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As a typical n-type semiconductor, MoO3 has been widely applied in the gas-detection

field due to its competitive physicochemical properties and ecofriendly characteristics.

Volatile organic compounds (VOCs) are harmful to the atmospheric environment and

human life, so it is necessary to quickly identify the presence of VOCs in the air. This review

briefly introduced the application progress of an MoO3-based sensor in VOCs detection.

We mainly emphasized the optimization strategies of a high performance MoO3,

which consists of morphology-controlled synthesis and electronic properties functional

modification. Besides the general synthesis methods, its gas-sensing properties and

mechanism were briefly discussed. In conclusion, the application status of MoO3 in

gas-sensing and the challenges still to be solved were summarized.

Keywords: MoO3, gas sensors, volatile organic compounds, functional modification, gas-sensing mechanism

INTRODUCTION

Volatile organic compounds (VOCs) mainly come from the exhaust gases generated by fuel
combustion and transportation, as well as emissions from building materials, decorative materials,
and furniture. People can suffer headaches, nausea, and evenmore severe issues such as convulsions
and comas when exposed to a certain concentration of VOCs (Chu et al., 2010; Sui et al., 2015).
Moreover, many carcinogens that damage the liver, kidneys, brain, and nervous system were
found in VOCs. Therefore, the problem of air pollution by VOCs has attracted extensive attention
in many countries (Yang et al., 2018; He S. H. et al., 2019). Currently, there are two common
techniques—photo ionization detector (PID) and flame ionization detector (FID)—to detect VOCs,
however, the application of these methods in industry are limited due to the relatively high cost and
complicated maintenance. Considering the characteristics of small size, low cost, and convenient
fabrication, semiconductor gas sensor technology plays an important role in many fields (Lu et al.,
2018; Xiao et al., 2018; Zhang D. Z. et al., 2018; Zhang Q. Y. et al., 2018; Zhou et al., 2018c, 2019;
Wang et al., 2019a; Wei et al., 2020), so it is reasonable to propose the employment of a gas sensor
to realize the online monitoring of VOCs.

As a typical n-type semiconductor material with a suitable band gap (2.39–2.9 eV) (Yan et al.,
2016), MoO3 has attracted wide attention because of its distinctive gas sensing performances in the
detection of many gases (Liu et al., 2015; Xia et al., 2016; Li, 2017; Zhou et al., 2017; Yang et al.,
2018). Researchers have been devoted to designing nanomaterials with more suitable properties,
and two methods have proved effective through unremitting efforts. One is to synthesize materials
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with larger specific surface areas, which is attributed to the
conclusion that the micromorphology features have an impact
on the gas-sensitive process (Zhou et al., 2018b; Zhu et al.,
2018; Wang et al., 2019b; Wei Z. J. et al., 2019). Considering
the changes in the materials that are caused by doping and
compounding or the catalytic effect of the introducedmaterial on
the sensing process, it is also desirable to improve the properties
of the materials by introducing other elements or substances
(Mousavi-Zadeh and Rahmani, 2018; Zhou et al., 2018a; Wang
et al., 2019c; Xu et al., 2019). Therefore, the optimization
strategies of MoO3 based on controllable morphology synthesis
and functional modification were comprehensively summarized
in this mini review. Besides, several typical synthesis pathways
of MoO3 nanomaterials, as well as the gas-sensing performances
and mechanism to VOCs, were introduced.

SYNTHESIS METHODS OF MoO3

The preparation of materials with more useful properties has
always been a research hotspot in the field of gas detection,
and has attracted extensive attention from scholars. In recent
years, material preparation craft is constantly updated and
developed with the emergence of new technology. At present,
solid phase method, liquid phase method, and template method
are mainly employed to synthesize MoO3 materials with
admirable performance.

The process of preparing materials by solid phase method
is to transform the solid phase raw materials into target
powders. Using ammoniummolybdate as raw material, Qin et al.
(2017) successfully obtained MoO3 nanoplate arrays in the air
through a solid phase chemical synthesis route. By hydrolyzing
a mixture of one or more soluble metal salts solution and then
evaporating and sublimating them, the liquid phase method
adopts a series of processes to separate the solute from the
solvent, where finally the nanoparticles with uniform shape are
produced by crystallizing metal ions. Nowadays, spray pyrolysis
technique, sol-gel route, and hydrothermal method have been
reported as common liquid phase methods for the preparation
of MoO3 materials. Sau et al. (2019) used the sol-gel method
to heat the solution after the molybdenum source was fully
dissolved to a gelatinous state under specific PH (7–8) conditions.
Finally they prepared α-MoO3 nanoparticles through annealing
and drying. Pandeeswari and Jeyaprakash (2014) successfully
obtained MoO3 thin films with a thickness of 520 nm on a
glass substrate maintained at 250◦C by spray pyrolysis route.
Zhu et al. (2019) synthesized hollow MoO3 microcages by a
facile one-step hydrothermal process, which had gone through
four steps of heating, cooling, centrifugation, and washing.
The template method is designed to generate nanomaterials
based on the template of appropriate structure, which can
effectively influence the growth direction and morphology of
the materials. Zhang et al. (2017) deposited MoS2@MnCO3

powder based on an MnCO3 template, and prepared MoS2
by adding hydrochloric acid to remove MnCO3. Finally,
they obtained hierarchical MoO3 microboxes by calcining
MoS2 powder.

OPTIMIZATION STRATEGIES OF MoO3

The sensitivity of the gas sensors is closely related to the
changes in the resistance that is attributed to the adsorption and
desorption of target gas molecules on the surface of materials,
which implies that the gas-sensing properties mainly depend
on their own electronic characteristics (carrier concentration,
energy band structure, etc.) and morphological characteristics
(specific surface area, aperture, etc.). Based on this, the main
strategies to enhance the gas-sensing performances of materials
are morphology control and electronic properties improvement.

Controllable Synthesis of Diversified MoO3
In recent years, the production of MoO3 gas-sensitive materials
with high quality morphology has become an important
research approach for performance enhancement. In this regard,
MoO3 gas-sensitive materials with different morphologies and
dimensions have been prepared through different methods
to conduct gas-sensing experiments. In this section, we
review and summarize the excellent achievements of MoO3

morphology control and several typical morphologies are shown
in Figures 1A–C.

One-dimensional (1D) structures, such as nanofibers,
nanorods, and nanoribbons, have limited specific surface
areas, but their reaction sites are directly exposed to external
environments, leading to the susceptive variation of interface
ion transport when some changes occur to environmental
factors. Hence, 1D material has the potential to be applied as
excellent sensors. The remarkable selectivity and response-
recovery characteristics of α-MoO3 nanorods gas sensors to
triethylamine was reported (He S. H. et al., 2019). Besides, the
rapid adsorption/desorption processes were confirmed to be the
reason for prominent gas-sensing characteristics. By optimizing
reaction time and pulse temperature in hydrothermal reaction,
Mandal et al. (2019) synthesized uniform MoO3 nanobelts and
MoO3 nanofibers. The experimental results illustrated that the
enhanced ethanol detection performances of nanofibers could
be ascribed to the larger specific surface area and surface defects
compared with the nanowires.

Materials with two-dimensional structures such as nanoplates
and nanosheets have a larger specific surface area, which further
improves the gas-sensitive responses. The prominent electron
depletion layer that derived from the thin morphologic features
of nanoplates was verified as beneficial due to the ultrahigh gas-
sensing performances. Moreover, the porous structure caused
by the combination of nanoplates could effectively facilitate gas
diffusion on the surface of MoO3, providing convenience for
the gas-sensing process (Cho et al., 2014). The study of Jiang
et al. (2018) demonstrated that MoO3 microsheets with a large
number of oxygen vacancies exhibit superior sensing properties,
and the strong reaction between adsorbed oxygen and target
gases to be confirmed was also an important factor to promote
the gas-sensing performances.

Three-dimensional structures with large specific surface
areas are generally assembled from low-dimensional structures,
which have more reaction sites for gas adsorption, leading to
better gas-sensitive responses and lower gas detection limits.

Frontiers in Chemistry | www.frontiersin.org 2 May 2020 | Volume 8 | Article 339

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Wang et al. MoO3-Based VOCs Gas Sensors

FIGURE 1 | (A) Nanoribbons. Reprinted with permission from Kwak et al. Copyright (2019) American Chemical Society. (B) Nanosheets. Reprinted with permission

from Shen et al. Copyright (2019) American Chemical Society. (C) Hollow microspheres. Reprinted with permission from Zhang et al. Copyright (2019) American

Chemical Society. (D) Schematic diagram of sensor and detection circuit. (E) Gas sensing mechanism.

Furthermore, more gas diffusion channels are provided by
the assembled porous structure, which are conducive to gas
sensitivity reaction. Common three-dimensional structures of
MoO3 include nanoarrays, nanoflowers, and nanospheres. For
example, Ji et al. (2019a) synthesized three hierarchical MoO3

flower-like samples with different petal shapes and found that the
material with the thinnest petals had the most outstanding gas-
sensing performance. Specifically, the thin nanosheets assembled
flower-like MoO3 has a larger specific surface area that
provides more potential for gas-sensitive reactions, and the
thinness allows electrons to transfer rapidly across the surface,
which implied the procedure of gas-sensing became easier.
In addition, the curved edges of thin petals make it harder
for gas molecules to leave the surface, facilitating the full
process of adsorption. Cong et al. (2016) proved the sensors
based on MoO3 nanoarrays assembled from a large number
of long nanorods exhibited more reactive sites and more
active surface electrical properties than the nanoarrays with
fewer nanorods.

Functional Modification Methods
Functional modification is of great significance to improving
the properties of gas-sensitive materials. In the present studies,
the modification of MoO3 mainly includes two approaches

of element doping and multi-component compounding, which
have been proven to be effective methods in optimizing the
electronic properties of materials. In this section, the advances
of MoO3 modification research were briefly summarized.

Metal doping is an alternative approach to acquire the
modified characteristics of MoO3. On the one hand, suitable
metal doping can effectively reduce the activation energy
of chemisorption reaction for the measured gases. On the
other hand, the metal elements play the role of the catalytic
activity center, leading to the optimization of the gas-sensing
performances. Scholars have studied the influence of different
doping elements on the properties of MoO3 materials. For
instance, Cr-doped MoO3 nanorods had more oxygen vacancy
induced by doping, which is meaningful for the promotion of
sensitivity (Li et al., 2019). Similar results were obtained when
the W element was doped in MoO3 nanobelts (Li et al., 2017b).
As for the dope of Ni, not only did more adsorbed oxygen that
can promote the change of resistance in the sensing process
appear on the surface of MoO3, but also the morphology changed
with the increase of the doping amount, which is related to the
inhibition of lattice growth by the introduction of doped Ni
elements (Jiang et al., 2019). Yang et al. (2017) prepared Zn-
doped MoO3 nanobelts using the hydrothermal method. They
found that the doped zinc caused the reduction of the band gap of
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MoO3 and increased the amount of adsorbed ethanol molecules,
which contributed to the excellent performance.

Many researchers have been devoted to the preparation of
hybrid structures that affected properties such as grain boundary
barrier, energy band, carrier concentration, and depletion layer,
thus improving the performance of gas sensing. For instance, the
Au nanoparticle with a larger work function thanMoO3 received
electrons from MoO3 nanosheets, leading to the appearance of
electron depletion layer at the Au/MoO3 Schottky junction, and
the enhanced ethanol detection capabilities were attributed to
the resulting high resistance (Yan et al., 2016). Considering Pt
nanoparticles combinedMoO3 nanobelts, the superior selectivity
to formaldehyde was conducted, which was ascribed to the
catalytic effect of loaded particles on formaldehyde during
the surface gas sensing process (Fu et al., 2019). As for the
RuO2 nanoparticles modifiedMoO3 nanobelts, oxygen vacancies
produced on the surface, creating more adsorption-desorption
sites for gas molecules (Wei Q. et al., 2019). With regard to
heterostructure, Li et al. (2018) synthesized the CoMoO4/MoO3

nanostructure with p-n heterojunction using the dipping-
annealing method. The enhancement of the adsorption to
oxygen by p-type CoMoO4 and the barrier formed at the
p-n junction were verified to be favorable to the improved
gas response.

Above all, previous studies have focused on the optimization
of MoO3 through synthesizing different samples with multiple
morphologies, the doping of transition metals such as Cr, W,
Ag, Au, Fe, Zn, and Ni, and decorating with other nanomaterials
(Au nanoparticles, RuO2 nanoparticles, Fe2O3 nanoparticles,
CoMoO4 nanoparticles, NiCo2O4 nanosheets, etc.). Thus, in

order to improve the gas sensitivity of MoO3, many potential
materials for the modification of innovative synthesis methods
with controllable morphology need to be explored.

GAS-SENSING APPLICATION OF MoO3

Gas-sensing Mechanism of MoO3
The theory of sensitivity generated by changes in material
resistance during the gas-sensing process has been widely
accepted by scholars in the investigation of the gas-sensitive
mechanism of metal oxides. As shown in Figure 1E, the reaction
between the target gas molecules and the adsorbed oxygen ions
(O−

2 , O
−, O2−) on the surface of the gas-sensitive materials

leads to the change of the electrical conductivity, which is key to
detecting the corresponding response (Li et al., 2015). MoO3 is
an n-type semiconductor with electrons as internal carriers. Mass
of oxygen molecules in the air tends to be adsorbed by the MoO3,
forming adsorbed oxygen ions accompanied by the acceptance of
electrons from the conduction band of MoO3. Thus, the electron
depletion layer was formed on the surface ofMoO3, which caused
the increase of resistance (Ji et al., 2019a). The specific process can
be expressed by the following equation:

O2(gas) → O2(ads) (1)

O2(ads) + e− → O2
−
(ads) (2)

O2(ads) + 2e− → 2O−
(ads) (3)

O−
(ads) + e− → O2−

(ads) (4)

When the MoO3 sensor was exposed to the atmosphere of the
target gas, the adsorbed oxygen ions underwent a reduction

TABLE 1 | Summary of recent researches on MoO3-based sensors for VOCs detection.

Gas Sensing material Concentration

(ppm)

Temperature

(◦C)

Response References

Formaldehyde Ni-doped -MoO3 nanolamella 100 255 41 Shen et al., 2017

Pt-decorated MoO3 nanobelts 200 27 19.1% Fu et al., 2019

Methanol α-MoO3 nanorod arrays 500 300 7.8 Cong et al., 2016

ZnO microcube/MoO3 micrograss 500 200 56 Mandal et al., 2018

Ethanol nanofiber-assembled hierarchical MoO3 400 300 32 Ji et al., 2019b

Au nanoparticles/MoO3 nanobelts 500 200 50 Wang et al., 2018

α-MoO3 nanobelts 500 300 80 Mo et al., 2020

Zn-doped MoO3 nanobelts 250 240 52 Yang et al., 2017

Xylene α-MoO3 nanoarrays 1,000 370 83.9 Qin et al., 2017

Fe-doped α-MoO3 nanoarrays 1,000 340 166.3 Wang et al., 2020

Fe2O3 nanoparticles/MoO3 nanobelts 100 233.5 22.48 Qu et al., 2019

Ni-doped MoO3 nano-pompon 100 250 62.6 Jiang et al., 2019

Trimethylamine Ce-doped MoO3 nanobelts 50 240 17.4 Li et al., 2017a

Au nanoparticles/MoO3 nanobelts 50 280 70 Zhang et al., 2016

porous α-MoO3 nanosheets 10 133 51.47 Shen et al., 2019

MoO3 nanobelts 50 240 582.3 Yang et al., 2016

Triethylamine MoO3 microsheets 100 275 27.1 Jiang et al., 2018

α − Fe2O3/α-MoO3 nanostructure 50 280 76 Liu et al., 2019

Cr-doped α-MoO3 nanorods 100 200 150.25 Li et al., 2019

Ag nanoparticles/α-MoO3 nanorods 100 200 408.6 He K. et al., 2019
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reaction. Further, electrons are released back into the conduction
band ofMoO3, and the depletion layer narrows, which results in a
decrease in the resistance of thematerial and completes the whole
gas sensing process. Take triethylamine for example, this process
can be expressed as the following equation (Wei Q. et al., 2019).

2 (C2H5)3N(gas) + 39O−
(ads) → N2(gas) + 12CO2(gas) (5)

+ 15H2O(gas) + 39e−

Gas Sensing Properties of MoO3
Nowadays, many researchers focus on the application of
MoO3 materials in gas sensors, while the ultimate goal of the
investigation is to obtain higher performance MoO3-based
sensing materials. Notably, MoO3 with prominent gas-sensing
properties has been proven to be an alternative sensing
material to detect VOCs. We summarized the representative
research on VOCs detection, which mainly focused on the
use of formaldehyde (HCHO), methanol (CH3OH), ethanol
(CH3CH2OH), xylene (CH3C6H4CH3), trimethylamine
((CH3)3N), and triethylamine ((C2H5)3N), and listed them in
Table 1. Figure 1D shows the structure diagram of the side heat
sensor and the gas-sensing test circuit. The sensing-materials
were coated on the alumina ceramic tube. A Ni-Cr resistance
wire that could conveniently control the current was inserted
in the coating tube and the change of resistances was tested
by electrodes. The gas response (S) of MoO3 based sensors to
reducing gas is calculated by S= Ra/Rg , while to oxidizing gas it
is S= Rg/Ra (Jiang et al., 2019).

CONCLUSION

This mini review focused on the latest advances in synthetic
methods, morphological control, functional modification, and
gas-sensing application including properties and mechanism
of MoO3 materials in the detection of VOCs. The studies of
morphologically-controlled synthesis proved that MoO3 with
a high specific surface area possesses superior gas-sensing

performances and provided reference experience for further
MoO3 gas-sensing material design. Further, appropriate element
doping or material hybridization could improve properties of
MoO3, such as energy band gap and adsorbed oxygen content,
which is advantageous to the gas sensing process. Scholars
have made great efforts to develop more efficient MoO3-
based VOCs sensors and have shown objective achievement,
but there are still challenges in practical application. The
design of porous structures or hierarchical structures with
more reactive gas pathways and reaction sites to further
improve the specific surface area of MoO3 material is an
issue that needs to be further explored. In addition, more
alternative modification materials should be selected through
experimental verification. All of these issues should continue
to be addressed to obtain MoO3-based materials with a
higher response, better selectivity, superior stability, and lower
operating temperature. Finally, the gas-sensing mechanism was
not complete. By combining theoretical calculation and analysis,
the changes of electronic properties at the micro level should
be analyzed, which will allow for further understanding of
the nature of gas sensing and provide guidance for designing
MoO3 materials with better gas-sensing performances in
the future.
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