For pathological signals, similar behavior 
is noted for the  Max Over  value, which increases more 
rapidly than the corresponding  Max Under  value. While 
the other two values ( Max Over  for normal and  Max Un-
der  for pathological voices) also rise in the first seconds, 
they do so with a smaller rate (than  Max Over  for patho-
logical and  Max Under  for normal voices), and they both 
stabilize after the 8-second mark. In a similar fashion, the 
running AUC scores of the four features are presented in 
 figure 13 .  Jit Mean  and  Over  reach stability very early 
while they are quite high from the beginning.  Max Over  
and  Max Under , on the other hand, start with a lower 
AUC and fluctuate more, while they follow closely the 
trend of the average pathological  Max Over  and the aver-
age normal  Max Under  in  figure 12 , respectively.
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  Among the short-term features we examined  (Over, 
Max Over,  and  Max Under),  the  Over  feature, that is the 
percentage of frames with a local absolute jitter value over 
the Thr MEEI  threshold, has the best performance regard-
ing discrimination. As it is also shown in  figure 13 , this 
is true even for signals of a small duration. Based on these 
results we investigated if  Over  could be used to establish 
another threshold for pathology, especially for recordings 
of reading text. Specifically, given that a threshold of 
 pathology for SJE estimates is already selected (i.e., 
 Thr MEEI ), another threshold for pathology could be set by 
computing the minimum value of  Over  that is required 
to indicate a speech segment as pathological. In this way, 
we will be able to monitor the jitter estimations during 
continuous speech (i.e., spontaneous speech). The FPR, 
TPR, and threshold that correspond to the best classifier 
of the  Over  feature, as this evolves over time, are illus-

trated in  figure 14 . For example, for a running analysis 
window of 1.5 s, the best classifier (we recall that this is 
defined as the one having the highest distance between 
FPR and TPR) has a threshold of about 48% which cor-
responds to a TPR of 80% and an FPR of 4%. In the last
3 s, FPR settles on 7.55% and TPR around 89.5%, while 
the threshold for  Over  ranges from 47.5 to 50%. We pro-
pose the use of 45% as a maximum threshold of  Over  for 
normophonia and 50% as a minimum threshold of  Over  
for dysphonia. These limits will be denoted by Thr Over . 
The region in between should be considered as an inde-
terminate area that indicates the need for further infor-
mation regarding voice quality assessment. When we ap-
ply Thr Over  to MEEI Rainbow  we have a classification rate of 
87.80%, with an additional 3.65% (26 files in total, 24 
pathological and 2 normal) classified in the indetermi-
nate (gray) area.
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  An example of the potential use of Thr Over  is presented 
in  figures 15  and  16 , for one normal and one pathological 
signal. The running  Over  percentage for the two signals 
is shown in  figure 15 , while in  figure 16  the correspond-
ing local  Over  percentage is illustrated. The local  Over  is 
computed using a sliding window of 1 s shifted by half a 
second. For the particular normophonic signal, while the 
running  Over  feature is under Thr Over  almost exclusively 
( fig. 15 a), in the local  Over  plot, it exceeds the threshold 
of pathology in some intervals ( fig. 16 a). Nonetheless, it 
does mostly remain in the normal region. For the patho-
logical signal, the remarks are alike. While it is clearly in 
the pathological region from early on regarding the run-
ning  Over  feature ( fig. 15 b), in the local  Over  estimates, it 
lies under the normal threshold for a few intervals only 
( fig. 16 b). Hence, for the running  Over,  a recording of at 
least several seconds should be used, so that there are suf-
ficient statistics for the estimation to converge to a spe-
cific region without a doubt. Similarly, when we consider 

the local  Over  feature, we should use an interval of ade-
quate length. It is worth mentioning that the fluctuation 
of local  Over  feature as shown in  figure 16  corresponds to 
intervals where there is a short rest of phonation. There-
fore, just after these areas the local  Over  feature tends to 
decrease.

  Conclusion 

 In this work, we expanded on the previously devel-
oped SJE by determining a relevant threshold for pathol-
ogy and also by applying SJE on reading text recordings. 
Firstly, the suggested Thr MEEI  threshold results in high 
discrimination for normal versus pathological voices, in 
databases of either sustained vowel recordings or reading 
text recordings. Using this threshold and based on the 
time series of local jitter estimations from SJE, we intro-
duced three new features that are highly correlated with 
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the existence of pathology and therefore they can be con-
sidered as good candidates for monitoring running 
speech signals. Specifically, these are the percentage of 
frames above Thr MEEI   (Over),  the maximum number of 
consecutive frames that are above Thr MEEI   (Max Over), 
 and the maximum number of consecutive frames that are 
below Thr MEEI   (Max Under).  Among them, the  Over  fea-
ture provided the best classification score. Furthermore, 
we established thresholds for the  Over  feature, Thr Over , 
that can be used especially for monitoring the jitter effect 
in running speech. 

 Several statistical properties of jitter have been docu-
mented in the past. In this paper, we examined and veri-
fied the behavior of local jitter as a function of funda-
mental frequency. Other interesting properties could be 
examined in the future using the SJE short-term measure-
ments. One such property is that jitter in adjacent periods 
is correlated and thus, present time jitter could be predict-
able from past values  [32] . In Endo and Kasuya  [8]  and in 

Schoentgen and de Guchteneere  [32] , the jitter time series 
is modeled as an autoregressive process. Following that, it 
is shown that the frequency and bandwidth of the pole of 
the envelope is related to the rate of pathology perceived 
in the examined signal  [8] . Therefore, it is straightforward 
to apply similar time series modeling techniques to the 
short-term jitter sequence estimated by the SJE.

  It will also be of great importance to test the suggested 
features and thresholds in signals recorded before and 
after successful therapy. Finally, it will be interesting to 
test the suggested ideas on databases with vocal loading.
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