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Abstract

Beta-t-EGARCH models in which the dynamics of the logarithm of scale
are driven by the conditional score are known to exhibit attractive theoret-
ical properties for the t-distribution and general error distribution (GED).
The generalized-t includes both as special cases. We derive the informa-
tion matrix for the generalized-t and show that, when parameterized with
the inverse of the tail index, it remains positive definite as the tail index
goes to infinity and the distribution becomes a GED. Hence it is possible
to construct Lagrange multiplier tests of the null hypothesis of light tails
against the alternative of fat tails. Analytic expressions may be obtained
for the unconditional moments in the EGARCH model and the information
matrix for the dynamic parameters obtained. The distribution may be ex-
tended by allowing for skewness and asymmetry in the shape parameters
and the asymptotic theory for the associated EGARCH models may be cor-
respondingly extended. For positive variables, the GB2 distribution may
be parameterized so that it goes to the generalised gamma in the limit as
the tail index goes to infinity. Again dynamic volatility may be introduced
and properties of the model obtained. Overall the approach offers a unified,
flexible, robust and practical treatment of dynamic scale.
Keywords: Asymmetry; dynamic conditional score (DCS) model; general
error distribution; information matrix; partially adaptive estimation; ro-
bustness; tail index.

1 Introduction

The generalized Student t-distribution contains the general error distribution (GED),
also known as the exponential power distribution (EPD), and the Student t−distribution
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as special cases. It was introduced by McDonald and Newey (1987), who proposed
using it for static regression models, and it was subsequently employed by Theo-
dossiou (1998) for financial data. The additional flexibility of the generalized-t
enables it to capture a variety of shapes at the peak of the distribution as well
as in the tails. This flexibility goes a long way towards meeting the objection
that parametric models are too restrictive and hence vulnerable to misspecifica-
tion. Indeed one of the concerns of McDonald and Newey was to meet these
objections and they argued that the flexibility of the generalized-t model made it
‘partially adaptive’. They highlighted the robustness of the generalized-t assump-
tion for models of location ( or more generally static regression), observing that,
as with the t distribution, the score or influence function of the generalized-t is
redescending (except in the limiting GED case) and so is resistant to outliers; see
also McDonald and White (1993). Of course this is not the case for ordinary least
squares; see any book on robustness, such as Maronna, Martin and Yohai (2006).
Outliers are particulary prevalent in financial time series yet estimation by quasi-
maximum likelihood (QML), that is based on a criterion function appropriate for
a Gaussian distribution, is widespread in financial econometrics. As will become
apparent shortly, the unsuitability of QML is further enhanced when modeling
volatility because a dynamic equation for variance that is driven by squared ob-
servations is itself open to distortion by outliers. Thus unlike other researchers,
such as Theodossiou (1998), Theodossiou and Savva (2014) and Zhu and Galbraith
(2011), who have used GARCH models with generalized-t or t-distributions, we
have the dynamics driven by the conditional score: hence the robustness inherent
in the generalized-t extends to all parts of the model.
Models constructed using the conditional score were introduced into the litera-

ture by Creal, Koopman and Lucas (2011, 2013), where they are called Generalized
Autoregressive Score (GAS) models, and Harvey (2013), where they are called Dy-
namic Conditional Score (DCS) models. The DCS EGARCH model is set up as

yt = µ+ εt exp(λtpt−1), t = 1, ..., T, (1)

where the ε′ts are independently and identically distributed with location zero and
unit scale. The stationary first-order dynamic model for λt|t−1, the logarithm of
the scale, is

λt+1|t = ω(1− φ) + φλt|t−1 + κut, |φ| < 1, (2)

where ut is the score of the conditional distribution of yt at time t, λ1|0 = ω and φ
and κ are parameters, with ω denoting the unconditional mean. Letting the con-
ditional distribution be Student’s t leads to a model known as Beta-t-EGARCH.
This model has now been widely applied and shown to be more attractive than
the standard GARCH-t model both from the practical and theoretical points of
view. The EGARCH formulation has the obvious attraction that scale remains
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positive and that stationarity conditions are straightforward - in (2) we simply
require that |φ| < 1.When combined with conditional score dynamics, the asymp-
totic theory for the ML estimators is relatively straightforward and other results,
such as formuale for moments and autocorrelations, may also be derived. As re-
gards the practical value of DCS models, there is already a good deal of evidence
(in the references cited) to show that they tend to outperform standard models.
Letting the conditional distribution be GED leads to the Gamma-GED-EGARCH
model and sometimes this model fits better than Beta-t-EGARCH. The use of the
generalized Student-t distribution gives what we will call Beta-Gen-t-EGARCH.
This model has all the theoretical advantages of Beta-t-EGARCH, but it includes
Gamma-GED-EGARCH as a limiting case.
A generalized t variable is defined such that its absolute value is distributed

as a generalized beta of the second kind (GB2) with two of the shape parameters
constrained, so that the mode is zero at the origin, and the scale re-parameterized
so that it remains positive and finite for the limiting GED case. An expression
for the information matrix may be obtained, but the re-paramerization makes it
more complicated than for the GB2. We define the shape parameters, or more
specifically the tail index, in such a way that the information matrix remains
positive definite as the tail index goes to infinity and the distribution goes towards
the GED. This is of some importance if the regularity conditions for a likelihood
ratio test of the null hypothesis of thin tails against the alternative of fat tails1 are
to be satisfied. The availability of a limiting positive definite information matrix
also allows LM tests against fat tails to be constructed.
Further flexibility in the generalized t can be achieved by introducing skewness

and/or creating asymmetry by allowing the shape parameters to be different on
either side of the location parameter. The large sample sizes often encountered
in financial econometrics make such generalizations a practical proposition2. The
asymmetry is handled as in Zhu and Zinde-Walsh (2009) and Zhu and Galbraith
(2010), where it is introduced into GED and Student-t distributions respectively.
These asymmetric distributions therefore emerge as special cases.
The additional flexibility of the distribution has a potential cost in that it

may become more diffi cult to estimate unknown parameters, particularly shape

1The following terminology will be adopted. Heavy tails means heavier than exponential tails;
all common heavy-tailed distributions are technically sub-exponential; see Embrechts et al (1997,
p 49-57). Light tails means exponential tails or more generally super-exponential
Fat tails or power law have the survival function, F (y) = Pr(Y > y) ∼ y−η, where η > 0 is

the tail index. All fat tailed distributions are heavy-tailed, but not the converse.
Thin tailed distributions have smaller kurtosis than a normal distribution. Thick tailed dis-

tributions have higher kurtosis than normal, ie excess kurtosis (leptokurtic).
2Asymmetric distributions have also been fitted to large cross-sectional date sets; a recent

example is Holly et al (2013).
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parameters. The extent to which this is a problem can be partially determined
by examining the correlations between score variables and the way in which this
carries over to standard errors. These correlations are available from the informa-
tion matrix and so having an explicit expressions gives considerable insight. For
example, estimating a skew parameter has a relatively small effect on other shape
parameters. Notwithstanding such considerations, it could be argued that the es-
timation of models with several shape parmeters is unreasonably challenging at
the best of times. However, for the relatively large sample sizes often encountered
in financial econometrics, the estimation of flexible models seems to be feasible.
An exact expression for the information matrix of the dynamic parameters in

a Beta-Gen-t-EGARCH model with a first-order dynamic equation can be con-
structed in much the same way as was done for the Beta-t-EGARCH and GB2
location-scale models in Harvey (2013, sub-sections 4.6 and 5.3). The results ex-
tend to skew and/or asymmetric distributions. When simpler models within this
class are fitted, Lagrange multiplier (LM) tests can play a valuable diagnostic role
and provide an indication as to whether generalizations to more complex speci-
fications are necessary. Much of the theory carries over to ARCH in mean and
multivariate models.
The GB2 distribution, which is for positive variables, can be re-parameterized

in the same way as the generalized-t so that it goes to a generalized gamma (GG)
distribution as the tail index goes to infinity. Thus the theory for dynamic location-
scale models with GB2 and GG distributions can also be unified.
The plan of the paper is as follows. Section 2 sets out the theory for generalized-

t and derives the limiting score and information matrix as the tail index goes to
infinity. The EGARCH model is discussed in Section 3. The generalized-t is
extended to include skewness and/or asymmetry in Section 4 and the GB2 theory
is set out in Section 5.

2 Generalized Student t-distribution

The generalized t-distribution has been formulated in a number of ways. Our
preferred parameterization sets one of the shape parameters equal to the tail index
and so the probability density function (PDF) is written as

f(y) =
1

ϕ
K(η, υ)

(
1 +

1

η

∣∣∣∣y − µϕ
∣∣∣∣υ)−(η+1)/υ

, −∞ < y <∞, (3)

where ϕ is a scale parameter, υ and η are positive shape parameters and

K(η, υ) =
υ

2η1/υ

1

B(η/υ, 1/υ)
(4)
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with B(., .) denoting the beta function. Theodossiou and Savva (2014) also use the
tail index, η, but other aspects of their parametrization are slightly different. The
range of η is 0 < η ≤ ∞, so if we define η = 1/η, then 0 ≤ η ≤ 1 for 1 ≤ η ≤ ∞.
The range of υ is 0 < υ < ∞ but in practice υ < 1 (which has heavy, but not
fat, tails) is unlikely; see the comments at the end of sub-section 2.2. Note that
f ′(0) = 0 for υ > 1, but that the derivative is not continuous at υ = 1 and for
υ < 1, it becomes infinite.
Setting υ = 2 gives tη, a t-distribution with with η degrees of freedom, whereas

GED(υ) is obtained when η →∞. The Laplace or double exponential distribution
is GED(1), whereas GED(2) is the normal. The form of the GED is as in Zhu
and Zinde-Walsh (2009), that is

f(y) =
1

2ϕυ1/υΓ (1 + 1/υ)
exp

[
−1

υ

∣∣∣∣y − µϕ
∣∣∣∣υ] =

υ1−1/υ

2ϕΓ (1/υ)
exp

[
−1

υ

∣∣∣∣y − µϕ
∣∣∣∣υ] .
(5)

The standard deviation is υ1/υ(Γ(3/υ)/Γ(1/υ))1/2ϕ. The GED can be seen to be
a special case of generalized-t because, as η → ∞, using a result in Davis (1964,
p. 257) gives

K(ν, υ) =
υ

2η1/υ

Γ(η/υ + 1/υ)

Γ(η/υ)Γ(1/υ)
→ υ

2 υ1/υΓ(1/υ)
(6)

while (
1 +

1

η

∣∣∣∣y − µϕ
∣∣∣∣υ)−(η+1)/υ

→ exp

[
−1

υ

∣∣∣∣y − µϕ
∣∣∣∣υ] .

The extra shape parameter, υ, in the generalized t introduces more flexibility
into the distribution, particularly at the peak3. The distribution has fat tails
for finite η and so moments only exist up to, but not including, η. The absolute
moments are

E[|y − µ|m] =
Γ( 1

υ
+ m

υ
)Γ( η

υ
− m

υ
)

Γ( 1
υ
)Γ( η

υ
)

η
m
υ ϕm, 0 ≤ m < η.

For a t-distribution setting m = 2 gives V ar(y) = ϕ2η/(η − 2), η > 2, whereas for
double generalized Pareto,

V ar(y) =
2η2

(η − 1)(η − 2)
ϕ2, η > 2.

3For a given tail index and standard deviation, the distribution is more peaked for lower υ
whereas, when υ is fixed, the peak becomes higher as the tail index decreases.
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As we shall see, many of the properties of the distribution, including the as-
ymptotic distribution of the ML estimators, depend on the fact that

bt =
(|yt − µ| /ϕ)υ/η

(|yt − µ| /ϕ)υ/η + 1
=
|εt|υ/η
|εt|υ/η + 1

, 0 < η <∞,

is distributed as beta(1/υ, η/υ) at the true parameter values.
The CDF is a function of the CDF of a beta distribution (an incomplete

beta function) for xt = 1− bt, which is beta(η/υ, 1/υ). The corresponding quantile
function is readily available. This is relevant for Value at Risk (VaR) and Expected
Shortfall (ES), as discussed in Zhu and Galbraith (2011, pp 768-70) and Zhu (2012).

2.1 Score functions

Because one of our primary aims is to model changing volatility, scale will be
parameterized using an exponential link function, that is ϕ = exp(λ), where−∞ <
λ < ∞. The score functions for location and (the logarithm of) scale are:

∂ ln f

∂µ
= (η + 1)e−λ

(|yt − µ| e−λ)υ−1/η

(|yt − µ| e−λ)υ/η + 1
sgn(yt − µ) (7)

=
η + 1

ηeλ
(1− bt) |εt|υ−1 .sgn(yt − µ)

and
∂ ln ft
∂λ

= (η + 1)bt − 1. (8)

The robustness properties of the score function - or influence function - of loca-
tion are highlighted by McDonald and Newey (1988). Provided η is finite, it is
redescending in that it approaches zero as y moves away from zero. The score
function for scale has corresponding robustness features in that it is bounded4.
The score for the tail index parameter is

∂ ln f

∂η
= −1

υ
ψ (η/υ) +

1

υ
ψ (η/υ + 1/υ)− 1

υη
− 1

υ
ln((|y − µ| /ϕ)υ /η + 1)

+
η + 1

υη

(|y − µ| /ϕ)υ /η

(|y − µ| /ϕ)υ /η + 1

= −1

υ
ψ (η/υ) +

1

υ
ψ (η/υ + 1/υ)− 1

υη
+

1

υ
ln(1− bt) +

η + 1

υη
bt, (9)

4Note the general relationship between the location score and the score for the logarithm of
scale, namely ∂ ln f/∂λ = (y − µ)∂ ln f/∂µ− 1.
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where ψ (.) is the digamma function. For the purposes of taking the limit as
η →∞, it is more convenient to work with the reciprocal, η. The score is then

∂ ln f

∂η
=
ψ (1/ηυ)− ψ (1/ηυ + 1/υ) + η − ln(1− bt)− (η + 1)bt

υη2 . (10)

As regards the other shape parameter, we find

∂ ln f

∂υ
=

η̄ υ − ln[1− bt]− (η̄ + 1) bt ln bt + {bt − η̄ (1− bt)} ln[η̄ (1− bt)]
η̄ υ2

+
η̄ ψ (1/υ) + ψ (1/ηυ)− (η̄ + 1)ψ (1/ηυ + 1/υ)

η̄ υ2

The score function for υ, like that of λ but unlike that of η (or η̄), is bounded,
because as y → ±∞, bt → 1 so

lim
yt→±∞

[
− ln[1− bt]− (η̄ + 1) bt ln bt + {bt− η̄ (1− bt)} ln[η̄ (1− bt)]

]
= ln η̄. (11)

Also, bt = 0 when yt = 0, so in this case[
− ln[1− bt]− (η̄ + 1) bt ln bt + {bt − η̄ (1− bt)} ln[η̄ (1− bt)]

]
= −η̄ ln η̄.

It can be verified from the properties of a beta variable given in Appendix A
that the above scores all have zero expectation.

2.2 Information matrix

The static information matrix for the GB2 distribution was derived by Brazauskasin
(2002). It can be found in Kleiber and Kotz (2003, p.194). Adapting it to the
exponential link function for scale gives the expression in Harvey (2013, p 164).
The information matrix for the generalized-t is more complicated because of the
re-parameterization5. Being able to construct it gives important insight into iden-
tifiability and parameter transformations. The derivation is discussed in Appendix
A.

5The information matrix in Zhu (2012) is slightly simpler because he re-parameterizes the scale
by setting it to ϕ∗/K(υ), where K(υ) is given in (6). But if this is done another transformation
is needed to get the asymptotic covariance matrix for the ML estimators of the original set of
parameters; see also Zhu and Galbraith (2010, p 300) and our Appendix D. Furthermore Zhu
(2012) does not parameterize in terms of η̄ and this is crucial for obtaining the limiting matrix,
including the terms involving η̄, as the tail index goes to infinity.
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Proposition 1 The information matrix for the parameters of the generalized-t
distribution, (3), with finite tail index, that is η > 0, takes the form

I


µ
λ
υ
η

 =


Iµµ 0 0 0
0 Iλλ Iλυ Iλη
0 Iλυ Iυυ Iυη
0 Iλη Iυη Iηη

 (12)

with diagonal elements

Iµµ =
(η + 1) υ3 η2/υ

(η υ + η + 1) exp(2λ)

Γ (2− 1/υ) Γ (2/υ + 1/ηυ)

Γ (1/υ) Γ (1/ηυ)
, υ > 1/2

Iλλ =
υ

η υ + η + 1

Iυυ =

(
ln η + (η − 1) υ + ψ

[
1
η υ

]
− ψ

[
1
υ

])2

ψ′
[

1
η υ

]
+ ψ′

[
1
υ

]
− (1 + η2) υ2

υ3 (η υ + η + 1)

+
η2 ψ′

[
1
υ

]
+ ψ′

[
1
η υ

]
− (1 + η)2 ψ′

[
η+1
η υ

]
η2 υ4

− 1

υ2

Iηη =
ψ′ (1/ηυ)− ψ′(1/ηυ + 1/υ)

η4 υ2
− 2 η υ + η + 1

υ η2 (η + 1) (η υ + η + 1)
,

where ψ′(.) is the trigamma function. The off-diagonal elements are

Iλυ =
ln η + ψ

[
1 + 1

η υ

]
− ψ

[
1 + 1

υ

]
υ (η υ + η + 1)

, Iλη =
υ

(η + 1) (η υ + η + 1)

Iυη =
ln η − η − 1 + ψ

[
1
η υ

]
− ψ

[
1 + 1

υ

]
υ (η + 1) (η υ + η + 1)

+
ψ′
[

1
η υ

]
− (1 + η)ψ′

[
η+1
η υ

]
η3 υ3

Remark 1 For a t-distribution with seven degrees of freedom, that is υ = 2 and
η = 1/7, the score for the scale is positively correlated with η and negatively cor-
related with υ. Further, there is a trade-off between υ and η in that their scores
have a correlation that is large and negative, specifically −0.915. On inverting the
information matrix, the correlation between the estimates of υ and η is found to
be 0.842 . This strong positive correlation means that a higher value of η, corre-
ponding to a heavier tail, will induce a higher value of υ, meaning a lighter tail.
The other correlations are smaller: between the estimates of λ and υ it is 0.124
and between λ and η it is −0.266 . Estimating υ actually reduces the correlation
between λ and η, because when it is fixed the correlation is −0.693.
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When υ is known to be two, the information matrix for the t-distribution, that
is

I

 µ
λ
η

 =


e−2λ(η+1)

3η+1
0 0

0 2
3η+1

2
(η+1)(3η+1)

0 2
(η+1)(3η+1)

ψ′[ 1
2η ]−ψ′[ η+12η ]

4η4
− (5η+1)

2η2(η+1)(3η+1)


is obtained. Somewhat less well-known is the information matrix for the double
generalized Pareto, obtained by setting υ = 1. Specifically

I

 µ
λ
η

 =

 e−2λ(η+1)2

2η+1
0 0

0 1
(2.0η+1.0)

1
(2.0η+1.0)(η+1.0)

0 1
(2.0η+1.0)(η+1.0)

2
2η2+3η+1

 . (13)

The simplification in Iηη comes about because ψ
′(1/η )−ψ′(1 + 1/η ) = (1/η )−2 =

η2.

Remark 2 The asymptotic distribution theory for ML estimation is not standard
for υ < 2 because of the singularies in the derivatives of the log-density at µ. In
particular the second derivative with respect to µ does not exist at y = µ and its
expectation cannot be found; Iµµ in (12) is obtained from the expectation of the
square of the first derivative. Neverthless McDonald and Newey (1987) are able
to show consistency and asymptotic normality provided υ > 1. The problems are
essentially the same as those that arise for the GED; see Zhu and Zinde-Walsh
(2009, p 91). If µ is known, the usual asymptotics hold for the scale and shape
parameter of the GED and this will remain true for the generalized-t. The ML
estimators of these parameters are consistent and asymptotically normal when µ
is estimated (consistently) by the median. If µ is estimated by ML, the block
diagonality of the information matrix suggests that inference for the scale and
shape parameters will still be valid for any υ > 0. This is borne out by a Monte
Carlo study for the GED reported in Bottazzi and Secchi (2011, p 1002-6). They
also demonstrate that the ML estimator of µ will be asymptotically effi cient for
υ > 1/2, the condition required to ensure that Iµµ exists.

2.3 General error distribution as a limiting case

As already noted, in the limit η →∞, that is η̄ → 0, the generalized-t distribution
becomes a GED, (5). The limiting scores may similarly be obtained from those in
sub-section 2.1 by letting η̄ → 0. Because bt → 0 as η̄ → 0, whereas bt/η̄ → |εt|υ,
it is easy to see that the limiting scores for location and scale are given by

lim
η̄→0

∂ ln ft
∂µ

= e−λ |εt|υ−1 sgn(εt) and lim
η̄→0

∂ ln ft
∂λ

= |εt|υ − 1 (14)

9



The limiting scores for the shape parameters are more diffi cult to derive, but it is
shown in appendix B that the problem can be solved by using a known expansion
for the digamma function, together with Taylor series expansions. As a result

lim
η̄→0

∂ ln ft
∂υ

=
|εt|υ − υ |εt|υ ln |εt|+ υ + ln(υ) + ψ(1/υ)− 1

υ2
(15)

and

lim
η̄→0

∂ ln ft
∂η̄

=
(|εt|υ − 1)

2

2υ
− 1

2
. (16)

At the true parameter values, |εt|υ is distributed as gamma(υ, 1/υ) and so it is
possible to check that all the scores have zero expectation. The main point to note
concerns E |εt|υ ln |εt|υ which is evaluated by taking the expectation of ln |εt|υ with
respect to a gamma(υ, 1 + 1/υ) variable, giving ψ(1 + 1/υ) + ln υ.
When υ is known to be one, the information matrix is obtained from (13)

simply by setting η = 0. For other values of υ, Iλη and Iλλ are immediately seen
to be υ, but finding the limit of Iηη is less straightforward, even for υ = 2. It is
shown in appendix C that:

lim
η̄→0

I

(
λ
η̄

)
=

(
υ υ

υ 3υ+1
2

)
,

so (
lim
η̄→0

I

)−1

=

( 3υ+1
υ(υ+1)

− 2
υ+1

− 2
υ+1

2
υ+1

)
.

Thus fitting a t-distribution when the true distribution is Gaussian more than
doubles the variance of the estimator of λ.
We also note that

lim
η̄→0

Iµ,µ =
υ2−2/υ

exp(2λ)

Γ [2− 1/υ]

Γ [1/υ]
(17)

because, from Davis (1964, p. 257),

lim
η̄→0

Γ
(

1
υη

+ 2
υ

)
(

1
υη

)2/υ

Γ
(

1
υη

) = 1.

We have not been able to find these limiting expressions in the literature. Al-
though this is somewhat surprising, the lack of results may be due to the compli-
cated nature of trigamma functions and their limits. The existence of these limits
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is of some importance, however, if the regularity conditions for a likelihood ratio
test of the null hypothesis of thin (or exponential) tails are to be satisfied. When
the generalized-t distribution is defined in terms of η rather than η̄, all elements
I(η,·) → 0 as η → ∞ and so the information matrix is singular. The availability
of a p.d. information matrix for η̄ = 0 also allows LM tests against fat tails to be
constructed.
When υ is estimated, the information matrix6 of the generalized-t for λ, υ and

η, goes to the following limit as η → 0:

I

 λ
υ
η

 =


υ − ln υ+ψ[1+ 1

υ ]
υ

υ

− ln υ+ψ[1+ 1
υ ]

υ

(υ+ln υ+ψ[ 1υ ])
2
+( 1υ+1)ψ′[ 1υ ]−(υ2+υ+1)

υ3
− ln υ+ψ[1+ 1

υ ]+ 1
2

υ

υ − ln υ+ψ[1+ 1
υ ]+ 1

2

υ
3υ+1

2

 .

(18)
The information quantity for µ remains as in (17). The top-left 2×2 submatrix in
(18) is the information matrix of the GED. Because η̄ is estimated, the elements
in the bottom row have the effect of increasing the asymptotic standard errors of
the estimators of λ and υ. The derivation of the limits of Iυυ and Iυη̄ is similar to
that in Appendix C for Iηη.

Remark 3 The use of η̄ rather than η has the practical value of ensuring that ML
estimation is stable when the tail index is large.

2.4 Testing against fat tails

When η is finite the tails of the generalized-t are fat, but this is no longer the case
for the limiting GED distribution7. Thus, within the generalized-t framework,
a test of the null hypothesis that η = ∞, or equivalently η = 0, against the
alternative of η <∞, that is η > 0, is a test against fat tails. As has been shown,
the regularity condition that the information matrix be positive definite under the
null is satisfied when the inverse tail parameterization is used.
A LR test of η = 0 is straightforward to implement but because the alternative,

η > 0, is one-sided, the asymptotic distribution of the LR test statistic is a mixture
of a χ2

1 and a degenerate distribution with its mass at the origin. Hence the 5%
critical value is the usual 10% one, that is 2.71.
A Lagrange multiplier, or score, test can be implemented using the positive

definite information matrix derived in the previous sub-section. The limiting score

6The information matrix in Zhu and Zinde-Walsh (2009) is somewhat simpler because they
re-parameterize the scale; see the earlier footnote in sub-section 2.2..

7The GED has light tails when υ ≥ 1, but when υ < 1 the tails are heavy. However, even for
υ < 1, they are still not fat; see footnote 1.
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for η remains well-defined and was given in (16). Thus the LM statistic is

LM =
(I−1)ηη
T

(∑ (|εt|υ − 1)
2

2υ
− 1

2

)2

(19)

=
(I−1)ηη
T

(∑ |εt|2υ
υ
− 2

υ
|εt|υ +

1

υ
− 1

)2

,

where (I−1)ηη is the diagonal element in the inverse information matrix corre-
sponding to η and the parameters µ, υ and λ are replaced by their ML estimators
under the null hypothesis that η = 0. If υ is known, (I−1)ηη = 2/(υ + 1). The LM
statistic is asymptotically χ2

1-distributed under the null. For υ = 2, the test is
simply a reformulation of the standard excess kurtosis test. This is no longer the
case for υ 6= 2. The contrast8 is then between the moments of |εt|2υ and |εt|υ.
Tests of the null hypothesis that υ takes a specific value, υ0,may also be carried

out. The LR statistic of υ = υ0 against υ 6= υ0 is asymptotically χ2
1, as is the LM

statistic. A joint test of υ = υ0 and η0 = 0 against υ 6= υ0 and η > 0 is also
possible. The LM test statistic, which is asymptotically distributed as χ2

2 under
the null, requires the limiting score for υ, as given in (15).

3 Dynamic Scale

The Beta-Gen-t-EGARCH model has time-varying scale, exp(λtpt−1), with the dy-
namic equation, (2), driven by the score9

∂ ln ft
∂λtpt−1

= ut = (η + 1) bt − 1, (20)

where

bt =
(|yt − µ| e−λtpt−1)υ/η

(|yt − µ| e−λtpt−1)υ/η + 1
. (21)

As in the static model bt is distributed as beta(1/υ, η/υ) at the true parameter
values. Setting υ = 2 gives the Beta-t-EGARCH model, with the score as in
Harvey (2013, ch 4).

8Under the alternative hypothsis, |εt|υ = ηbt/(1−bt) and it can be shown that E|εt|2υ−2E|εt|υ
increases as η decreases.

9Bollerslev, Engle and Nelson (1994, p 3017-23) propose a related model in which the υ and η
parameters in an expression similar in form to ut are different from the υ and η shape parameters
in the conditional distribution. We are grateful to Guiseppe Cavaliere for pointing this out to us.
The viability of a model in which υ and η in ut are different from the υ and η in the conditional
distribution is a matter for future investigation.
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Figure 1: Score functions, u, for η = 5 and υ = 2 (solid) and υ = 1 (solid thin)
plotted against standardized variable, ε. Dashed line shows υ = 1 multiplied by
the ratio of its SD to that of the υ = 2 variable

Figure 1 shows the score (influence) functions - or, as they are sometimes called
in the volatility literature, news impact curves - for η = 5 and υ = 1 or 2. As
|yt| → ∞, ut → η, so the score is bounded for finite η. A bounded score means that
the existence of moments is not affected by volatility, although they may become
hugely inflated.

3.1 Moments

Because bt in the score variable, (20), has a beta distribution, Theorem 7 in Harvey
(2013, ch 4) generalizes immediately to give exact expressions for the unconditional
moments. To be specific, the expectations of powers of absolute values of the
observations in the stationary Beta-Gen-t-EGARCH model are

E (|yt|c) =
ηc/υΓ( c

υ
+ 1

υ
)Γ(−c

υ
+ η

υ
)

Γ( 1
υ
)Γ( η

υ
)

ζ(c;ψ), −1 < c < η, (22)

where

ζ(c) = ecω
∞∏
j=1

e−ψjcβη,υ(ψjc)

with ψj, j = 1, 2, .., denoting the coeffi cient of ut−j when λtpt−1 is expressed in terms
of past scores, ω denoting the unconditional expectation of λtpt−1 and βη,υ(a) being

13



Kummer’s (confluent hypergeometric) function, 1F1(1/υ; η/2+1/υ; a(η+1)), that
is

βη,υ(a) = 1 +

∞∑
k=1

(
k−1∏
r=0

1 + υr

η + 1 + υr

)
ak(η + 1)k

k!
, 0 < η <∞.

Conditional moments may be similarly obtained for multi-step forecasts. The full
multi-step distribution is easily simulated from beta variates.

3.2 Maximum likelihood estimation

The proposition below for the ML estimator,ψ̃, of ψ = (κ φ ω)′ in the first-order
stationary dynamic model for volatilty, (2), follows from the fact that the score
and its derivative,

∂ut
∂λtpt−1

= −υ(η + 1)bt(1− bt)

depend on the beta(1/υ, η/υ) variable, bt; see Appendix A.

Proposition 2 For a conditional generalized t-distribution with given µ, υ and η
< ∞, and a first-order stationary dynamic model for volatilty, with κ 6= 0, the
limiting distribution of

√
T (ψ̃−ψ0), where ψ0 denotes the vector of true values of

κ, φ and ω, is multivariate normal with mean vector zero and a covariance matrix
given bythe inverse of the single observation information matrix

I (ψ) = IλλD (23)

where Iλλ is as in (12) and D is as defined in Harvey (2013, p. 37) - see Appendix
E - with the quantities a, b and c, evaluated from

E

[
∂ut
∂λ

]
=

−υη
η + υ + 1

=
−υ

η + 1 + υη
(24)

E

[(
∂ut
∂λ

)2
]

=
υ2(η + 1) (υ + 1) (υ + η)

(3υ + η + 1) (2υ + η + 1) (υ + η + 1)

=
υ2(η + 1)2 (υ + 1) (υη + 1)

(3υη + η + 1) (2υη + η + 1) (υη + η + 1) (η + 1)

E

[
ut
∂ut
∂λ

]
=

−υ2(η − 1)η

(2υ + η + 1) (υ + η + 1)
=

−υ2(1− η)

(η + 1 + 2υη)(η + 1 + υη)

A necessary condition for (23) to be p.d. is

b = φ2 + 2φκE

(
∂ut
∂λ

)
+ κ2E

(
∂ut
∂λ

)2

< 1. (25)
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The proof of the above proposition can be constructed by generalizing the result
for Beta-t-EGARCH in Harvey (2013, p 37, 116-7, 138). The conditions which need
to be verified are those in Jensen and Rahbek (2004) and in the present context
the main point is that the boundedness of third derivatives of the log-likelihood
is guaranteed by the fact that the terms are functions of bounded variables of the
form bht (1− bt)k, h, k = 1, 2, ...
We conjecture that consistency and asymptotic normality of the ML estimator

of the full parameter vector, (µ, ψ′, υ, η)′, will be consistent and asymptotically
normal for υ > 1/2; see Remark 2. An analytic expression for the information
matrix can be derived, but is somewhat intricate. However, it can again be shown
that most of the terms in the third derivatives of the log-likelihood are functions
of bounded variables. The derivatives with respect to υ involve identities like (11).

3.3 Gamma-GED-EGARCH

Letting η →∞ gives the Gamma-GED-EGARCH model, in which the conditional
distribution of yt is a GED with time-varying scale parameter exp(λtpt−1) and λtpt−1

evolving as a linear function of the conditional score variable10

ut =

(
|yt − µ|

exp(λtpt−1)

)υ
− 1, t = 1, ..., T. (26)

with |εt|υ distributed as gamma (υ, 1/υ) at the true parameter values. When υ < 2,
the response is less sensitive to outliers than it is for a normal distribution, but it
does not have the robustness of Beta-t-EGARCH because, as is clear from (26), ut
is not bounded. There may therefore be a case for approximating Gamma-GED-
EGARCH by a Beta-Gen-t-EGARCH in which η is large but bounded; similar
sentiments are expressed by McDonald and Newey (1987) who comment on the
attraction of keeping η finite in the generalized-t.
The existence of unconditional moments in Gamma-GED-EGARCH requires

constraints on the dynamic parameters. For the first-order model, (2), the m− th
order moment exists only for m < 1/υκ.
The information matrix, (23), is given by setting η = 0 in (24) to yield

E

[
∂ut
∂λ

]
= −υ, E

[(
∂ut
∂λ

)2
]

= υ2 (υ + 1) and E

[
ut
∂ut
∂λ

]
= −υ2.

The proof of consistency and asymptotic normality of ML estimators for the GED
is less straightforward than the proof for generalized t with finite tail index because
it requires a bounding argument; see Harvey (2013, p 44-5). It is perhaps simpler

10The definition of the GED in Harvey (2013, section 4.4) is slightly different.
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just to invoke the proof for generalized t with arbitrariy large, but finite, finite tail
index.
When a Gamma-GED-EGARCH model has been estimated, the LM statistic

against fat tails takes the form of (19) with (I−1)ηη now obtained from the full
information matrix. Note the importance of allowing for dynamic scale because,
other things being equal, its presence increases E (|εt|υ − 1)

2.

Remark 4 The classic EGARCH model, in which ut = |εt| , is obtained by setting
υ = 1 in (26). The information matrix is easily evaluated for most conditional
distributions (including the generalized-t), provided they have finite variance; see
Andres (2014). However, absolute values are not robust and when the conditional
distribution has fat tails no unconditional moments exist; see Nelson (1991). There
seems to be no good reason for not using the conditional score.

3.4 Asymmetric impact curve (leverage)

Returns may have a different effect on volatility depending on whether they are
positive or negative. This effect, sometimes known as leverage, may be modeled
by adding another variable to the dynamic equation. Specifically

λt+1|t = ω (1− φ) + φλt|t−1 + κut + κ∗u∗t , (27)

where u∗t = sgn (µ − yt)(ut + 1) and κ∗ is a parameter11. The effect of the extra
term is to add or subtract, depending on sgn(yt − µ), a fraction of the impact
curve plus one. The new impact curve remains continuous at µ.

3.5 Example: Silver returns

Beta-Gen-t-EGARCH model were fitted to daily observations on returns from the
iShares Silver Trust fromApril 28th 2006 to February 11th 2015; see http://finance.yahoo.com/q?s=SLV.
This exchange traded fund (ETF) aims to track the price of silver and is traded
on the London and New York stock exchanges. The histogram is shown in Figure
2
The three rows in Table 1 show the results for the general model and then for

Beta-t-EGARCH, that is υ = 2, and Gamma-GED-EGARCH, that is η = 0. As is
clear from the estimates and their (numerical) SEs - and as is apparent from the
analytic information matrix - the ML estimators of the two shape parameters are
strongly correlated. When υ, estimated as 1.34 in the general model, is set to two,

11The way in which Nelson (1991) captures leverage in his classic EGARCH model is some-
what different but coincides with our approach in the case when η = ∞ and υ = 1 (Laplace
distribution); see also Bollerslev et al (1994, p 3019).

16



Return N(s=2.28)

20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

0.05

0.10

0.15

0.20

0.25

Density

Return N(s=2.28)

Figure 2: Daily silver returns

the estimate of η increases from 0.075 to 0.22 and correspondingly η goes from
13.31 to 4.54. The SE of η is reduced from 0.043 to 0.023. Similarly the estimate
of υ decreases when η is fixed and its SE of falls from 0.13 to 0.05. Leverage effects
are estimated but appear not to be present.
All three models fit well according to the Box-Ljung statistics12, Qµ(20) and

Qλ(20), constructed from the first 20 autocorrelations of scores for location and
scale respectively. However Beta-t-EGARCH is clearly worse than the other two
models on the AIC and BIC goodness of fit criteria. Indeed the hypothesis that
υ = 2 is convincingly rejected by Wald and LR tests. The situation with regard
to η is less clear cut. The LR statistic (that is minus 2 times the logarithm of
the likelihood ratio) of the null hypothesis that η = 0 is 3.60 which is less than
3.84, the 5% significance value for a χ2

1 distribution. However, as noted in sub-
section 2.4, the correct 5% significance value is only 2.70 because of the one-sided
alternative. Thus there may be a small gain from using Beta-Gen-t-EGARCH
rather than Gamma-GED-EGARCH.
12Qµ(20) andQλ(20)may be tested against χ220 and χ

2
18 distributions respectively. Two degrees

of freedom are lost for scale because two dynamic parameters are estimated.
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Model κ∗ κ φ ω µ η̄ υ LogL AIC BIC Qλ(20) Qµ(20)
Student-t 0.000 0.038 0.991 0.519 0.070 0.220 (υ ≡ 2) -4648.2 4.210 4.225 22.3 14.6

0.004 0.006 0.002 0.112 0.036 0.023 0.33 0.80

GED 0.000 0.045 0.987 0.502 0.086 (η̄ ≡ 0) 1.148 -4642.0 4.204 4.220 23.4 19.9
0.004 0.007 0.003 0.098 0.034 0.046 0.27 0.46

Gen-t 0.000 0.042 0.989 0.493 0.081 0.076 1.342 -4640.1 4.204 4.222 24.0 17.7
0.004 0.007 0.002 0.106 0.035 0.045 0.138 0.24 0.61

Table 1 Beta-Gen-t-EGARCH fitted to Silver returns - SEs in small typeface

3.6 Extensions

Explanatory variables can also be added to the dynamic equations. As with lever-
age, the asymptotic theory for ML estimation is readily extended along the lines
for Beta-t-EGARCH in Harvey (2013, ch 4).
A DCS EGARCH-M model may be set up as

yt = µ+ α exp(λtpt−1) + εt exp(λtpt−1), t = 1, ..., T,

where α is a risk-premium parameter. Again it is not diffi cult to extend the theory
for the conditional t-distribution, used in Harvey and Lange (2015), to generalized
t.
Arslan (2004) sets out a multivariate generalized t distribution and derives its

properties. The distribution generalizes the standard multivariate t and so it can
be used to model dynamic volatilities and changing correlations as in Creal et al
(2011).

4 Asymmetry and skewness

Skewness can be introduced into the generalized Student-t distribution by means
of the Fernandez and Steel (1998) method, as used by Harvey and Sucarrat (2014)
for the Student-t distribution. This distribution is similar to, but not quite the
same as, the skew generalized t distribution, as used recently in Hansen et al
(2010). An equivalent formulation of the skew-t is proposed by Zhu and Galbraith
(2010). They make a further extension to asymmetry by allowing different degrees
of freedom above and below µ. Zhu and Zinde-Walsh (2009) set up an asymmetric
skew GED in a similar way. Extending the generalized Student-t distribution to
handle skewness and asymmetry is, in principle, straightforward: we now have υ1

and υ2 as well as η1 and η2.
Rather than formulate the asymmetric skew generalized-t distribution as in

Zhu (2012), which follows the method Zhu and Galbraith (2010) and Zhu and
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Zinde-Walsh (2009), we write the PDF. as

f(y) =
K12

exp(λ)
×


(

1 +
1

η1

∣∣∣∣y − µ2αeλ

∣∣∣∣υ1)−(η1+1)/υ1

y ≤ µ,(
1 +

1

η2

∣∣∣∣ y − µ
2(1− α)eλ

∣∣∣∣υ2)−(η2+1)/υ2

, y > µ.

, (28)

where 0 < α < 1 and
K12 =

1

α/K1 + (1− α)/K2

,

with Ki = K(ηi, υi), i = 1, 2, defined as in (4). The derivation of (28) and the way
in which the approach differs from that in the papers by Zhu and co-authors is set
out in Appendix D. The distribution is constructed in such a way that both f(y)
and f ′(y) are continuous through y = µ. Under symmetry, K12 = K1 = K2 =
K(η, υ), irrespective of α. When α = 1/2, the distribution is not skewed, even
though it may be asymmetric.
The probability that y < µ is given by

α† =
α/K1

α/K1 + (1− α)/K2

. (29)

Clearly α† is affected by both skewness and asymmetry. Indeed, all quantiles are
affected by both asymmetry and skewness. Under symmetry, K1 = K2 and so
α† = α. The moments of the skew asymmetric distribution are given by

E[|y − µ|m ; υ1, η1 | y < µ]α† + E[|y − µ|m ; υ2, η2 | y > µ](1− α†)
Skewness can be seen as asymmetry in the scale13, but rather than having two

distinct values14 for scale (or, strictly speaking, its logarithm), it is better to have
a single scale and α†. Not only does α† have the convenient property of being
equal to Pr(y < µ), but more importantly in the present context, a single scale
parameter allows a straightforward extension to dynamic volatility.

Remark 5 The introduction of skewness and/or asymmetry means that although
µ is still the mode, it is no longer the mean or the median when α† = 1/2.

EGARCH effects are introduced with the scores for scale being uit = (ηi +
1)bit − 1, i = 1, 2, where the variables

b1t =
(|yt − µ| /2αeλtpt−1)υ1/η1

(|yt − µ| /2αeλtpt−1)υ1/η1 + 1
, y ≤ µ,

b2t =
(|yt − µ| /2(1− α)eλtpt−1)υ2/η2

(|yt − µ| /2(1− α)eλtpt−1)υ2/η2 + 1
, y > µ

13The logarithm of scale could be written as λ+ ln 2α or λ+ ln 2(1− α).
14See, for example, the formulation of the asymmetric GED - or AEPD - in Bottazzi and Secchi

(2011).
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are (independently) distributed as beta(1/υi, ηi/υi), i = 1, 2, at the true parameter
values.

Remark 6 For a distribution which is asymmetric in shape parameters and/or
skewed, ut is asymmetric, but this asymmetry should not be confused with the
asymmetric effects (leverage) introduced into the impact curve in (27).

4.1 Skewness

When there is skewness but no asymmetry in the shape parameters, α = α†. Under
skewness, the multiplicative factors 2α and 2(1−α) in the position of the scale are
different from unity. When α > 1/2, the left-hand side scale, that is for y < µ, will
be amplified, whereas the right-hand side scale will be diminished. The opposite
is true when α < 1/2.
The score for α is uncorrelated with the score for λ and the two shape para-

meters, υ and η. However, it is correlated with µ. The sub-matrix for µ and α in
the information matrix, which is obtained from the more general result in the next
sub-section, is

I

(
µ
α

)
=


Iµµ

4α(1− α)

−I+
µλ

2α(1− α)
−I+

µλ

2α(1− α)

Iλλ + 1

α(1− α)

 , (30)

where Iµµ and Iλλ are as in (12) and

I+
µλ =

e−λ η1/υ

B(1/ηυ + 1/υ)

( η + 1) υ2

η υ + η + 1
. (31)

Letting η → 0 gives I+
µλ = e−λ υ2−1/υ/Γ(1/υ), which is the expression for the GED.

The information sub-matrix for λ, υ and η is unchanged. Thus the introduction
of skewness has no effect on the asymptotic distribution of the ML estimators of
λ, υ and η. (Subject to the qualifications outlined in Remark 2 - these qualifications
extend to any υ because of the discontinuity coming from the model for skewness.)
For the EGARCH model, the fact that b1t and b2t have the same beta distrib-

ution means that D(ψ) is as in (23).
If the standard generalized t of the previous section is estimated, an LM test

against skewness may be carried out. The score for α at α = 0.5 is 2 (η + 1) bt.sgn(yt−
µ). This is similar to the score for λ, but it is an odd function because of the sign.
This is perhaps not surprising as skewness is formulated as asymmetry in the scale.
(In fact it is −2 times the leverage term, u∗t , in (27).) The LM statistic,

LM =
(I−1)αα
T

(
2 (η + 1)

∑
bt.sgn(yt − µ)

)2

, (32)
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is asymptotically χ2
1 under the null hypothesis that α = 0.5.

4.2 Asymmetry

Asymmetry adds an additional set of shape parameters. An expression for the full
information matrix for a skew, asymmetric distribution with shape parameters
θi,i = 1, 2, is derived in Appendix D. The information matrix for a skew, asym-
metric generalized-t distribution is a special case with θi = (ηi, υi), or (ηi, υi),
i = 1, 2.

Proposition 3 Let I1(µ, λ,θ1) and I2(µ, λ,θ2) denote the information matrices
for the distributions with shape parameters θ1 and θ2 respectively. Further, let
I−1 (µ, λ,θ1) and I+2 (µ, λ,θ2) denote the information matrices for the same two
distributions, but conditioned on the observation being below µ, for θ1, or above
µ, for θ2. Then the information matrix of the skewed and asymmetric random
variable Y constructed as in (42) can be written as:

I


µ
α
λ
θ1

θ2

 = α†



I1,µµ
4α2

I−1,µλ
2α2

I−1,µλ
2α

I−1,µθ1
2α

0

I−1,λµ
2α2

I1,λλ+1

α2
I1,λλ
α

I1,λθ1
α

0

I−1,λµ
2α

I1,λλ
α

I1,λλ I1,λθ1 0

I−1,θ1µ
2α

I1,θ1λ
α

I1,θ1λ I1,θ1θ1 + ∂2 lnK1

∂θ1 ∂θ
′
1

0

0 0 0 0 0



+(1− α†)



I2,µµ
4(1−α)2

− I+2,µλ
2(1−α)2

I+2,µλ
2(1−α)

0
I+2,µθ2
2(1−α)

− I+2,λµ
2(1−α)2

I2,λλ+1

(1−α)2
− I2,λλ

(1−α)
0

I2,λθ2
(1−α)

I+2,λµ
2(1−α)

− I2,λλ
(1−α)

I2,λλ 0 I2,λθ2

0 0 0 0 0

I+2,θ2µ
2(1−α)

− I2,θ2λ
α

I2,θ2λ 0 I2,θ2θ2 + ∂2 lnK1

∂θ2 ∂θ
′
2



−


0 0 0 0 0

0 ∂2 lnK12

∂α2
0 ∂2 lnK12

∂α∂θ′1

∂2 lnK12

∂α∂θ′2
0 0 0 0 0

0 ∂2 lnK12

∂θ1∂α
0 ∂2 lnK12

∂θ1 ∂θ
′
1

∂2 lnK12

∂θ1∂θ
′
2

0 ∂2 lnK12

∂θ2∂α
0 ∂2 lnK12

∂θ2 ∂θ
′
1

∂2 lnK12

∂θ2 ∂θ
′
2


(33)
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Corollary 1 When θ1 = θ2 there is skewness but no asymmetry in the shape
parameters and the information matrix of (30) is obtained. All terms involving
second derivatives cancel out or are zero.

Corollary 2 When there is asymmetry but no skewness the row and column cor-
responding to α in (33) disappear and α† = 1/(1+K1/K2). (In this case, the PDF
of Y below µ is 2α† times the PDF for a variable with shape parameters θ1 whereas
above Y it is the 2(1 − α†) times the PDF for a variable with shape parameters
θ2.)

Remark 7 As with the symmetric distribution, the usual asymptotics hold for
the scale and shape parameters in a static asymmetric generalized t model when µ is
known. The ML estimators of these parameters are consistent and asymptotically
normal when µ is estimated by the mode, but they may not be effi cient; see Bickel
(2002). A Monte Carlo study for the asymmetric GED reported15 in Bottazzi and
Secchi (2011, p 1002-6) suggests that, when µ is estimated by ML, inference for
the scale and shape parameters remains valid for any υ > 0, despite the fact that
the information matrix is no longer block diagonal. They also demonstrate that
the ML estimator of µ will be asymptotically effi cient for υ > 1/2, the condition
required to ensure that Iµµ exists.

In the EGARCH model, the moments may again be found analytically with
E(emλtpt−1) depending on whether y < µ or y ≥ µ. The information matrix takes
on board the different shape parameters in the evaluation of ut and its derivatives.
Thus the block corresponding to the dynamic parameters in the volatility equation
is

I(ψ) = α†I1,λλD1+(1−α†)I2,λλD2, with Ii,λλ =
υiηi

ηi + υi + 1
=

υi
ηi + 1 + υiηi

, i = 1, 2.

LM tests against asymmetry can be carried out if a symmetric model has been
fitted. The test statistic will be based on a contrast between the shape parameter
score above and below µ. For the tail index, the difference in the two scores near
the tails will carry a good deal of influence.
A test of whether just one of the tails is light may also be relevant.

4.3 Example: Silver

Table 2 shows the results from fitting a Beta-Asymmetric-Gen-t-EGARCH model
to Silver returns. Amodel with skewness was estimated as well but the α parameter

15They also note, on p 2011, that the likelihood may possess several local maxima and that
this situation becomes more severe as υ decreases.
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was not significantly different from 0.5. Asymmetry is present in the tail index but
not in the υ shape parameter. As can be seen, the left hand tail is fat, with a tail
index of 1/0.136 = 7. 35, whereas right tail is light because η̃2 = 0. The likelihood
ratio test statistic that they are the same, which is asymptotically distributed as
χ2

1 under the null hypothesis, is −2(−4640.1 + 4628.4) = 23. 4. Hence the value of
0.076 reported for the symmetric model in Table 1 is now spread between η̄1 and
η̄2. The SEs for the separate estimates are not a great deal bigger than the SE for
obtained when it is assumed that the parameters are the same. The estimate of
υ is virtually unchanged, as is its SE. The residuals are shown in Figure ??. The
asymmetry and the sharp peak induced by a value of υ well below two are clearly
evident.

κ∗ κ φ ω µ η̄1 η̄2 υ LogL AIC BIC Qλ(20) Qµ(20)
Estimate 0.004 0.040 0.990 0.499 0.098 0.136 0.000 1.349 -4628.4 4.194 4.215 27.1 20.1

SE 0.004 0.007 0.002 0.104 0.034 0.052 0.048 0.144 0.13 0.45
Table 2 Beta-Gen-t-EGARCH fitted to Silver returns

Leverage effects are again insignificant, but the asymmetry in the distribution
imparts an asymmetry to the score function, as shown in Figure 3. The expectation
of the score is still, of course, zero.

4.4 Martingale difference formulation

There is arguably a problem with imposing skewness and asymmetry in the way
we have done, in that yt cannot be a martingale difference. This is because its
conditional expectation, µ+µε exp(λt|t−1), where µε = E(εt), is time-varying. This
issue is well-known for skewed distributions; see the discussion in Harvey (2013, p
145-7). With asymmetry the problem again arises. The general solution is to set
up the model as

yt = µ+ (εt − µε) exp(λt|t−1),

where

µε = −α† (2α) η̄
1/υ
1

Γ
(

2
υ

)
Γ
(

1−η̄1
η̄1 υ

)
Γ
(

1
υ

)
Γ
(

1
η̄1 υ

) + (1− α†) 2(1− α) η̄
1/υ
2

Γ
(

2
υ

)
Γ
(

1−η̄2
η̄2 υ

)
Γ
(

1
υ

)
Γ
(

1
η̄2 υ

)
The score is now

ut =


(

1 +
1

η̄1

) (
1− µε

ε−t

)
|ε−t |υ

|ε−t |υ + 1/η̄1

− 1, εt ≤ 0(
1 +

1

η̄2

) (
1− µε

ε+
t

)
|ε+
t |υ

|ε+
t |υ + 1/η̄2

− 1, εt > 0
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Figure 3: Score function (news impact curve) for asymmetric generalized-t
EGARCH model (without leverage) fitted to Silver returns.

where ε−t = εt/2α and ε+
t = εt/2(1− α). The score is still a martingale difference

as is

u∗t =


(

1 +
1

η̄1

)
|ε−t |υ

|ε−t |υ + 1/η̄1

− α/K1 − (1− α)/K2

α/K1 + (1− α)/K2

, εt ≤ 0

−
(

1 +
1

η̄2

)
|ε+
t |υ

|ε+
t |υ + 1/η̄2

− α/K1 − (1− α)/K2

α/K1 + (1− α)/K2

, εt > 0
,

the additional variable in the dynamic leverage equation (27).
The above formulation was used to estimate EGARCH models with leverage

for daily returns on SP500 from 2 Jan 2004 to 31 Dec 2013. The results are shown
in Table 3 and the histogram of residuals is presented in Figure 4. The skew
parameter is significantly different from 0.5. On the other hand, asymmetry in
the tail index, while telling the story of a fatter left-hand tail, is not statistically
significant when allowance is made for skewness: the LR test statistic is only 1.0.
When the tail indices are the constrained to be same they take the value 32. 26
(that is 1/0.031).Without skewness, the common tail index is 8. 26, which is more
typical for daily returns. Finally υ is significantly below two, just as it is for silver.
On the other hand, when a model for weekly SP500 returns was estimated, υ was
around 2.4.
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Figure 4: Standardized residuals from a skewed asymmetric generalized t
EGARCH model fitted to daily SP500 returns

κ∗ κ φ ω µ α η̄1 η̄2 υ LogL AIC BIC
0.045 0.026 0.988 -0.535 0.040 0.041 1.497 -3361.5 2.6766 2.6928
0.005 0.005 0.001 0.102 0.014 0.024 0.114

0.049 0.036 0.986 -0.376 0.023 0.121 0.004 1.617 -3347.5 2.6663 2.6848
0.005 0.005 0.001 0.100 0.013 0.039 0.044 0.149

0.050 0.030 0.986 -0.233 0.015 0.573 0.031 1.478 -3342.0 2.6619 2.6805
0.005 0.005 0.001 0.115 0.014 0.011 0.029 0.122

0.047 0.032 0.987 -0.323 0.021 0.542 0.068 0.004 1.561 -3341.5 2.6623 2.6832
0.004 0.005 0.001 0.116 0.014 0.023 0.032 0.056 0.153

Table 3 SP500 daily excess returns from 2 Jan 2004 to 31 Dec 2013 (T = 2, 517).

5 Dynamic location/scale model with a GB2 dis-
tribution

The usual form of the GB2 density, as given in Kleiber and Kotz (2003, p.187)
and Harvey (2013, ch 5), is
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f(y) =
υ(y/α)υξ−1

αB(ξ, ς) [(y/α)υ + 1]
ξ+ς

, α, υ, ξ, ς > 0, (34)

where α is the scale parameter, υ, ξ and ς are shape parameters and B(ξ, ς) is
the beta function. The tail index is υς. Setting υ = ξ = 1 gives the generalized
Pareto distribution. The tail index can replace ς, that is η = υς, without further
complicating the information matrix. To get the generalized gamma as a limiting
case it is necessary to replace α by ϕη1/υ. Thus the reparameterized GB2 has PDF

f(y) =
υ(y/ϕ)υξ−1

ϕηξB(ξ, η/υ) [(y/ϕ)υ /η + 1]
ξ+η/υ

, ϕ, υ, ξ, η > 0, (35)

which is similar in form to the generalized-t PDF in (3).
The generalized gamma,

f(y;α, γ, υ) =
υ1−γ

ϕΓ(γ)

(
y

ϕ

)υγ−1

exp (−(y/ϕ)υ/υ) , 0 ≤ y <∞, ϕ, γ, υ > 0,

is now a limiting case of (35) as η → ∞ with ξ = γ; compare the GED in
(5). There is a slight difference in parameterization as compared with the GG in
Kleiber and Kotz (2003) or Harvey (2013, sub-section 5.2). However, the standard
gamma distribution, obtained by setting υ = 1, is the same, as is the exponential
distribution where υ = γ = 1.
As noted earlier, the information matrix for (34) was found by Brazauskasin

(2002); see also Kleiber and Kotz (2003, p.194). The information matrix for (35),
like that of the generalized-t, is more complicated, but with the reparametrization
η = 1/η, it remains finite as the tail index goes to infinity, that is η → 0. The
derivation is similar to that for the generalized-t. The main difference is the
introduction of ξ, but it turns out that the elements Iξξ and Iξη in the information
matrix are almost the same as in the information matrix for (34) because the score
(which is bounded as y →∞) is

∂ ln ft
∂ξ

= υ ln(yt/ϕ)− ln η − ln((yt/ϕ)υ + 1)− ψ (ξ) + ψ (η/υ + ξ) .

Hence Iξξ = ψ′ (ξ) − ψ′ (η/υ + ξ) and Iξη = (1/υ)ψ′ (η/υ + ξ) . The other terms
involving η (or equivalently η), and those for υ, are still relatively complex but no
more so than the corresponding terms for information matrix of the generalized-t.
LR and LM tests of the null of a light tailed GG distribution against the

alternative of fat tails can be carried out in much the same way as tests of GED
against generalized-t.
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Dynamic volatility can be modeled in the same way as for EGARCH. An
exponential link function for the scale, that is ϕtpt−1 = exp(λtpt−1), gives the score

∂ ln ft
∂λtpt−1

= ut = (υξ + η)bt(ξ, η)− υξ, (36)

where

bt(ξ, η) =
(yte

−λtpt−1)υ/η

(yte−λtpt−1)υ/η + 1
, t = 1, ..., T.

Because 0 ≤ bt(ξ, η) ≤ 1, it follows that as y →∞, the score approaches an upper
bound of η. The GG score is obtained in the limit as η → 0, that is

lim
η→0

∂ ln ft
∂λtpt−1

= (yte
−λtpt−1)υ − υγ = ευt − υγ. (37)

As in the GED, ευt is distributed as gamma (υ, 1/υ) at the true parameter values. If
η is large but finite, the distribution is approximately GG but retains the properties
of GB2, in that the score for λ is bounded.
If ξ →∞ in the GG then we get the lognormal distribution, provided additional

conditions are put on the other parameters, eg υ → 0 and ϕ → ∞, Kleiber and
Kotz (2003, p.149). More generally taking the logarithm of a GB2, that is ln yt,
gives the class of exponential GB2 (EGB2) distributions; see McDonald and Xu
(1995). Because ln yt is normal in the limiting case when yt is lognormal, the GB2
provides two distinct routes for specializing to the normal case. Furthermore when
ξ = η → 0, the Laplace distribution is obtained. Hence the GED and the EGB2
are both light tailed distributions covering the space between normal and Laplace.
The EGB2 is skewed if ξ 6= η. A case for using the EGB2 distribution for modeling
volatility is made by Wang et. al. (2001) who fitted GARCH-EGB2 models to
exchange rate data. Caivano and Harvey (2014) develop the theory for DCS-
EGARCH models. The EGB2 distribution may be better for modeling changing
location than GED because the GED requires υ > 1.5 for the DCS asymptotic
theory to work. The same condition applies to generalized-t.

6 Conclusion

An EGARCH model in which the dynamic equation for the logarithm of scale
is driven by the conditional score can be set up with a generalized-t distribution
which can be extended to accomodate skewness and/or asymmetry. Properties
such as unconditional moments may be derived and the asymptotic distribution of
the maximum likelihood estimators worked out. For a finite tail index, the score,
or influence, function is bounded, so mitigating the effect of outliers. Empirical
evidence shows the practical value of the generalized-t.
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It was shown that the information matrix remains positive definite as the tail
index goes to infinity - and the generalized t goes to a GED - by working with the
inverse tail index. The proof uses Taylor series and expansions for the trigamma
function. Similarly digamma function expansions are used to obtain limiting ex-
pressions for the score with respect to the inverse tail index. These results can be
used to construct Lagrange multiplier tests of light tails against fat tails.
The full asymmetric model is very flexible but will often simplify. Parameter

restrictions may be tested by likelihood ratio, Wald or Lagrange multiplier tests.
Given the generality of the full model, Lagrange multiplier tests may be partic-
ularly useful in practice. The form of the score in the cases examined indicates
their plausibility.
The dynamics can include leverage effects and explanatory variables. Again

the theory goes through. ARCH in mean effects may also be incorporated in the
general model and the multivariate generalized t distribution can be used to model
dynamic volatilities and changing correlations.
For positive variables the GB2 distribution may be adapted in a similar way to

the generalized-t so as to include generalized gamma as a special case. Hence the
null hypothesis of light tails against the alternative of fat tails may be tested within
this framework. The overall theory parallels that of the generalized-t thereby
providing a fully integrated approach to modeling volatility.
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APPENDIX

A Beta variables and the information matrix

For a beta(α, β) distribution,

E(bh(1− b)k) =
B(α + h, β + k)

B(α, β)
, h > −α, k > −β (38)
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Note (|y − µ| /ϕ)υ /η = b/(1 − b). Also E(ln b) = ψ(α) − ψ(α + β); E(b ln b)
can be found as ((α + β)/α)E(ln b) with the expectation taken with respect to a
beta(α + 1, β) distribution.
When beta(1/υ, η/υ),

E(bh(1− b)k) =
Γ(1/υ + h)Γ(η/υ + k)

Γ(1/υ + h+ η/υ + k)

Γ(1/υ + η/υ)

Γ(1/υ)Γ(η/υ)

E(b) =
1/υ

1/υ + η/υ
=

1

1 + η
, E(1−b) =

η

1 + η
, and E(b(1−b)) =

η

(η + 1 + υ) (η + 1)

Expressions for E(b2(1− b)2) and E(b2(1− b)) may be similarly obtained.

Remark 8 When η is used, b is beta(1/υ, 1/υη) and

E(bh(1− b)k) =
Γ(1/υ + h)Γ(1/υη + k)

Γ(1/υ + h+ 1/υη + k)

Γ(1/υ + 1/υη)

Γ(1/υ)Γ(1/υη)

E(b) =
η

1 + η
, E(1− b) =

1

1 + η
, and E(b(1− b)) =

η

(η + 1 + υη) (η + 1)

The above results can be used to evaluate the expectations of the elements
of the Hessian. Details are available on request. Note that if η is replaced by η
then the first derivative of η is multiplied by η2, that is divided by η2, whereas the
second is divided by η4.

B Derivation of the scores as the tail index goes
to infinity

The following approximation of the digamma function ψ is used to evaluate scores
when η → 0:

ψ(x) ∼ ln(x)− 1

2x
− 1

12x2
+O

(
1

x3

)
where the approximation16 holds for large x; see Davis (1964, p 259). Using this
approximation, the digamma terms in (10), the score with respect to η, can be

16The displayed approximation is actually correct up to (and including) order x−3, so, had it
been necessary, we could have put O

(
x−4

)
rather than O

(
x−3

)
.
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written as

1

υη2ψ (1/ηυ)− 1

υη2ψ (1/ηυ + 1/υ)

=
ln
(

1
υη

)
− υη

2
− υ2η2

12

η2υ
−

ln
(

1
υη

+ 1
υ

)
− 1

2

(
1
υη

+ 1
υ

)−1

− 1
12

(
1
υη

+ 1
υ

)−2

η2υ
+O (η)

=
1

η2υ

[
ln

(
1

η

)
− υη

2
− υ2η2

12
− ln

(
1

η
+ 1

)
+
υ

2

(
1

η
+ 1

)−1

+
υ2

12

(
1

η
+ 1

)−2
]

+O (η)

Taylor expansions of the above terms around small η up to second order, together
with similar expansions of bt = η|εt|υ/(1 + η|εt|υ) and ln(1− bt) = − ln(1 + |εt|υη)
yield an expression in which all terms that are not O (1) or O (η) cancel. As a
result we obtain (15). We make use of the following approximations:

η̄−1bt ln bt ∼ |εt|υ ln η̄ + |εt|υ ln |εt|υ +O(η̄),

(1− bt) ln[η̄(1− bt)] ∼ ln η̄ +O(η̄)

ln(1− bt)
η̄2

∼ −|εt|
υ

η̄
+
|εt|2υ

2
+O(η̄),

bt
η̄

ln[η̄ (1− bt)] ∼ |εt|υ ln η̄ +O(η̄),

(39)

C Information matrix as the tail index goes to
infinity

In order to calculate the limit of Iηη in (12) as η̄ goes to zero we will use the
following approximation of the trigamma function given by Davis (1964, p. 260):

ψ′(x) ∼ 1

x
+

1

2x2
+

1

6x3
+O

(
1

x5

)
,

where the approximation holds for large x and is correct up to and including order
x−4 because in the expansion the coeffi cient of the term involving x−4 is zero. For
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the trigamma functions appearing in Iηη we have
1

υ2η4
[ψ′ (1/υη)− ψ′ (1/υη + 1/υ)]

≈ 1
υ2η4

([
υη + υ2η2

2
+ υ3η3

6

]
−
[ (

1
υη

+ 1
υ

)−1

+ 1
2

(
1
υη

+ 1
υ

)−2

+ 1
6

(
1
υη

+ 1
υ

)−3 ])
+O (η)

= 1
υ2η4

([
υη + υ2η2

2
+ υ3η3

6

]
−
[
υη̄ (η̄ + 1)−1 + υ2 η̄2

2
(η̄ + 1)−2 + υ3 η̄3

6
(η̄ + 1)−3

])
+O (η)

= 1
υ2η4

(
υη
[
1− 1

η̄+1

]
+ υ2η2

2

[
1− 1

(η̄+1)2

]
+ υ3η3

6

[
1− 1

(η̄+1)3

])
+O (η)

= 1
υ2η4

(
υη
[
η̄ − η̄2 + η̄3 + . . .

]
+ υ2η2

2

[
2η̄ − 3η̄2 + . . .

]
+ υ3η3

6

[
3η̄ + . . .

])
+O (η)

= 1
υ2η4

(
υ η̄2 +

[
− υ + υ2

]
η̄3 +

[
υ − 3υ2

2
+ υ3

2

]
η̄4
)

+O (η)

=
1

υη̄2
+
υ − 1

υ η̄
+
[υ

2
− 3

2
+

1

υ

]
+O (η) .

Because the trigamma functions in Iηη are pre-multiplied by 1/η4, the fact that
the expansion is correct up to and including the fourth order in η4 is crucial. In
the above result, the first two terms are singular in the limit as η goes to zero,
but, as we shall see, they cancel with other terms in the score.
Taylor-expanding the fraction in Iη̄η̄ for η̄ close to zero gives

− 2 η̄ υ + η̄ + 1

υ η̄2 (η̄ + 1) (η̄ υ + η̄ + 1)
≈ − 1

υ η̄2
− υ − 1

υ η̄
+
[
υ + 2− 1

υ

]
.

Again, the calculation is tedious but straightforward and details have been sup-
pressed. As before, the first two terms are singular in the limit as η̄ → 0. Crucially,
however, they are equal in magnitude, but opposite in sign, to the singular terms
obtained above in the expansion of the trigamma functions. Hence the singular
terms in Iη̄η̄ cancel out leaving

lim
η̄→0

Iη̄η̄ =
[υ

2
− 3

2
+

1

υ

]
+
[
υ + 2− 1

υ

]
=

3υ + 1

2
.

Despite its complicated derivation, the final expression for lim Iη̄η̄ is remarkably
simple. The quantities lim Iυυ and lim Iη̄υ follow from similar calculations.

D Skewness and asymmetry

Suppose that a standardized (location zero and unit scale) random variable X is
symmetrically distributed. It will be convenient to write its probability density
function f as follows:

f(x) = K(θ) p (|x|, θ) , p(0,θ) ≡ 1, f ′(0) = 0, (40)
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where K is a normalizing constant that depends on shape parameters, contained
in the vector θ. We assume that f(x) is symmetric around zero, so that can be
written as some function of |x|. We also assume17 f ′(0) = 0, since this ensures
continuity of f ′(x).
A random variable Y with both skewness and asymmetry can be constructed

by drawing from two standardize symmetric random variables X1 and X2 with
shape parameters θ1 and θ2 as follows:

Y =

{
with probability α† take a draw from − 2α |X1|,
with probability 1− α† take a draw from 2(1− α) |X2|,

(41)

where 0 < α < 1 and

α† =
α/K1

α/K1 + (1− α)/K2

, and Ki = K(θi), i = 1, 2.

The resulting PDF, after the introduction of location µ and scale expλ, is

f(y) =
K12

exp(λ)
×


p

(
|y − µ|

2α expλ
, θ1

)
, y ≤ µ,

p

(
|y − µ|

2(1− α) expλ
, θ2

)
, y > µ.

, (42)

where
K12 =

1

α/K1 + (1− α)/K2

.

Both f(y) and f ′(y) are continuous through y = µ, but f ′′(y) generally contains a
jump. Under symmetry, K12 = K(θ), irrespective of α. If, furthermore, α = 1/2,
we obtain the symmetric PDF.
By skewness, we shall mean that α 6= 1/2. Under skewness, the multiplicative

factors 2α and 2(1 − α) in the position of the scale are different from one. By
asymmetry, we shall mean that θ1 6= θ2. Asymmetry is the result of drawing from
different distributions.

D.1 Information matrix

This information matrix shown in (33) is for all asymmetric and skewed random
variables Y that are constructed according to (42) The result may be derived using
the following considerations:

17It is possible to relax this restriction.
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• All elements of I−1 and I+
2 which are proportional to exp(−λ), that is the

off-diagonel elements of the the first row and column, get an extra division
by 2α and 2(1− α), respectively.

• The elements I−1,µµ and I+
2,µµ, which scale with exp(−2λ), get an extra division

by 4α2 and 4(1− α)2, respectively.

• Single derivatives with respect to α can be transformed into derivatives with
respect to λ by the chain rule, i.e.

∂ ln f(y)

∂α
=


1

α

(
∂ ln f(y)

∂λ
+ 1

)
, y ≤ µ,

−1

1− α

(
∂ ln f(y)

∂λ
+ 1

)
, y > µ.

In the context of another derivative, the additive term +1 disappears. For
y > µ, the minus sign remains.

• For the double derivative with respect to α, another application of the chain
rule gives

∂2 ln f(y)

∂α2
=


1

α2

(
∂2 ln f(y)

∂λ2 − ∂ ln f(y)

∂λ
− 1

)
, y ≤ µ,

1

(1− α)2

(
∂2 ln f(y)

∂λ2 − ∂ ln f(y)

∂λ
− 1

)
, y > µ.

The single derivatives with respect to λ combine to give the score with respect
to λ. The expectation of the score is zero, and thus these terms disappear
in the information matrix.

• For the element J̃αµ, we must use first the chain rule to change the derivative
from α into one with respect to λ, and, then, use that the resulting elements
scale like exp(−λ). Thus we finally get multiplicative factors 1/(2α2) for
y ≤ µ and −1/(2(1− α)2) for y > µ.

• For derivatives with respect to α, θ1 and θ2, we must take into account the
absence of prefactors K1 and K2, and, instead, the presence the prefactor
lnK12.
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D.2 Alternative parameterization

Zhu and Zinde-Walsh (2009), Zhu and Galbraith (2010) and Zhu (2012) propose
a different construction:

Y =

{
with probability α take a draw from − 2α∗ |X1|,
with probability (1− α) take a draw from 2(1− α∗) |X2|.

(43)

where

α∗ =
αK1

αK1 + (1− α)K2

. (44)

Introducing location µ and scale expλ, the associated PDF is

f(y) =
αK1 + (1− α)K2

expλ
×


p

(
|y − µ|

2α∗ expλ
, θ1

)
, y ≤ µ,

p

(
|y − µ|

2(1− α∗) expλ
, θ2

)
, y > µ.

(45)

The main difference between their contruction and ours can be summarized as
follows: In our case, the probablity of drawing a negative number is equal to α†,
which is affected by both by asymmetry and skewness, whereas the asymmetry in
the scale is affected only by α. In their approach the opposite is true: the proba-
bility of drawing a negative number is affected only by α, whereas the asymmetry
in the scale is affected by α∗, that is, both by asymmetry and by skewness.
Our construction has some advantages. First, it avoids the shape parameters

appearing in the position of the scale. This clean separation between scale and
shape is desirable from the point of view of estimation. Second, we are able to
derive, in all generality, the information matrix associated with the asymmetric
PDF. in (42). In contrast, Zhu and co-authors derive the information matrix only
for a simplified version of (42). The full information matrix requires a further
transformation, as noted in Zhu and Galbraith (2010, p 300). Third, the modeling
of dynamic scale, which is the focus of this paper, is somewhat more natural using
our definition of asymmetry, because only α affects the asymmetry in the scale.

E Definition of D matrix

The matrix D which appears in the information matrix for the block associated
with the parameters, ψ, governing the time-varying parameter, λ, is

D(ψ) = D

 κ
φ
ω

 =
1

1− b

 A D E
D B F
E F C
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where

A = σ2
u, B =

κ2σ2
u(1 + aφ)

(1− φ2)(1− aφ)
, C =

(1− φ)2(1 + a)

1− a ,

D =
aκσ2

u

1− aφ, E =
c(1− φ)

1− a and F =
acκ(1− φ)

(1− a)(1− aφ)
,

with a = φ+κE (∂ut/∂λ) , b is as in (25), c = κE (ut.∂ut/∂λ) and σ2
u = V ar(ut) =

−∂ut/∂λ.
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