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ABSTRACT
We study the formation and evolution of voids in the dark matter distribution using various
simulations of the popular � cold dark matter cosmogony. We identify voids by requiring them
to be regions of space with a mean overdensity of −0.8 or less – roughly the equivalent of using
a spherical overdensity group finder for haloes. Each of the simulations contains thousands of
voids. The distribution of void sizes in the different simulations shows good agreement when
differences in particle and grid resolution are accounted for. Voids very clearly correspond to
minima in the smoothed initial density field. Apart from a very weak dependence on the mass
resolution, the rescaled mass profiles of voids in the different simulations agree remarkably
well. We find a universal void mass profile of the form ρ(<r )/ρ(r eff) ∝ exp[(r/r eff)α], where
reff is the effective radius of a void and α ∼ 2. The mass function of haloes in voids is steeper
than that of haloes that populate denser regions. In addition, the abundances of void haloes
seem to evolve somewhat more strongly between redshifts ∼1 and 0 than the global abundances
of haloes.

Key words: methods: N-body simulations – cosmology: theory – dark matter – large-scale
structure of Universe.

1 I N T RO D U C T I O N

Galaxy redshift surveys show that galaxies are not distributed uni-
formly. Instead, they form a complicated network around large re-
gions that are almost empty, so-called voids. One of the most famous
voids, in the region of Boötes, has a diameter of ∼50 h−1 Mpc, and
was found by Kirshner et al. (1981).1 Subsequent larger redshift
surveys found more and more voids (e.g. Geller & Huchra 1989;
da Costa et al. 1994; Shectman et al. 1996; Einasto et al. 1997;
Plionis & Basilakos 2002). These surveys allowed studies of the
properties of voids and of void galaxies (Einasto et al. 1994;
Lindner et al. 1995, 1996; El-Ad, Piran & da Costa 1997; Müller
et al. 2000), but only recently have galaxy surveys become large
enough to yield sufficient sample sizes for systematic studies
(Hoyle & Vogeley 2002; Hoyle & Vogeley 2004; Rojas et al. 2004;
Croton et al. 2005).

For similar reasons, voids in cosmological N-body simulations
have also been less well studied. Early simulations of cold dark mat-
ter (CDM) universes showed that large empty regions were generic

�E-mail: astro@jmcolberg.com
1 Throughout this work, we will express the Hubble constant in units of
H 0 = 100 h km s−1 Mpc−1.

(Icke 1984; Davis et al. 1985), and larger more recent simulations
(e.g. Jenkins et al. 1998) have provided a clearer picture of the ‘void
hierarchy’ (Van de Weygaert & Van Kampen 1993; Sheth & Van de
Weygaert 2004). Detailed studies of the properties of voids in the
dark matter distribution are now becoming increasingly common
(Little & Weinberg 1994; Gardner 2001; Schmidt, Ryden & Melott
2001; Gottlöber et al. 2003; Patiri et al. 2004).

Peebles (2001) noted that the properties of CDM voids and of the
galaxies inside them formed a strong test for CDM. Subsequently,
Mathis & White (2002) and Benson et al. (2003) investigated prop-
erties of voids in semi-analytical models where mock galaxies are
placed in dark matter only simulations following physically moti-
vated recipes.

One of the problems with voids and with studies of voids is that
there is little agreement on how to define a void in the galaxy distri-
bution. Are voids regions which are completely devoid of galaxies?
Or can there be galaxies inside a void? If yes, how do void galaxies
differ from their cousins that populate denser environments? And
what is the spatial distribution of void galaxies within voids? Are
they scattered throughout the void interior, or do they tend to pile
up around the edges?

In models of galaxy formation within the context of hierarchi-
cal clustering, the galaxy distribution is determined by the un-
derlying dark matter. Therefore, to understand void galaxies, it is
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important to define precisely what constitutes a void in the dark
matter distribution. Dubinski et al. (1993) argued that the spheri-
cal evolution model (Gunn & Gott 1972) provides a useful guide.
In this model, initially underdense regions evolve from the inside
out, in the sense that as mass makes its way outwards from the
centre of the underdensity, a well-defined ridge begins to form
around the region. The ridge is well formed at a time when the
density interior to it has a characteristic value (e.g. Fillmore &
Goldreich 1984; Bertschinger 1985), and this, they argued, pro-
vides a natural and physically motivated definition of a void (also see
Van de Weygaert & Van Kampen 1993; Friedmann & Piran 2001;
Sheth & Van de Weygaert 2004). The main purpose of the present
work is to present the results of a study which uses this definition
of voids.

We will concentrate on voids in what has now become the stan-
dard cosmological model: a flat �CDM cosmology with � = 0.3.
Rather than focusing on individual voids, or small sets of voids, we
take a series of high-resolution N-body simulations done in suffi-
ciently large cosmological volumes that a study of the properties of
ensembles of voids is justified. The set of simulations we use covers
a wide range of cosmological volumes and resolutions. Thus, we
are able to study detailed properties of voids such as the density run
of the matter within them, as well as to estimate their abundances.

This paper is organized as follows. In the following Section, we
introduce the simulation set (Section 2.1) and the void-finding algo-
rithm (Section 2.2). In Section 3 we study the visual appearance of
voids (Section 3.1), the void volume function (Section 3.2), the cor-
respondence between voids and minima in the initial density field
(Section 3.3), density profiles of voids (Section 3.4), the mass func-
tion of haloes in voids (Section 3.5) and the spatial clustering of
voids (Section 3.6). Section 4 summarizes our findings.

2 F I N D I N G VO I D S I N C O L D DA R K
M AT T E R U N I V E R S E S

2.1 The simulations

We use of a set of N-body simulations done by, or in collabora-
tion with, the Virgo Supercomputing Consortium.2 The simulations
model regions of different sizes and have different mass resolutions.
In the naming conventions of the Virgo Consortium, the simulations
are

(i) The �CDM GIF simulation Jenkins et al. (1998), Kauffmann
et al. (1999), with 2563 particles in a cubic volume of size
(141.3 h−1 Mpc)3.

(ii) The �CDM GIF2 simulation Gao et al. (2003), with 4003

particles in a cubic volume of size (110 h−1 Mpc)3. The mass res-
olution of this simulation is ten times better than that of the GIF
simulation.

(iii) The �CDM VLS simulation (Jenkins et al. 2001; Yoshida,
Sheth & Diaferio 2001; Menard et al. 2003), with 5123 particles in a
cube of volume (479 h−1 Mpc)3. This simulation has the same mass
resolution as the largest boxes in Jenkins et al. (1998) but is eight
times their volume.

(iv) The �CDM Hubble volume (HV) simulation (Evrard et al.
2002), with 10003 particles in a (3000 h−1 Mpc)3 cube. Despite the
relatively low-mass resolution of this simulation, its size makes it
extremely useful for studying the largest possible voids.

2 http://www.virgo.dur.ac.uk

Table 1. Parameters of the simulations used in this work.
All runs have �m = 0.3, � = 0.7, n = 1, σ 8 = 0.9, h = 0.7.

Run np l [h−1 Mpc] mp [1010 h−1 M�]

GIF 2563 141.3 1.4
GIF2 4003 110 0.2
VLS 5123 479 6.9
HV 10003 3000 224.8

We note a difference in the initial power spectra for these sim-
ulations. The initial condition for the GIF simulation was gener-
ated using the Bond & Efstathiou (1984) transfer function whereas
for the other simulations the transfer function computed by CMB-
FAST (Seljak & Zaldarriaga 1996) for the LCDM model was used.
Table 1 provides a few more details about the simulations; in the
following, we will refer to them as GIF, GIF2, VLS and HV.

2.2 The void-finding algorithm

A number of void-finding algorithms have been proposed
(Kauffmann & Fairall 1991; Kauffmann & Melott 1992; El-Ad &
Piran 1997; Aikio & Mähönen 1998; Hoyle & Vogeley 2002). Most
look for empty spherical or cubical regions, which are then merged
following some recipe. For the galaxy distribution, the decision to
merge or not is slightly ad hoc. Our task is somewhat easier, because
we are only searching for voids in the dark matter distribution, and
we have a dynamically based model to use as a guide.

Our void-finding algorithm is a variant of the one advocated by
Aikio & Mähönen (1998). It is based on the assumption that voids
are primordial negative overdensity perturbations that grew gravi-
tationally and have reached shell crossing at present time. At shell
crossing, the comoving radius of a perturbation is 1.7 times larger
than it was initially, so that the object has a density contrast of −0.8
(see Blumenthal et al. 1992; Dubinski et al. 1993). (Strictly speak-
ing, these numbers are correct for an Einstein–de-Sitter cosmology.
But the dependence on cosmology is weak, and so we ignore it.)
Our algorithm looks for such regions in the simulations. To be more
precise, it performs the following steps.

(i) The simulation particles are binned on a three-dimensional
mesh using a nearest gridpoint scheme. We have checked that the
choice of the grid size does not influence the locations and sizes of
the voids, provided the smallest voids have radii of at least three
cells.

(ii) The grid is smoothed adaptively, using 20 particles for the
smoothing kernel. A fixed smoothing filter, for instance a Gaussian
of some radius, smoothes the relatively large underdense regions
nicely but washes out the smaller, highly clustered regions. As noted
in the previous section, previous studies indicate that voids have
well-defined steep edges which a fixed smoothing would wash out.
The adaptive smoothing ensures that only regions with small particle
numbers are heavily smoothed.

(iii) Local minima in the particle distribution are found, and
spheres of varying radii are centred on these minima. The over-
density within these spheres is computed. The largest sphere within
which the overdensity is −0.8 (or slightly smaller) is added to our
list of void-building blocks.

(iv) In principle, the entire underdense volume in a simulation
box forms one big interconnected void: collapsed haloes form very
small islands of matter surrounded by a vast underdense ocean (re-
call that collapsed haloes are much denser than the background, so
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Figure 1. Merging criteria for protovoids. (a) Void 2 lies fully inside void
1 and thus belongs to void 1. (b) The centre of void 2 lies inside void 1; the
resulting void consists of void 1 plus the additional volume of void 2 that
lies outside of void 1. (c) The centre of void 2 lies outside of void 1, but
the region of overlap is large enough to make the algorithm merge the two
voids: x is longer than both y and z. (d) If void 2 was merged with void 1
then the algorithm will not look whether it also overlaps with void 3.

they occupy only a small fraction of the volume). We divide this
underdense ocean up into smaller voids that we require to either be
spherical or ellipsoidal, or to have any other irregular shape, pro-
vided that they do not consist of two (or more) regions connected by
thin tunnels. To avoid dumbbell-shaped configurations, the spher-
ical void-building blocks are merged using the following criteria
(cf. Fig. 1).

(a) Any sphere which lies fully inside another is eliminated
from the list.

(b) Any smaller sphere whose centre lies within a larger sphere
is considered to be part of the larger volume; the void then contains
the volume of the first sphere plus the additional volume of the
second sphere. The overdensity of the resulting void is computed
using its volume and the matter it contains.

(c) A sphere whose centre lies outside the boundary of another
sphere is considered to be part of the other if the following re-
quirements are met. First, the two spheres must overlap. Secondly,
the line which connects the centres of the two spheres is divided
into three segments. A central part, which lies within the volume
of intersection of the two spheres, and the two ends which do not.
If the central segment is longer than one of the other two, the two
spheres are considered to be part of the same void.

(d) If a sphere overlaps with another sphere the merging algo-
rithm will not look for more overlaps. Thus, two large voids will
never be connected by a thin bridge because the algorithm places
a small sphere in between them only into one and not into both
voids. This way, dumbell-shaped configurations are not possible.

Our void finder is analogous to the spherical overdensity method
for dark matter haloes (Lacey & Cole 1994). We compute the centre
of each void by taking the volume-weighted average of the centres of
its constituent spheres. By construction, voids need not be spherical,
and we do not attempt to quantify the geometric shapes of the voids
any further (for a discussion of this subject see Van de Weygaert &

Table 2. Void samples from the simulation sets. rmin is the
lower threshold for the void samples; rmax is the effective
radius of the largest void in the sample; n denotes the total
number of voids larger than rmin in our sample.

Run z rmin rmax n
[h−1 Mpc] [h−1 Mpc]

GIF 0 1.2 32.1 5460
1 1.2 16.5 8597
2 1.2 9.0 5564
3 1.2 4.3 1660

GIF2 0 0.7 19.8 7605
1 0.7 14.3 14331
2 0.7 6.3 21835
3 0.7 4.3 13957

VLS 0 3.5 33.2 46405
1 3.5 15.2 45592
2 3.5 9.1 11730
3 3.5 5.5 1063

HV 0 10.0 55.9 77726

Figure 2. Distribution of (merged) void overdensities in the GIF2 simu-
lation at redshifts z = 0 (solid histogram) and 2 (connected circles). The
overdensities scatter around the value of −0.8 used for the selection of the
protovoids (see the description of void-finding algorithm for explanation and
discussion).

Van Kampen 1993 and references therein). Instead, we compute an
‘effective’ radius by taking the radius of a sphere whose volume is
equal to that of the void. The effective radius has no deeper physical
meaning but it is quite useful to get some idea of how big a void
actually is. But note that in the spherical evolution model, the initial
spherical region from which the void grew differs from this effective
radius by a factor of (1 + δ)1/3.

By running our algorithm on the simulated particle distributions
at different epochs, we obtain void samples at a range of redshifts.
We only consider voids whose radii are four times larger than the
scale of the void-finder grid. Table 2 summarizes our results. The
void radii/sizes in the different simulations are discussed in more
detail in Section 3.2.

Figs 2 and 3 show the overdensities of the (merged) voids in
the GIF2 and VLS simulations, respectively, at redshifts z = 0 and
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Figure 3. Distribution of (merged) void overdensities in the VLS simu-
lation at redshifts z = 0 (solid histogram) and 2 (connected circles). The
overdensities scatter around a value of slightly less than −0.8 used for the
selection of the protovoids (see the description of void-finding algorithm for
explanation and discussion).

z = 2. The distributions scatter nicely around the value δ = −0.8,
with the peaks of the GIF2 and VLS distributions slightly above or
below δ = −0.8, respectively. This slight difference is owing to the
somewhat coarser grid of the VLS simulation.

3 VO I D S I N A Λ C O L D DA R K
M AT T E R U N I V E R S E

3.1 Visual impression

High-resolution N-body simulations contain a large number of
three-dimensional objects. The appearance of these objects is usu-
ally illustrated by plotting the smoothed or unsmoothed particle dis-
tribution from a narrow slice through the simulation volume. How-
ever, projection effects can make objects seem to lie in the wrong
places. What is more, images of smoothed density distributions are
usually plotted using a logarithmic scale which tends to emphasize
the matter between the haloes over the haloes themselves. (If a lin-
ear scale is used, most of the image would be relatively featureless,
except for a few tiny specks that represent the haloes.) We will use
a logarithmic scale in what follows, but it is important to keep this
caveat in mind when looking at the images.

Fig. 4 shows a slice of thickness 10 h−1 Mpc – about one tenth
of the full box size – through the GIF2 simulation. The dark matter
was smoothed adaptively, and the density distribution was plotted
using a logarithmic colour scale. The circles superimposed on the
density field are centred on the centres of those voids that intersect
this slice. For voids whose centres lie inside the slice we plot a circle
with a radius equal to the effective radius. For voids whose centres
lie outside the slice we determine the size of the overlap between
the slice and the void that we represent as a sphere. We then plot
a circle whose radius corresponds to the radius of the circle that
is defined by the intersection of the sphere with the outer edge of
the slice. The figure illustrates that the effective radii defined above
correspond quite nicely to the visual impression of sizes of voids.
We added a few numbers to the image at locations that require some

attention as follows. (1) For reasons of simplicity, voids are shown
as circles. In reality, they are not spherical. Thus, these three large
voids do not overlap in the void catalogue. (2) There is a small region
here, which is underdense but not covered by any of the voids in
this image. This effect is also owing to the fact that we draw voids
using circles. In reality, this underdense region is part of the large
void right above it. (3) Smaller voids seem to lie inside bigger ones.
This does not actually happen in our void catalogue. In the image,
it is owing to a combination of projection effects and of the fact that
we draw voids as circles. Larger haloes also do not lie inside voids
but are merely projected on top of them. It is worth noting that as a
result of projection effects, if the centres of some of the larger voids
lie close to the edge of the slice, they appear to be much larger than
the particle distribution in the slice would have indicated. (4) Note
how regions that are more overdense do not contain many large
voids but, instead, mostly small ones. (5) There are some small
haloes inside voids as is clearly visible in the centre of this very
large void.

Fig. 5 shows the growth of the three largest voids in the GIF simu-
lation. We are plotting a slice of thickness 10 h−1 Mpc. However, in
this plot, we centre the region we are plotting on the z = 0 position
of each void. The evolution of the voids is quite interesting and it
seems to follow the general picture outlined already: even though
the actual void shapes are not spherical, the voids grow from the
inside, expanding outwards. In addition, note the presence of a very
large void in the left-most column. This void is almost the size of
the largest void in the VLS simulation.

3.2 The void volume function

Table 3 shows the fraction of the simulation volume occupied by
voids with radii larger than rmin in the GIF2 simulation. The volume
fraction grows by approximately a factor of 3 between z = 3 and 2,
between z = 2 and 1, and between z = 1 and 0.

Fig. 6 shows the number density of voids larger than a given
volume V , as a function of V , at z = 0 in the four simulations.
The very big GIF void is clearly visible in this plot. It is almost as
large as the largest voids in the much larger VLS simulation. The
steps visible at small V result from the discreteness of the grid. The
agreement between the different simulations is really quite good.
Of course, the HV simulation contains by far the largest voids.

Fig. 7 shows how the cumulative volume function in the highest
resolution simulation (GIF2) evolves. The evolution is smooth, and
the volume functions of different redshifts cross each other. For
example, there are more voids of volume 100 (h−1Mpc)3 at z = 1
than at z = 0. This growth of voids is analogous to the hierarchical
growth of haloes. As time progresses, smaller haloes merge with
one another to form larger haloes. Here, smaller voids expand and
merge with other voids to form larger ones. (We did not attempt
to use our void catalogs to construct void merger trees.) This plot
reflects what we have shown earlier in the three sets of panels in
Fig. 5.

In Fig. 8 we plot the differential void volume function of voids
in the GIF2 simulation at z = 0. It is interesting to note that the
distribution does not have a peak. When expressed as a function
of 1.7/σ (m, z), the halo mass function is reasonably well fitted by
a universal form that is independent of redshift and power spec-
trum (Sheth & Lemson 1999; Sheth, Mo & Tormen 2001; Jenkins
et al. 2001). However, a similar rescaling of the void function (us-
ing 2.8/σ (m) – see Sheth & Van de Weygaert 2004), does not yield
a universal curve. The failure to find a universal form contradicts
excursion-set models of the sort that describe haloes quite well,
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Figure 4. A slice of thickness 10 h−1 Mpc through the GIF2 simulation. The dark matter was smoothed adaptively, and the resulting density field is shown
using a logarithmic colour scale. Circles show the effective radii of each void and are drawn to guide the eye (see main text for a more detailed description of
how voids whose centres lie inside and outside the slice are represented). Numbers refer to a few points that have to be made about the plot (for more details see
the main text). (1) Voids are shown as circles but in reality, they are not spherical. These three large voids do not overlap in our void catalogue. (2) This part of
an underdense region is not covered by any of the voids in this image because they are drawn as circles. In reality, it is part of the large void right above it. (3)
Smaller voids seem to lie inside bigger ones. This is owing to a combination of projection effects and of the fact that we draw voids as circles. The same goes
for large haloes in voids. In the image, we have marked some of those voids that seem to be contained inside the larger void. (4) Regions that, on larger scales,
are more overdense contain mostly small voids. (5) There are some small haloes inside voids. We have marked some of the small haloes inside the large void.

but is not in disagreement with models based on peaks in Gaussian
random fields (Sheth & Van de Weygaert 2004).

For the GIF2 simulation at z = 0, in Fig. 9 we plot the fraction
of the total void volume filled by voids of effective radius reff or
less as a function of that radius. It is quite instructive to see that
around half of the void volume is already filled at a radius of around
1.3 h−1 Mpc, and voids with an effective radius of 2.5 h−1 Mpc or
less fill 90 per cent of the void volume. In other words, even though
the largest voids leave the strongest visual impression in images
like Fig. 4, they only account for a small fraction of the total void
volume.

It is not straightforward to compare these findings with results
from investigations of voids in galaxy catalogues. This is partly be-
cause of the difference in the void-finding algorithms and mainly

because of the fact that galaxies are quite sparse tracers of the under-
lying density field. On a qualitative level, our void size distribution
agrees well with observed voids. For example, Hoyle & Vogeley
(2004) report void sizes comparable to our largest voids (the small-
est voids they construct have radii of 10 h−1 Mpc), with the numbers
of voids steeply dropping with increasing radius.

3.3 Voids in the initial density field

Massive haloes in simulations are associated with higher peaks in
the (smoothed) initial density field (Bardeen et al. 1986; Colberg
et al. 2000; Sheth & Diaferio 2001). Voids are expected to form from
initially underdense regions analogously to how clusters or haloes
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Figure 5. The largest voids in the GIF �CDM simulation. Each set of slices shows a 40 × 40 × 10 (h−1 Mpc)3 volume centred on one of the three largest
voids. The sequence from top to bottom shows each void at z = 0, 1, 2 and 3. The colour coding is the same for all voids and redshifts. At z = 0, the three
voids have effective radii of 32.1 h−1 Mpc (leftmost column), 18.9 h−1 Mpc (middle column) and 18.7 h−1 Mpc (rightmost column).

Table 3. Void volume frac-
tion in the GIF2 simulation for
a range of redshifts.

z f (per cent)

0 61.2
1 27.6
2 9.2
3 2.7

form from initially overdense regions. One might thus wonder if a
similar correlation exists between voids and minima in the initial
density field. We used the GIF simulations to study this correlation
as follows.

In the spherical evolution model, the mass associated with a void
is a measure of the initial comoving radius of the region from which
it formed: R = (3m/4πρ̄)1/3. Therefore, one might expect the void
mass to correlate most strongly with the depth of the initial under-
density from which it formed, when the initial field is smoothed on
a scale R(m). As the voids in our sample enclose a large range of
masses, we smoothed the initial (z = 49) density field using a set
of top hat filters: 2.5; 5.0; 7.5; 10.0 h−1 Mpc. We identified the min-
ima in each smoothed field. That is, we identified those grid cells
which were less dense than all 26 of their neighbouring cells. We
then compared the comoving positions of the minima identified on
a smoothing scale with the locations of those voids whose z = 0
sizes correspond to R(m) – recall how initially underdense regions
grow by a factor of 1.7 until present time. If there was more than
one minimum inside a void we picked the deepest one. The density
inside that cell was identified with the overdensity σ of the trough.
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222 J. M. Colberg et al.

Figure 6. Cumulative volume functions of voids at z = 0 in the GIF (dotted),
GIF2 (dot-dashed), VLS (dashed) and HV simulations (dot-dot-dot-dashed).

Figure 7. Evolution of the the cumulative void volume fraction in the GIF2
simulation at z = 0 (solid), z = 1 (dotted), z = 2 (dashed) and z = 3 (dot-
dashed).

Figure 8. Differential void volume function of voids in the GIF2 simulation
at z = 0.

This method is analogous to how Colberg et al. (2000) located peaks
for clusters. What is more, voids evolve by expanding but not by
moving. Thus, one expects to find the void centres in the initial
conditions close to the void centres at present time. In this way, we
associated voids with minima in the initial field.

As it turns out, all voids larger than 4.25 h−1 Mpc could be asso-
ciated with a density minimum. It is interesting that associating a
void with an initially underdense region does thus work much better
than finding a peak for a cluster (see Colberg et al. 2000).

Figure 9. Fraction of total void volume filled by voids of effective radius
reff or less in the GIF2 simulation at z = 0. See text for discussion.

In the left-most panel of Fig. 10 we plot the void volumes at
z = 0 as a function of the void overdensities at z = 0. The void
overdensities scatter around the value of −0.8. Larger voids tend to
be slightly less underdense. This is mainly owing to the process of
the merging of protovoids. As will be seen in the following section,
void density profiles rise very sharply towards the edges of the voids
(see Fig. 14, later). Thus, when a smaller void is merged onto a
larger one – following the criteria outlines above – one basically
adds mainly parts of the outer region of the smaller void. Once the
overdensity of the resulting void is computed this void will have a
slightly higher overdensity than the two original voids.

The centre panel of Fig. 10 shows the z = 0 void volume as a
function of the overdensities of the associated troughs in the initial
conditions. As discussed above, we used a set of smoothing scales
and grouped the voids into categories covered by the corresponding
scale. In principle, for each void one would want to apply a smooth-
ing scale that corresponds exactly to the void volume. As we did not
do that we end up with clearly visible steps in the plot.

If one rescales overdensities of the associated troughs (compare
Sheth & Diaferio 2001 for the analogous procedure for haloes) the
plot gets tighter. The right-most panel of Fig. 10 shows the z =
0 void volume as a function of δ/σ of the associated troughs. The
different sets are still visible but now they lie on top of each other.

3.4 Void density profiles

Navarro, Frenk & White (1996) have argued that CDM haloes have
a universal density profile. In this section, we argue that the same
holds true for voids, in qualitatively agreement with Van de Weygaert
& Van Kampen (1993).

Using our samples from the GIF, GIF2, and VLS simulations,
we have computed the mass profiles of voids, using the actual par-
ticles in the voids instead of the smoothed density grid (we found
the difference was important). Owing to the different lower thresh-
olds of the samples, we only compute void profiles for voids that
have effective radii of 5 h−1 Mpc or more. Fig. 11 shows the av-
eraged enclosed density in z = 0 voids as a function of radius.
For each void, we rescaled the length-scales by dividing by the
effective radius, and we re-scaled densities by dividing by the en-
closed density at the effective radius. We truncated the profiles at
small radii, where numerical resolution effects begin to dominate
(these will be discussed in more detail below). For almost the entire
range, the average density profiles of voids in the three simulation
sets agree very well. We also computed density profiles for the � =
1 τCDM GIF simulation. These agree with the profiles of the�CDM
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Figure 10. Left-most panel: void volumes versus void overdensities at z = 0 in the GIF simulation. Centre panel: voids in the smoothed initial density field
(GIF simulation). Plotted is the void volume at z = 0 as a function of the overdensity δ of the associated trough in the initial conditions. Different symbols
show different smoothing scales: 2.5 h−1 Mpc (diamonds), 5.0 h−1 Mpc (triangles), 7.5 h−1 Mpc (squares) and 10.0 h−1 Mpc (crosses). Right-most panel: voids
in the smoothed initial density field (GIF simulation). Plotted is the void volume at z = 0 as a function of the re-scaled overdensity δ/σ of the associated
trough in the initial conditions. Different symbols show different smoothing scales: 2.5 h−1 Mpc (diamonds), 5.0 h−1 Mpc (triangles), 7.5 h−1 Mpc (squares)
and 10.0 h−1 Mpc (crosses).

Figure 11. Enclosed density in z = 0 voids as a function of radius for the
GIF (dotted line), GIF2 (dashed line) and VLS (dot-dashed line) simulations.
For each simulation, the rescaled profiles of voids with radii larger than
5 h−1 Mpc were averaged (i.e. radii and densities were scaled by the effective
radius and the enclosed density at the effective radius, before averaging). In
addition, the results from the � = 1 τCDM GIF simulation are shown (three
dots-dashed line). Curves are truncated at small radii because of numerical
resolution limits.

simulations. This finding indicates that the form of void density pro-
files is indeed universal.

The different mass resolution of the three simulations affects the
profiles in a systematic way: the higher the resolution, the lower the
profile. This effect is strongest at small radii. The mass resolution
also affects the centres of the voids. For example, in the VLS simu-
lation, a single particle in a sphere of radius 1 h−1 Mpc corresponds
to an overdensity of −0.8. Therefore, we cannot resolve the density
profiles in the innermost regions. If we plot the profiles all the way
to the centres we find that the profiles all rise – individual particles
contribute too much mass. Therefore, we truncate the profiles in
the void centres. We cross-checked the effect of mass resolution by
down-sampling the GIF2 simulation and producing void profiles.
The down-sampled simulation shows the trend visible in Fig. 11.
Fig. 11 is very encouraging: except for the effect of mass resolution,
there are no systematic differences in the void samples.

Figure 12. Enclosed density profiles in the VLS simulation. The voids
were divided into four samples with void radii between 5 and 10 h−1 Mpc
(dashed-three-dots), 10 and 15 h−1 Mpc (dot dashed), 15 and 20 h−1 Mpc
(dashed), and voids with radii larger than 20 h−1 Mpc (dotted). The radius
and enclosed mass of each void was rescaled by the effective radius and
the effective mass, and these rescaled profiles were averaged over all voids.
We have truncated the curves at small radii because of numerical resolution
limits of the simulations. Solid line shows equation (1), shifted downwards
by a factor of 2.

Fig. 12 shows the scaled enclosed density profiles of voids in the
VLS simulation. The curves lie fairly nicely on top of each other.
The cumulative profile shown in Fig. 12 is quite well described by

ρ(<r )/ρ(reff) = exp
[
(r/reff)1.85

]

2.5
. (1)

The fits only start to deviate somewhat beyond r/r eff = 1. (Although
the density run around haloes is usually studied using the differential
profile, void centres have fewer particles, so we have chosen to fit to
the cumulative profile instead.) Our choice of an exponential profile
is motivated by Van de Weygaert & Van Kampen (1993) who noted
that an exponential profile provided a very good fit to their voids.

Fig. 13 shows the density profiles of voids in the GIF simulation
with a range of values for the mean void overdensity. As can be seen,
varying the overdensity threshold in the range chosen here does not
systematically alter the density profiles.
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Figure 13. Cumulative density profiles for different void overdensity defi-
nition thresholds in the GIF simulation.

Fig. 14 shows density profiles of four GIF voids going out to
a distance of 50 h−1 Mpc from their centres. The void edges are
marked with a small vertical line. Although there are some varia-
tions in the profiles, all voids have very sharp edges. The densities
peak at the effective radius, and the enclosed densities rise above
the threshold. This is consistent with the visual impressions of voids
discussed earlier, where one sees that voids are very well defined
by the haloes which populate their boundaries. It also agrees quali-
tatively with the results in Van de Weygaert & Van Kampen (1993).
What is more, Benson et al. (2003) and Hoyle & Vogeley (2004)
see similar behaviour for voids outlined by the galaxy distribution
in a semi-analytic galaxy formation model and in the 2dFGRS, re-
spectively (see fig. 11 in Benson et al. 2003 and fig. 4 in Hoyle &
Vogeley 2004).

3.5 The void halo mass function

Gottlöber et al. (2003) investigated the z = 0 void halo mass function
using a set of high-resolution simulations of individual voids. They
find that both the normalization and the shape of the cumulative mass
function are different from those of the non-void halo mass function.
Their measurements are in qualitative agreement with models for
this dependence by Mo & White (1996) and Sheth & Tormen (2002),
although there are differences in detail. Also see Patiri et al. (2004)
who used the simulations run by Gottlöber et al. (2003) to model
mass functions in voids.

For our study of the mass function, we use the GIF2 simula-
tion, which has the highest mass resolution. We identify haloes
using a friends-of-friends (fof) group finder with a linking length of
0.2 times the mean interparticle separation, and require that haloes
have at least 10 particles. At z = 0, we find void haloes by picking
those haloes whose centres-of-mass lie within a void.3 We then mark
those particles that are in a void at z = 0 and run the fof group finder
on them at earlier redshifts. This means that we do not require that
z = 0 void haloes be located inside a void at earlier times. Our choice
is dictated by the fact that the void volume fraction evolves rapidly
(cf. Section 3.2); choosing only haloes that are inside voids at early
times would reduce the size of our high-redshift halo samples sig-
nificantly. Thus, what we are really showing is the mass function of
the high-z projenitors of haloes which are in voids at z = 0.

3 For this part of this work we do not use our estimates of the void centres
and effective radii. Instead, void haloes are defined as those which lie within
a void volume, however, complex its shape.

Fig. 15 compares the mass function of all haloes with that of
haloes whose particles lie in a void at z = 0. The plot indicates that
haloes that end up in a void at z = 0 – probably located at the very
edges of a void – at any fixed mass undergo slightly more evolution
than haloes with the same mass elsewhere. Fig. 16 shows this point
a little bit more clearly by plotting the ratios of the mass functions
shown in Fig. 15 for z = 0/z = 1 and z = 1/z = 2. Note that if you
look at all haloes, for small halo masses there are less haloes at later
redshift (z = 0) than at the earlier redshift (z = 1).

The small simulation volume and the resulting modest halo sam-
ple sizes do not allow more detailed studies of this. We will re-
address the void halo mass function in a later study that will make
use of a much larger simulation.

3.6 The spatial distribution of voids

In this Section, we want to investigate the spatial clustering of voids
in detail by computing the two-point correlation function of the
voids. The correlation function of massive haloes depends strongly
on halo mass (Mo & White 1996; Sheth & Lemson 1999), so it is
interesting to see if voids show analogous trends.

To study a large range of void sizes, we measured the correlation
function of voids centres in the VLS and GIF2 simulations. Fig. 17
shows the results for voids with radii R > 2 Mpc h−1 (three dots
dash) and R > 5 Mpc h−1 (dot dash) from GIF2, and with R >

5 Mpc h−1 (short dash) and R > 10 Mpc h−1 (solid) from VLS. At
separations smaller than ∼2R, the void correlation functions tend
to −1. This is a consequence of volume exclusion: for the purposes
of this statistic, voids are like hard spheres – they do not overlap.
At larger radii, there is some evidence that the larger voids are
slightly more clustered, consistent with a linear peaks-bias based
model (e.g. note the similarity between Fig. 17 and figs 2 and 3
in Sheth & Lemson 1999.) However, the scales on which volume
exclusion effects are no longer important, and on which the linear
bias model may apply are sufficiently large that the amplitude of
the unbiased (dark matter) correlation function (long dash) is small.
Hence, the actual amplitude of the void correlation function is never
large compared to unity. This provides considerable justification for
the accuracy of the Poisson Voronoi based models of the matter
distribution of Van de Weygaert (2002).

4 C O N C L U S I O N S

We studied the properties of voids in a set of large high-resolution
N-body simulations of the �CDM cosmology. We defined voids as
spherical or elliptical regions of space with a mean overdensity of
−0.8. With this definition we found almost 80 000 voids with radii
larger than 10 h−1 Mpc in the HV simulation. Those voids fill the
volume approximately uniformly.

The void volume functions of the different simulations agree well.
The largest void in the HV simulation has a radius of∼55.9 h−1 Mpc.
It is quite interesting that this is fairly close to the size of the famous
void in the region of Boötes found by Kirshner et al. (1981).

The GIF simulation appears to harbor an abnormally large void,
given the small size of the simulation box. There are more smaller
voids at earlier times than at later times (Fig. 7). Claims that CDM
cosmologies do not form large enough voids can thus be put to rest.
In addition, as our voids are defined through their mean overdensity
we also show that CDM voids do not contain too much matter.

Voids very clearly correspond to troughs in the smoothed initial
density field (right-most panel of Fig. 10). This point is particularly
interesting in the light of the result of Colberg et al. (2000) for the
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Figure 14. Density profiles of four voids from the GIF simulation. Solid and dashed lines show the density and enclosed density as a function of distance
from the void centre. Vertical line shows the effective radius of each void.

Figure 15. Mass function of haloes in the GIF2 simulation. Different curves
show the mass function of all haloes, whatever their surrounding environ-
ment, and the mass function of those haloes whose particles lie in a void at
z = 0.

correspondence between clusters and peaks: they found that not all
clusters could be associated with peaks. For voids, the idea that the
initial density field contains the seeds of z = 0 objects can be verified
much more successfully.

When appropriately rescaled, voids appear to have a universal
density profile (equation 1). The void density profiles rise steeply
at the edges of voids. Voids are thus very well defined in terms of
their densities.

In agreement with the results reported by Gottlöber et al. (2003)
we find that the mass function of haloes in voids is different from
that in regions of average density (Fig. 15). We also find that the
mass function of haloes which end up in z = 0 voids evolved some-

Figure 16. Ratios of the mass functions of haloes in the GIF2 simulation
in different environments. The solid (z = 0/z = 1) and dot-dashed (z =
1/z = 2) and the dotted (z = 0/z = 1) and dashed lines (z = 1/z = 2) are
for all haloes and to void haloes, respectively.

what more rapidly than the mass function of all haloes. However,
even the simulation with the highest mass resolution in our set just
barely reaches down to the mass range of void haloes. For a detailed
investigation of formation times one would need simulations with
an even higher mass resolution, such as those used by Gottlöber
et al. (2003). This is the subject of work in progress.

While there is some evidence that larger voids are slightly more
clustered on scales larger than ∼20 h−1 Mpc the actual amplitude
of the void correlation function is very small. This finding supports
the use of Poisson Voronoi based models of the matter distribution
(Van de Weygaert 2002).
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Figure 17. The two-point correlation function ξ (r) for voids of radius
r > 2 Mpc h−1 (from GIF2, dash three dots), r > 5 Mpc h−1 (dot dash from
GIF2 and dashed from VLS), and r > 10 Mpc h−1i (solid line). The long
dashed line shows the dark matter correlation function.
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