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A b s t r a c t  

Volatility prediction is the key variable in forecasting the prices of options, value-at-risk 

and, in general, the risk that investors face. By estimating not only inter-day volatility models that 

capture the main characteristics of asset returns, but also intra-day models, we were able to 

investigate their forecasting performance for three European equity indices. A consistent relation is 

shown between the examined models and the specific purpose of volatility forecasts. Although 

researchers cannot apply one model for all forecasting purposes, evidence in favor of models that 

are based on inter-day datasets when their criteria based on daily frequency, such as value-at-risk 

and forecasts of option prices, are provided.  
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1 .  I n t r o d u c t i o n  

One of the most important issues in finance is the choice of an appropriate volatility model 

for a researcher to forecast the risk that an investor faces. Since Engle's (1982) seminal paper, many 

researchers have tried to find the most appropriate risk model that predicts future variability of asset 

returns by employing various specifications of the autoregressive conditional heteroskedasticity 

(ARCH) model. However, their results are confusing and conflicting, as there is no model that is 

deemed as adequate for all financial datasets, sample frequencies and applications, e.g., volatility 

forecasting, risk management and option pricing. 

Volatility can be interpreted as the uncertainty that investors face over their investments. A 

good starting point to judge competitive models is their out-of-sample forecasting performance, as 

their predictions are used by portfolio managers to measure and reduce risk. The debate on superior 

volatility forecasting started with the work of Taylor (1986). Since then, many researchers have 

tried to find the best performing method for different financial markets and time horizons by 

twisting around versions of the famous ARCH model, but there is still no agreement in the literature 

on the most adequate volatility specification. For example, in the work of McMillan et al. (2000) no 

method was unanimously proposed, because volatility techniques have been examined under 

different frameworks, such as statistical loss functions, sampling schemes, time periods and assets. 

However, all suggested methods share a common characteristic: They account for volatility 

asymmetry. 

The availability of high frequency datasets rekindled the interest of academics to forecast 

risk. The volatility estimates based on intra-day returns are more accurate than those of the daily 

ones, since the squared daily returns, which have been used as a proxy of the true variance, are an 

unbiased but noisy estimator of volatility. Recently, Koopman et al. (2005) showed that the 

ARFIMAX (fractionally integrated auto regressive moving average with exogenous variables) 
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specification for the S&P100 index produced more accurate volatility forecasts than the GARCH 

and stochastic volatility models. However, they did not examine any flexible ARCH models, which 

account for the fractional integration of the conditional variance and for the skewed and leptokurtic 

conditional distribution of asset returns.  

For risk management purposes and particularly in the value-at-risk (VaR) arena, most of the 

empirical works are based on daily returns. Although the issue of VaR has been studied extensively, 

academics have not yet reached any widely accepted conclusion. On the one hand, Giot and Laurent 

(2003) proposed the APARCH-skT (asymmetric power ARCH with skewed Student-t distributed 

innovations) model, while Degiannakis (2004) suggested the FIAPARCH (fractionally integrated 

APARCH) model and stated that the FIAPARCH with skewed Student-t distributed innovations 

produces the most accurate VaR predictions for CAC40, DAX30 and FTSE100. On the other hand, 

many authors (see Angelidis et al., 2004 and references therein) proposed different volatility 

structures to estimate the daily VaR, but yet again, without arriving at a common conclusion, as 

they argued that the choice of the best performing model depends on the equity index. Finally, 

González-Rivera et al. (2004) provided evidence in favor of a stochastic volatility model. 

By using high frequency data, researchers explore ways to extract more information to 

enable them to forecast VaR accurately. Giot and Laurent (2004) compared the APARCH-skT 

model with an ARFIMAX specification in their attempt to compute the VaR for stock indices and 

exchange rates. They noted that the use of intra-day dataset did not improve the performance of the 

inter-day VaR model. Giot (2005) estimated the VaR at intra-day time horizons of fifteen and thirty 

minutes and argued that the GARCH model with Student-t distributed innovations had the best 

overall performance, and that there were no significant differences between daily and intra-day VaR 

models once the intra-day seasonality in the volatility was taken into account.  

To summarize, although there are indications that the extended models produce the most 

accurate VaR forecasts, in some cases, a simpler one is preferred.  It was also found that the use of 
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the intra-day datasets does not add to the forecasting power of the models. Therefore, the issue of 

volatility forecasting for risk management purposes is far from being resolved.  

For accurate calculation of the price of an option, the volatility forecast of the underlying 

asset returns is needed. Noh et al. (1994) assessed the performance of the GARCH and implied 

volatility regression models by conducting a trading game with straddles written on S&P500. The 

trading strategy based on the GARCH model yielded a daily return of 0.89%, while a daily loss of 

1.26% was incurred by employing the implied volatility method. Engle et al. (1993, 1997) evaluated 

the forecasts of volatility models by using artificial index option prices that do not face the inherent 

problems of actual option prices, e.g., market depth, wildcard delivery option and non-synchronous 

coexistence of option and stock prices. ARCH volatility specifications produced the highest profits. 

Following their work, Xekalaki and Degiannakis (2005) examined the performance of the SPEC 

(Standardized Prediction Error Criterion) ARCH model selection algorithm in a simulated options 

market for the S&P500 index. They concluded that from among a set of ARCH specifications, the 

asymmetric ARCH models exhibit superior forecasting ability over the symmetric ones. 

Christoffersen and Jacobs (2004) used data on S&P500 call options and argued that one should not 

look beyond a simple ARCH model that allows for volatility clustering and leverage effect. Under 

the same framework, González-Rivera et al. (2004) also concluded that for option pricing, simple 

models perform as effectively as sophisticated specifications.  

Financial literature in option pricing area does not provide evidence that there is added 

forecast gain from complicated volatility specifications in comparison to simple ARCH models that 

account for asymmetry and volatility clustering. So far, there has been no work that employs an 

intra-day volatility model in order to forecast option prices, nor the finding that the simple models 

are as good as the more complex ones in markets outside the U.S. has been examined.  

This paper tries to answer the question: “Is there an adequate intra-day or inter-day model 

for volatility forecasting, risk management, and prediction of option prices in a dataset comprising 
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three equity indices?” Specifically, it investigates whether a forecast method based on intra-day data 

is able to produce more accurate one-day-ahead volatility forecasts than one based on the inter-day 

model, as most research has focused only on one issue at a time.  

The key argument of this paper is that the choice of a volatility model is a function of the 

selection criteria implemented. On the one hand, an intra-day model produces statistically more 

accurate forecasts than an inter-day one when the realized volatility is under investigation. On the 

other hand, an intra-day specification does not provide any added value in the forecasting arena of 

inter-day-based financial applications. The results from two financial applications, VaR and option 

pricing and in a volatility forecasting exercise, are briefly summarized in the following table that 

shows the best performing model in each case. 

 Realized Volatility Forecasts VaR 95% VaR 99% Option Pricing 

CAC40 ARFIMAX TARCH TARCH TARCH/FIAPARCH 

DAX30 ARFIMAX FIAPARCH TARCH TARCH/FIAPARCH 

FTSE100 ARFIMAX All Models TARCH FIAPARCH 

The structure of this paper is as follows: Section 2 describes the intra-day and inter-day 

models, while Section 3 presents the dataset and the estimation procedure. Section 4 investigates the 

forecasting ability of the models and Section 5 concludes the paper and provides some ideas for 

further research. 

2 .  V o l a t i l i t y  m o d e l s  

Although, there is no unique model that produces the most accurate volatility forecasts for 

all financial areas of volatility forecasting and datasets, the general conclusions of the volatility 

forecasting literature can be summarized in the following lines. In a majority of studies, models that 

are based on high frequency data achieve the best risk predictions. However, a flexible ARCH inter-

day specification that accounts for recent developments in financial modeling (i.e., leptokurtic and 

asymmetric conditional distribution of returns, fractional integration, and Box-Cox power 
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transformation of the conditional volatility), also appears to produce accurate risk forecasts. 

Nevertheless, some studies provide evidence in favor of the simple ARCH specifications, which 

account only for volatility clustering and leverage effect.  

We analyzed three methods of volatility estimation to compare our results with the main 

findings of financial literature, instead of estimating all volatility models that have trivial or crucial 

differences in specifications: a simple inter-day model (TARCH under the normal distribution), a 

complex inter-day model (FIAPARCH under the skewed Student-t distribution), and an intra-day 

model (ARFIMAX under the skewed Student-t distribution). These models are representative of the 

research that has been done on the subject. 

 The ARCH framework is usually presented in the following equations: 
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The return series from time 1t  to t ,  1ln100  ttt PPy , where tP , the asset price at time t , is 

decomposed into two parts: The conditional mean of return at period t , which depends on the 

information set that is available at time 1t ,  1| tt IyE , and the innovation process, t .  tz  is a 

sequence of independently and identically distributed random variables, while  .f  is their 

probability density function. The conditional standard deviation of innovations, t , is a functional 

form,  .g , of the past innovations, their conditional standard deviation, and a vector of 

predetermined variables, t , that are included in the information set I  at time t . 

The first specification, named AR(k)TARCH(p,q) with normally distributed standardized 

innovations, represents a simple ARCH model that accounts for the asymmetry response of 

innovations to volatility: 
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0td  otherwise. The predictable component of the conditional mean is considered as a th
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autoregressive process to account for the non-synchronous trading effect. Although the standardized 

innovations are normally distributed, the innovation process, t , has fatter tails than the normal 

distribution. The TARCH specification, which was introduced by Glosten et al. (1993), allows good 

news,   0| 1   ititititit zIyEy  , and bad news,  0 ititz  , having a different effect on the 

conditional variance. Hence, the AR(k)TARCH(p,q) model with normally distributed standardized 

innovations accounts for (i) non-synchronous trading in the stocks making up an index, (ii) 

volatility clustering, and (iii) asymmetric (symmetric), unconditional (conditional) distribution of 

returns. 

 The second model, named AR(k)FIAPARCH(p,q) with skewed Student-t distributed 

conditional innovations, represents an ARCH model that accounts for recent developments in the 

area of inter-day volatility modeling: 
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where g  is the asymmetry parameter, 2v  denotes the degrees of freedom of the distribution,  .  

is the gamma function, 1td  if smzt / , and 1td  otherwise, 

         11

2221 
 ggvvvm   and 1222  

mggs . 

Tse (1998) built the fractional integration form of the APARCH model, while Giot and 

Laurent (2004) and Degiannakis (2004) applied the APARCH-skT and FIAPARCH-skT 

specifications, respectively. 

Furthermore,   imposes a Box-Cox asymmetric power transformation in the conditional 

standard deviation process. The fractional integration parameter d  accounts for the response of the 

conditional variance to past shocks, which decay at a slow hyperbolic rate. Finally,   captures the 

asymmetric relation between the conditional variance and the innovations.  

The AR(k)FIAPARCH(p,q) model with skewed Student-t distributed standardized 

innovations accounts for (i) non-synchronous trading, (ii) volatility clustering, (iii) power 

transformation and fractional integration of the conditional variance, and (iv) asymmetric and 

leptokurtic conditional and unconditional distribution of returns. 

 The third model, named AR(k)ARFIMAX(p,q) under the skewed Student-t distribution, 

represents a long memory specification that accounts for recent developments in the ultra-high 

frequency financial modeling: 
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The AFRIMAX specification in (4.d)–(4.e) was applied in intra-day volatility datasets by Andersen 

et al. (2003), and Koopman et al. (2005).  

The framework in (4), which was proposed by Giot and Laurent (2004), is estimated in two 

steps. First, the ARFIMAX presentation in Equations (4.d)-(4.e) is estimated. The leverage effect 

parameter,   , reveals whether large past negative returns increase intra-day volatility, th , more 

than past positive outcomes. Since it is assumed that  2,0~ ut Nu  , the  tuexp  is log-normally 

distributed and hence, the unbiased one-day-ahead realized volatility is estimated according to (4.c). 

Equations (4.a)-(4.b) are an ARCH specification with autoregressive conditional mean and skewed 

Student-t distributed standardized innovations, where the conditional variance 2
1|
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fraction of the realized volatility. 

The AR(k)ARFIMAX(p,q)-skT specification accounts for (i) non-synchronous trading, (ii) 

fractional integration of the intra-day volatility, (iii) asymmetric relation of intra-day volatility with 

past negative returns, and (iv) asymmetric and leptokurtic conditional and unconditional distribution 

of returns. 

The realized intra-day volatility at day t  is computed as: 
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where   tmP ,  are the asset prices at day t  with m  observations per day, 
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returns, we followed Koopman et al. (2005) who suggested accounting for overnight returns without 
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inserting the noisy effect of daily returns. To avoid market microstructure frictions without 

lessening the accuracy of the continuous record asymptotics, we used five-minute linearly 

interpolated prices. 

Following Angelidis et al. (2004) and references therein, we did not select the order of k , p , 

and q  according to a model selection criterion, such as the Akaike Information Criterion (AIC) or 

the Schwarz Bayesian Criterion (SBC), as a good in-sample performance of a model is not a 

prerequisite for its good out-of-sample precision1. Given that the statistical properties of AIC and 

SBC selection criteria, at least in the ARCH context, are unknown and in a majority of empirical 

studies, the use of one lag has been proven to work effectively in forecasting volatility for both 

ARCH and ARFIMAX frameworks, we chose to set 1=== kqp . 

2.1.  Forecast schemes  

The schemes of computing the one-step-ahead volatility forecasts of the three models are briefly 

presented in the following paragraphs: 

 AR(1)TARCH(1,1) model 

According to a rolling sample of s  trading days and at each point in time t , for 

1,...,1,  sTsst , we estimated the parameters 
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(2) and then we forecasted the daily conditional variance as:  
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 AR(1)FIAPARCH(1,1)-skT 

Similarly, we estimated the parameters 
                    tttttttttt

baadgvcc  ,,,,,,,,, 11010  of (3) to 

forecast the variance as: 

                                                 
1A representative example of the inability of the in-sample model selection methods to suggest models with superior 

volatility forecasting ability is given by Degiannakis and Xekalaki (2007). They showed that the commonly used in-

sample methods of model selection such as AIC, SBC, and Mean Squared Error (MSE), among others, did not lead to 

the selection of a model that tracks close future volatility. 
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 AR(1)ARFIMAX(1,1)-skT 

The estimation of the intra-day model was made by following the next three steps: 
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tt h   . (8) 

3 .  I n t r a - d a y  a n d  i n t e r - d a y  d a t a s e t s  

The intra-day dataset was obtained from Olsen and Associates and comprises three 

European stock indices: The CAC (from January 3, 1995 to September 8, 2003, totaling 2,177 

trading days), the DAX30 (from July 3, 1995 to December 29, 2003, totaling 2,136 trading days), 

and the FTSE100 (from January 2, 1998 to December 30, 2003, totaling 1,485 trading days) 

indices2.  

Panel A of Table 1 lists the descriptive statistics of daily log-returns. There are indications of 

non-zero skewness and excess kurtosis relative to that of the normal distribution, and therefore, each 

volatility model must consider these characteristics. Under the assumption that the log-returns are 

                                                 
2 Even if it would be interesting to compare the performance of the three models over the same timeframe, this was not 

possible as the available intra-day dataset did not cover the same periods. On the other hand, by using different sample 

periods, we were able to investigate whether the risk management techniques are robust across various time periods and 

specifically select a model that is not affected by the chosen sample period.  
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i.i.d. normally distributed, the sample skewness, ŝ , and kurtosis, ̂ , are distributed normally with 

variances  
T

sV 6ˆ   and  
T

V 24ˆ  , respectively. Only the skewness parameter of CAC40 index 

belongs to the 95% confidence interval, and thus there are indications that only the distribution of 

this index is symmetric. 

Panel B of Table 1 lists the descriptive statistics of the annualized volatility ( 2252 th ). The 

most volatile indices are the CAC40 and the DAX30, while the safest market is that of the U.K. Our 

findings are in line with the previous studies (i.e. Giot and Laurent, 2004) as the risk that investors 

face is not normally distributed since it exhibits positive skewness and excess kurtosis relative to 

that of the standard normal distribution. Figures of daily log-returns, intra-day standard deviation 

and logarithmic variance, as well as tables that present the estimated parameters of the three models 

are available upon request. 

Table 1. Descriptive statistics of the daily log-returns,     1lnln100  ttt PPy , and the annualized 

intra-day standard deviation. CAC40 (January 1995–September 2003), DAX30 (July 1995–

November 2003) and FTSE100 (January 1998–December 2003). 

 Panel A Panel B 

 
Daily log-Returns 

Annualized Realized Volatility 

(Standard Deviation) 

 CAC40 DAX30 FTSE100 CAC40 DAX30 FTSE100 

 Mean 0.027877 0.029954 -0.00933 24.0149 23.6102 16.993 

 Median 0.039493 0.108051 -0.00468 19.9144 21.0806 15.2741 

 Maximum 8.885403 7.449508 5.912383 152.336 120.007 104.619 

 Minimum -7.69300 -8.87687 -6.35088 6.61509 3.25114 5.30327 

 Std. Dev. 1.572413 1.702469 1.317675 15.5795 13.3137 7.32575 

 Skewness 0.093838 -0.17528 -0.13993 3.71153 1.76413 2.81134 

 Kurtosis 5.640179 5.183852 4.756223 21.9002 9.20653 21.2393 

 Jarque-Bera 658.8339 435.6011 195.8197 38775 4538.41 22555.4 

 Probability 0.00 0.00 0.00 0.00 0.00 0.00 
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4 .  E m p i r i c a l  r e s u l t s  

The purpose of this section is to evaluate the forecasting ability of the models. Specifically, 

to achieve this goal, first, we used statistical measures to calculate the distance between the 

predicted and the realized volatility. Second, in a risk management environment, we examined 

whether VaR forecasts exhibit conditional coverage. Finally, in a simulated option-pricing 

framework, we evaluated the models by finding which one generates the highest profits for the 

investors that used it. 

For all models and equity indices, we used a rolling sample of 1,000 observations to 

generate the out-of-sample forecasts. The initial volatility forecasts are generated for January 18, 

1999, July 6, 1999, and January 29, 2002 for the CAC40, DAX30, and FTSE100 indices, 

respectively3. The parameters of the models are estimated using the G@RCH and ARFIMA 

packages of Ox. Given that the estimated parameters describe the trading behavior, the estimations 

must incorporate the most recent information. Thus, they are re-estimated each trading day. Figure 1 

plots, indicatively, the realized intra-day volatility (Equation 5) for the CAC40 index and the 

corresponding risk forecasts (Equations 6-8) of the three models.  

4.1.  Volatility forecasts 

We measure the accuracy of the models in forecasting the one-day-ahead conditional 

variance via three loss functions: (i) the MSE, (ii) the Heteroskedasticity-Adjusted Squared Error 

(HASE), and (iii) the Logarithmic Error (LE). The loss functions are presented in the following 

equations:  

                                                 
3 To strike a balance between the necessity of having an initial sample that is large enough for the models to be 

estimated accurately and the total out-of-sample observations to be as many as possible, we chose to work with a rolling 

sample of 1,000 observations and to create 1,777, 1,136, and 485 forecasts for the CAC40, DAX30, and FTSE100 

indices, respectively, without imposing the initial forecasts to be made for the same date.  
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 

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ttthTMSE
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1

1   (9) 

 

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ttthTHASE
1

22
|1

2
1

1 1  , (10) 

 





T

t

ttthTLE
1

22
|1

2
1

1 ln  , (11) 

where 2
1th  is the realized volatility4 used as the measure of the true, but unobservable, variance at 

day 1t , 2
|1 tt   is the one-day-ahead variance forecast and T  is the number of the forecasts. In the 

case of the intra-day model, the one-day-ahead conditional variance is estimated according to (4.c), 

so 2
|1

2
|1

~
tttt h   . 

Squared distance between observed and predicted values is the most popular measure in 

evaluating forecasting accuracy. However, when volatility is the variable under study, symmetric 

loss functions may produce unreliable results due to the highly non-linear environment. Therefore, 

we will also evaluate volatility forecasts according to more elaborate loss functions. HASE and LE 

functions, which take into account the heteroskedastic framework, were introduced by Bollerslev 

and Ghysels (1996) and Pagan and Schwert (1990), respectively. 

Hansen and Lunde (2006) have stated that the substitution of a noisy proxy such as the 

squared daily returns for the true but unobservable conditional variance can result in an inferior 

model being chosen as the best one. On the contrary, the realized volatility as a proxy variable does 

not lead to favor an inferior model. Moreover, they provided evidence that the MSE loss function 

ensures the equivalence of the ranking of volatility models that is induced by the true volatility and 

its proxy. 

                                                 
4 The realized volatility is computed according to Equation (5). 
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Figure 1. Realized intra-day standard deviation and its forecast for the CAC40 index. 
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The statistical significance of the volatility forecasts is investigated by (i) the Diedold and 

Mariano (1995) statistic (DM) and (ii) the Hansen’s (2005) Superior Predictive Ability (SPA) 

hypothesis testing, which are the most frequently used tests in such studies.   

Let i  be the benchmark model with the lowest loss function value. The DM statistic is the t-

statistic derived by the regression of      

 i

lt

i

lt

ii

lt LLX ,,
,

,  on a constant with heteroskedastic and 

consistent (HAC) standard errors, where  i
ltL ,  is the value of the loss function l  at time t  of model i . 

The null hypothesis, that the benchmark model i  has equal predictive ability with model 
i , for 

Mi ,...,1 , is investigated against the alternative hypothesis that the benchmark model has 

superior predictive ability. Hansen (2005) introduced the SPA test that is used to compare the 

forecasting performance of a base model against its M  competitors. The null hypothesis that 

     0,..., ,
,

1,
, 

Mi

lt

i

lt XXE  is tested with the statistic  
li

li

Mi

SPA

l

XMVar

XM
T

,

,

,...,1
max






 , where 

 


 

 
T

t

ii

ltli
XTX

1

,
,

1

,
. The estimation of  

li
XMVar

,
 and the p-value of the SPA

lT  are obtained by 

using the bootstrap method. 

According to Table 2, the ARFIMAX is superior to the inter-day models in almost all the 

cases. The FIAPARCH-skT model, only in the case of FTSE100, has the lowest value of the MSE 

and HASE loss functions, whereas the hypothesis that it has equal predictive ability with the 

ARFIMAX model is not rejected. For the HASE loss function, the parsimonious ARCH 

specification has statistically equivalent forecast ability with the extended ARCH model. For the 

other two indices, the intra-day model, irrespective of the applied loss functions, generates the most 

adequate risk forecasts, whereas according to the DM statistic, the hypothesis of equal predictive 

ability is rejected. Hence, we arrive at the conclusion that the intra-day model clearly produces the 
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most accurate variance forecasts5.  Results from the SPA test are qualitatively similar to those of the 

DM test, and are available upon request. 

Table 2. The values of the loss functions, the DM statistic for the null hypothesis that a model has equal 

predictive ability with the benchmark model, and the corresponding p-values. 

  
MSE 

DM 

Stat. p-value HASE 

DM 

Stat. 

p-

value LE 

DM 

Stat. p-value 

CAC40 

AR(1)TARCH(1,1) 86.126 -2.5889 0.0097 16.393 -2.9093 0.0037 0.6256 -3.2619 0.0011 

AR(1)ARFIMAX(1,1) 50.986 - - 1.2390 - - 0.3117 - - 

AR(1)FIAPARCH(1,1)-skT 85.757 -2.5869 0.0098 15.605 -2.8721 0.0042 0.6429 -3.5677 0.0004 

DAX30 

AR(1)TARCH(1,1) 10.591 -2.1849 0.0291 0.5017 -3.6353 0.0003 0.2036 -3.0492 0.0023 

AR(1)ARFIMAX(1,1) 9.5729 - - 0.2928 - - 0.1701 - - 

AR(1) FIAPARCH(1,1)-skT 11.567 -2.4931 0.0128 0.5009 -2.4053 0.0163 0.2203 -4.4358 0.0000 

FTSE100 

AR(1)TARCH(1,1) 4.6015 -1.7817 0.0754 0.3064 -0.1340 0.8934 0.3195 -4.1921 0.0000 

AR(1)ARFIMAX(1,1) 4.8093 -1.2637 0.2069 0.5357 -1.3698 0.1714 0.2340 - - 

AR(1) FIAPARCH(1,1)-skT 4.2657 - - 0.3038 - - 0.2953 -3.1332 0.0018 

Bold face fonts present the best performing model. 

 

4.2.  Value-at-risk 

VaR at a given probability level a , is the predicted amount of financial loss of a portfolio 

over a given time horizon. Therefore, daily forecasts of the three volatility models are used to 

estimate the 95% and 99% VaR numbers as: 

   tt

t

tt aFVaR |1|1 ;    , (12) 

                                                 
5Other loss functions were also computed with similar results. The loss functions were also computed in the case of 

forecasting the one-day-ahead standard deviation and the results were qualitatively similar.  
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where   t
aF ;  is the corresponding quantile of the assumed  distribution, which is computed based 

on the vector of parameters estimated at time t , and tt |1  is the next day’s conditional standard 

deviation forecast. Given that the VaR is never observed, not even after the violation, first, we have 

to calculate the VaR values and then examine the statistical properties of the forecasts.  

Christoffersen (1998) developed a joint test to examine the independence hypothesis and the 

conditional coverage assumption of the VaR violations6. The likelihood ratio statistics of these tests 

are described in the following equations: 

   2
1~-12ln-1ln2 X

T

N

T

N
LR

NNT

NNT

uc  


























  , (13.a) 

         2
10011110101 ~-1ln--1-1ln2 1101100011100100 XLR

nnnnnnnn

in

  , (13.b) 

        2
211110101

N-T
~-1-1ln21ln2- 11100100 XLR

nnnnN

cc   , (13.c) 

where N  is the number of days that a violation has occurred over a period T  and   is the desired 

coverage rate. ijn  is the number of observations with value i  followed by j , for 1,0, ji  and 




j ij

ij

ij
n

n
  are the corresponding probabilities. 1, ji  denotes that a violation has occurred, and 

0, ji  indicates the opposite. Finally, 11010   , under the null hypothesis of independence. 

Based on Equation (13.a), the hypothesis that the average number of violations is statistically equal 

to the expected one is tested, whereas Equations (13.b) and (13.c) investigate the assumptions of 

independence and conditional coverage, respectively. Under this framework, a risk model is 

rejected if it generates either too many or too few clustered violations. 

Table 3 lists the exception rates and the p-values for the three volatility models. There are 

strong indications that the TARCH model generates the most accurate VaR forecasts at the higher 

                                                 
6A violation occurs if the predicted VaR is not able to cover the realized loss. 
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confidence level since for each index, all the p-values are greater than 10%7. The excellent 

performance at the higher confidence level of the TARCH model using the normal distribution was 

rather a surprise, since most researchers reported that these volatility techniques under normal 

distribution usually underestimate total risk (see Angelidis et al., 2004).  

Table 3.  Exception rates ( TN / ) and p-values of the backtesting tests (unconditional coverage 

 ucLR , independence  inLR  and conditional coverage  ccLR  likelihood ratio statistics). 

 Model 

 AR(1)TARCH(1,1) AR(1)ARFIMAX(1,1)-skT AR(1)FIAPARCH(1,1)-skT 

Confidence Level 95%     99%  95%   99%       95%         99% 

 Exception rates ( TN / ) 

CAC40 4.93% 1.36% 2.63% 0.08% 2.72% 0.17% 

DAX30 6.30% 1.08% 3.87% 0.36% 3.96% 0.47% 

FTSE100 6.19% 1.03% 4.74% 0.41% 5.36% 0.21% 

P-values of the Unconditional Coverage Likelihood Ratio Statistic (
ucLR ) 

CAC40 90.93% 24.00% 0.00% 0.00% 0.01% 0.04% 

DAX30 5.55% 79.11% 7.25% 1.36% 9.95% 3.88% 

FTSE100 24.72% 94.57% 79.29% 14.04% 71.84% 3.25% 

 P-values of the Independence Likelihood Ratio Statistic (
inLR ) 

CAC40 57.34% 50.65% 19.51% 96.71% 18.09% 93.42% 

DAX30 3.99% 60.85% 6.26% 86.49% 52.59% 83.15% 

FTSE100 87.42% 74.66% 96.26% 89.75% 57.40% 94.87% 

P-values of the Conditional Coverage Likelihood Ratio Statistic  ( ccLR ) 

CAC40 84.79% 40.21% 0.01% 0.02% 0.02% 0.19% 

DAX30 1.94% 84.68% 3.52% 4.68% 21.06% 11.56% 

FTSE100 50.56% 94.69% 96.50% 33.45% 80.01% 10.14% 

                                                 
7A high cut-off point is preferred to ensure that the successful risk management techniques will not over or under 

estimate statistically the true VaR, as in the former case, the financial institution does not use its capital efficiently, 

while in the latter case, it cannot cover future losses. 
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At the lower confidence level, again the TARCH model generates accurate VaR forecasts in two 

(CAC40 and FTSE100) out of three indices. 

4.3.  Predicting option prices 

As Engle et al. (1997) noted, a natural criterion to compare any pair of competing volatility 

methods is the incremental profit from replacing the worse forecast with the better one. Thus, the 

volatility models are evaluated via an option pricing loss function8. A trader with a higher (lower) 

forecast price for the option buys (sells) a straddle on a $1 share of the underlying index from any of 

the remaining traders with lower (higher) forecast prices. The straddle trading, which is the 

purchase (or sale) of both a call and a put option with the same maturity day, is used as its rate of 

return is indifferent to any change in the underlying asset price and is affected only from changes in 

volatility. Hence, we simulate an options market comprising three fictitious agents who trade 

straddles based on their volatility forecasts. According to the Black and Scholes (1973) pricing 

formula, the expected price of a straddle on a $1 share of the underlying asset at time 1t  given the 

information available at time t  with one day to maturity and exercise price equal to the exponent of 

the risk free rate of return, is given by: 

  25.04 |1|1   tttt NS  , (14) 

where  .N  denotes the cumulative normal distribution function. The daily profit of each agent from 

holding the straddle is: 

        11111 expexp,expexpmax   ttttt yrry , (15) 

where ty  denotes the daily log-returns of the underlying asset and tr  is the daily risk free rate. A 

trade between two agents, i  and j , is executed at the average of the reservation prices of the two 

agents, yielding to trader i  a profit of: 
                                                 
8Other option pricing functions could have been applied. However, in our case of one-day maturity options, we decided 

to create a pricing loss function based on the Black and Scholes formula that is widely accepted and straightforwardly 

computed. 
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We create a loss function, that calculates the cumulative returns, and examine whether the 

forecast method with the highest profit has statistically superior ability. For T  trading days and 

3M  agents, the th
i  agent’s average daily profit is computed as: 

     


T

t j

ji
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i
T

1

2

1

,1  . (17) 

Based on the Diebold-Mariano method, we test the null hypothesis of equivalent predictive 

ability of agents-models i  and 
i , against the alternative hypothesis that model i  is superior to 

model 
i . For        




2

1

,2

1
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j

ji

tj

ji

t

ii

tz  , the Diebold-Mariano statistic is the t-statistic derived 

by the regression of  ii

tz
,  on a constant with HAC standard errors. A positive value of  ii

tz
,  

indicates that model i  is superior to model 
i .  

Table 4 lists the daily profit for each agent-model and the corresponding t-statistic of the 

DM test. The highest return is achieved by the agent who used the TARCH model in the case of the 

CAC40 index and by the agent who followed the FIAPARCH-skT model in the cases of the DAX30 

and FTSE100 indices. The two ARCH models have statistically equal predictive ability, while on 

the other hand, the ARFIMAX-skT forecast-driven agent achieves statistically lower returns in all 

the cases. The results for the TARCH model are in line with the work of Christoffersen and Jacobs 

(2004) who noted that the simple GARCH models must be applied to estimate the option prices9. 

Following Engle et al.’s (1993) approach, we assume various levels of exercise prices to 

investigate whether our results are sensitive to them. As the results are qualitatively similar among 

                                                 
9As Bollerslev and Mikkelsen (1996) argued, the importance of using fractionally integrated variance models stems 

from the added flexibility in pricing options with maturity of two months or longer. Thus, the added value of 

ARFIMAX and FIAPARCH specifications may be investigated in a future research with long-term options. 
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various levels of exercise prices, we indicatively present the results for an exercise price that equals 

to tre
3 . 

Table 4. Average daily profits for each agent-model, the DM statistic and the corresponding p-values for 

each agent-model against the best performing agent-model. 

Average daily profits for each agent-model 

 Exercise price tre  Exercise price tre
3  

 CAC40 DAX30 FTSE100 CAC40 DAX30 FTSE100 

AR(1)TARCH(1,1) 0.1018% 0.0944% -0.0065% 0.1020% 0.0946% -0.0065% 

AR(1)ARFIMAX(1,1)-skT -0.1410% -0.2084% -0.0689% -0.1410% -0.2087% -0.0694% 

AR(1)FIAPARCH(1,1)-skT 0.0392% 0.1141% 0.0754% 0.0390% 0.1141% 0.0758% 

DM Statistic and the corresponding p-values 

AR(1)TARCH(1,1) - 0.254 1.049 - 0.251 1.053 

  (0.399) (0.147)  (0.400) (0.146) 

AR(1)ARFIMAX(1,1)-skT 2.406 3.411 1.646 2.199 3.407 1.654 

 (0.008) (0.000) (0.050) (0.014) (0.000) (0.049) 

AR(1)FIAPARCH(1,1)-skT 0.748 - - 0.635 - - 

 (0.227)   (0.262)   

Bold face fonts present the best performing model. P-values of the DM statistic are presented in 

parentheses. 

 

Engle et al. (1993) added three more agents who trade straddles based on the average, the 

minimum, and the maximum levels of the daily forecasts. The average of conditional independent 

forecasts converges rapidly to a perfect forecast, so that any failure of the average forecast indicates 

a departure from the quality of the individual forecasts. Also, in case of a downward (upward) bias, 

the maximum (minimum) forecast will beat all individual forecasts that are biased. Profits are then 

re-computed in the simulated options market, which now comprises six traders. The results show 

that there are no differences in the performance of the three agents. Moreover, there is no evidence 

of any bias, as the average forecast takes the first two places and the agents who base their trades on 

the minimum and the maximum of the daily forecasts achieve the lowest returns. Since there are no 
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differences with the previous findings, we do not present the detailed results, but they are available 

upon request. 

5 .  C o n c l u s i o n s  

The most frequently raised question in the finance literature is which model is to be used to 

forecast the volatility of asset returns. Given that investors mainly focus on predicting the prices of 

options, calculating the VaR, and forecasting volatility, the issue of choosing one model for all 

cases is quite complicated and extremely interesting. 

In this paper, we examined whether an intra-day or an inter-day model generates the most 

accurate forecasts in three European equity markets under the framework of two financial 

applications, i.e., VaR forecasting and prediction of option prices, plus a volatility forecasting 

exercise. In the realized volatility forecasting arena, the intra-day model clearly produces the most 

accurate variance forecasts. When we investigated the performance of the models in a risk 

management environment, we arrived at a contrary conclusion. In general, for both confidence 

levels the TARCH model under normal distribution forecasts the VaR accurately. Finally, in the 

simulated option pricing framework, although the FIAPARCH-skT model generated higher returns, 

the two ARCH specifications had statistically equivalent predictive powers. 

The key argument of this paper is that the choice of a volatility model is a function of the 

selection criteria implemented and that it is impossible to select one model that would do well 

according to all criteria. However, it provides guidance on the volatility modeling process, since 

each financial application (volatility forecasting, risk management and option pricing) reveals the 

most crucial elements that must be considered. Specifically, for both the VaR and the European 

option pricing tests, only the price one day later matters, as the option pricing and VaR criteria are 

based on daily frequency returns. Therefore, the question that this paper tries to answer, under the 

framework of the three equity indices, can be simplified to: Can the one-day-ahead volatility be 

better estimated with a model using intra-day data than with a model using daily data? Based on the 
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presented evidence, the answer is clear: Using intra-day data does not help when the criteria are 

based on daily frequency.  

To summarize, the results indicate that there is not a unique model for all cases that can be 

deemed an adequate one, and therefore investors must be extremely careful when they use one 

model in all cases. Nevertheless, despite this general conclusion, a researcher must use an inter-day 

model for inter-day based financial applications and intra-day datasets for intra-day volatility 

forecasting.  

The effects of overnight returns and intra-day noise in the high frequency datasets are still an 

open area of study. An interesting issue for future research is whether different empirical measures 

of realized volatility affect the evaluation of volatility specifications’ predictability. Finally, an 

interesting point that can be studied further is the evaluation of the methods that can be used in a 

multi-period framework as well as for different datasets, e.g., exchange rates or commodities.  
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