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This study is novel in the application of a multivariate HAR model for study-

ing volatility transmission patterns in energy futures markets. In particular, the

nature of volatility spillovers between futures on crude oil, natural gas and gasoil is

examined using range-based volatility proxies and splitting volatility in components

defined over different time horizons. The results provide evidence that crude oil fu-

tures carry significant information for the volatility evolution of other energy futures

traded on the ICE and reveal interesting insights in the sources of the documented

volatility interrelations. Short-term shocks in Brent oil volatility significantly af-

fect the volatility of gasoil futures, while the impact of oil and gasoil on natural

gas is driven by the long-term volatility component. Additionally, Brent oil and

gasoil ICE futures volatilities exhibit strong positive dynamic correlation, whereas

the remaining pairwise correlation curves are fluctuating around zero.

Keywords: Energy futures; HAR model; volatility transmission; conditional

correlations; range-based volatility.



1 Introduction

The last decade was characterized by a continuously enhancing consumption of

crude oil and gas, followed by increasing interest in energy related hedging products.

Motivated by the recent financial market turmoil, this study analyzes the mechanism

of volatility transmission in energy futures markets. Understanding the dynamics of

energy commodities and their volatility has become essential since they are broadly

used for international diversification investment strategies and in the same time, as

mentioned by Vacha and Barunik (2012), tend to exhibit different properties than

prices of common financial assets. This is for example due to the fact that prices of

energy commodities are influenced by a number of untypical investor types, such as

industrial entities and power stations.

This study aims to uncover volatility transmission patterns of actively traded

energy futures. Crude oil is an important component of production costs for gasoil,

which may suggest the existence of significant co-movements in prices and volatilities

of related financial products. Natural gas and crude oil, on the other hand, are close

substitutes as an energy source; hence, it is reasonable to assume interdependences

between their price fluctuations. Furthermore, volatility transmission between nat-

ural gas and oil markets has been established by Ewing, Malik and Ozfidan (2002)

based on daily closing values from 1996 to 1999 of indexes that represent the behav-

ior of the stock prices of major companies in the oil and natural gas markets. On

the other hand, one may expect that the crude oil futures market, given its size and

significance, leads other energy markets. This notion along with the complementary

and substitute relationships among energy markers indicates how important it is

to analyze the markets for these commodities simultaneously to establish volatility

interrelation mechanisms. Understanding the patterns of potential volatility trans-

mission is of practical importance to financial market participants and may be useful

for portfolio allocation decisions.

Several studies examine price co-movements of energy commodities and the na-

ture of volatility in these markets. Lanza et al. (2006) study the dynamic conditional

correlations in daily returns of WTI oil forward and futures prices based on daily
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price observations between 1985 to January 2004 and find significant correlations

and an asymmetric effect in which negative price shocks have a greater impact on

volatility. This effect is generally assumed to be related to demand-side shocks. Lin

and Tamvakis (2001) focus on the informational linkage of price discovery of crude

oil futures contracts on the NYMEX and IPE between 1994 and 1997. Variance

spillovers are found to be bi-directional, especially when both markets are trading

simultaneously. Based on monthly observations from 1975 to 2009, Ghoshray (2011)

studies the persistence of oil price shocks, causal relations between oil prices and

macro economic indicators as well as relations between oil prices and agricultural

commodities. Using daily and weekly futures data form 1984 to 2001, Pindyck

(2004) sheds light on the role of volatility in the crude oil, heating oil, and gasoline

markets as well as the determinants of volatility itself showing that changes in price

volatility are not predicted by market variables such as inventories or convenience

yields whereas changes in volatility affect market variables through the marginal

value of storage. Vacha and Barunik (2012) examine market co-movements among

crude oil, gasoline, heating oil, and natural gas using a wavelet coherence analysis.

Based on daily futures price observations from November 1993 to July 2010, they

conclude that heating oil, gasoline and crude oil strongly co-move, whereas natural

gas seems to be unrelated to all three other commodities.

In the area of volatility transmission research, Soriano and Climent (2006)

summarize main methodologies and results of extant studies. It becomes obvious

that along with stylized facts about volatility like persistence and clustering, it

is also often observed that volatility is transmitted across markets. However, re-

search on volatility interrelations in energy markets appears to be far less frequent

compared to equity and equity index markets. Moreover, literature on volatility

spillovers in energy markets utilizes mostly GARCH-based methodology for returns

sampled at daily to monthly frequencies. For example, using BEKK, CCC, and

DCC-MGARCH models on daily data from 2005 to 2008, Chevallier (2012) finds

a significant volatility spillover effect between NYMEX crude oil futures and Zee-

brugge natural gas futures as well as dynamic correlations bounded between -0.3 and
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0.3. Singh et al. (2011) identify various volatility transmission effects between crude

oil, heating oil and natural gas in the U.S. futures energy markets using MGARCH-

BEKK representation for daily returns during the period 1994 to the beginning of

2011. The authors find a bi-directional volatility spillover effect between heating oil

and natural gas markets which might be explained by the fact these products are

substitutes. Jin et al. (2012) employ daily data from July 2005 to February 2011 for

WTI, Dubai and Brent futures contracts with a VAR-BEKK model and show that

Brent and Dubai crude are much more responsive to market shocks than WTI.

Further literature studies volatility transmission patterns between energy mar-

kets and food (Serra, 2011), US equity and equity markets of Saudi Arabia, Kuwait,

and Bahrain (Malik and Hammoudeh, 2007), gold (Ewing and Malik, 2013), cur-

rency, equity and other commodity markets (Khalifa et al., 2012) or among major

benchmarks in the international oil market (Chang et al., 2010). These studies also

employ exclusively GARCH specifications to shed light on the dynamics of volatility

transmission patterns.

The main contribution of the current paper to existing literature is a detailed

study of volatility interrelations in energy markets by directly modeling volatility

dynamics. In particular, the analysis is conducted under recourse to range-based

volatility proxies. Range-based volatility estimators are known to be much more

efficient that their return-based counterparts sampled at the same frequency. By

using non-parametric estimators of ex-post volatility, our analysis differs from ex-

tant literature on volatility spillovers since we study volatility co-movements with

a flexible multivariate time-series specification for the volatility time series as pro-

posed by Bubák et al. (2011). In particular, this model is a multivariate extension of

the heterogeneous autoregressive (HAR) model of Corsi, Mittnik, Pigorsch and Pig-

orsch (2008) which includes an explicit consideration of the time-varying volatility

of volatility by means of a GARCH model. Within this model, the nature of volatil-

ity spillovers is examined by conducting pairwise Granger causality tests. Dividing

the underlying volatility in components defined over different time horizons leads

to valuable insights in the source of volatility co-movements because, compared to
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commonly used MGARCH specifications, a vector HAR (VHAR-)based estimation

enables describing short-, middle- and long-term spillover effects separately.

The volatility transmission mechanism is examined among the nearest futures

on Brent crude oil, gasoil and natural gas from May 2005 to June 2012 traded on

the IPE in London which, acquired by the IntercontinentalExchange (ICE) in 2001,

is one of the leading energy futures and options exchanges. Since 2005, when the

entire portfolio of energy futures at the ICE became electronic, the daily trading

volume of, for instance, Brent crude oil futures increased almost sixfold by 2012 and

the open interest grew by 300%.

The main findings of this study can be summarized as follows. The estimation

of the vector HAR allows for analyzing the impact of different volatility components,

which is novel in the literature on energy markets. The model estimates confirms

the interpretation of the Granger causality tests and verify the existence of volatility

spillovers on the ICE energy market. The largest impact on energy futures volatility

in terms of magnitude arises from the own long-term component for Brent oil and

gasoil and from the own mid-term component for natural gas. Brent oil volatility

seems to lead the volatility of gasoil and natural gas, which is a reasonable result,

since crude oil is a large component of gasoil production costs and natural gas is

known to be a potential oil substitute as an energy source. Moreover, gasoil volatility

appears to contain additional information for the future natural gas volatility devel-

opment. The source of causality between Brent crude oil and gasoil is the short-term

volatility of Brent. While the middle- and long-term components in gasoil volatility

are incorporated in its own time series, short-term shocks are determined solely by

fluctuation in crude oil futures prices. This volatility spillover may be interpreted as

a reaction of the investors to sudden shocks in production cost. The results indicate

that the major source of volatility transmission from Brent oil to natural gas is the

long-term volatility component; i.e., acting of long-term agents and the expected

future size of trends and risk in the commodity time series, as suggested by Corsi

(2009). Similarly, also the causality between gasoil and natural gas volatility can

be explained by the medium- and long-term volatility component of gasoil. On the
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other hand, forecasts of Brent oil volatility seem broadly unaffected by the volatility

components of its potential substitute. Looking closely at the results, while the

interpretation considering natural gas as a substitute of oil is rather valid for the

US energy market (Singh, Karali, and Ramirez, 2011, Mu, 2007), the source of the

spillovers might be of a different nature in the context of ICE contracts. Brent crude

oil is an internationally traded crude oil with its physical base BFOE (Brent Blend,

Forties Blend, Oseberg and Ekofisk) being extensively used in the EU. Gasoil, on

the other hand, has a physical base which located in the ARA (Antwerp, Rotter-

dam, Amsterdam) and natural gas has a physical base at the UK NBP (National

Balancing Point), where the National Grid clears physical trades for gas coming

from a variety of sources including the North Sea (e.g. UK, Norwegian or Dutch

production). Natural gas arriving via Interconnector could carry European natural

gas from various provenances, including potentially Russian gas priced at the Ger-

man border using index linking to Brent prices. It follows, that although natural gas

is priced on ICE, gas contracts are effectively index-priced on Brent crude oil and

gasoil, which could result in significant price and volatility linkages. Additionally,

quite a lot of the substitution characteristics between gas and crude (heating oil) in

the US market takes place in residential and commercial consumption for heating

during the winter. However, the substitution between these two energy sources in

Europe is only in electricity generation, where the level substitution is rather low.

The gasoil generation tends to be the most expensive and is used last during peaks,

rather than to substitute gas.

The analysis of pairwise dynamic conditional correlations is conform to the re-

ported regression results. For all pairs, a time-varying and volatile pattern is present

in the correlation structure. The volatilities of natural gas and gasoil futures and

natural gas and crude oil do not exhibit a pronounced and sustainable instanta-

neous correlation despite of these assets being substitutes or linked through market

specifics. On the other hand, gasoil which is a main refined of crude oil is shown to

have a continuous, very strong positive correlation, as expected.

The article is arranged as follows. The next section presents the methodology
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of the study. The data are described in section 3. In section 4, the empirical results

are reported and discussed. Section 5 concludes the paper.

2. Methodology

2.1. Transmission model and time-varying correlation

To analyze interrelationships among volatility time series, we use a multivariate

version of the heterogeneous autoregressive model of Corsi et al. (2008) proposed by

Bubák et al. (2011). Motivated by the heterogeneous market hypothesis presented

by Müller et al. (1997) which assumes the presence of heterogeneity across traders,

Corsi (2009) proposes a simple autoregressive-type model for realized volatility, the

HAR model, considering volatilities realized over different periods of time. This

specification is based upon the idea that traders with different time horizons cause

different types of volatility components. The notion of an asymmetric volatility

propagation is supported by the observation that volatility over longer time intervals

has a stronger influence on volatility over shorter time intervals than vice versa. In

the default univariate version of the model, volatility forecasts are linear functions of

the current daily, weekly, and monthly realized volatilities. The parsimonious HAR

model is shown to capture successfully the persistence of realized volatility for various

forecasting horizons and is used in numerous studies on financial market volatility

(Andersen et al., 2007; Ait-Sahalia and Mancini, 2008; McAleer and Medeiros, 2008,

among others).

To analyze volatility transmission patterns in energy markets, a multivariate

version of the HAR model (VHAR) assuming DCC-GARCH process by Engle (2002)

for the residuals is used. The VHAR specification is given by

vt = β0 + β1vt−1 + β5vt−1,t−5 + β22vt−1,t−22 + ǫt, (1)

where v. is logarithmic volatility vectors. While vt and vt−1 contain volatilties

of one day (t and t− 1, respectively), the elements of vt−1,t−5 and vt−1,t−22 are the
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standardized volatility sums over the last 5 and 22 days.∗ Logarithmic volatility is

used rather that volatility itself because the distribution of logarithmic volatility is

much closer to Gaussian, which is of benefit for statistical purposes.

To investigate the time varying correlation, the DCC-GARCH model of Engle

(2002) is employed. The DCC correlation model is based on the decomposition of the

conditional covariance matrix into conditional standard deviation and time varying

conditional correlation. For the vector of innovation term ǫt from the VHAR model,

a basic multivariate GARCH model is used, with

ǫt = Dtηt and Qt = DtΓtDt (2)

where ηt is a n×1 vector with E(ηt) = 0 and E(ηtη
′

t) = In. Dt = diag(h
1/2
1 , . . . , h

1/2
n )

is a diagonal matrix of conditional standard deviations. The conditional variance

hit is defined as a univariate GARCH(1,1) process,

hit = ωi + αi1ε
2
i,t−1 + βi1hi,t−1. (3)

If the ηt is an i.i.d. vector of random variables, with zero mean and unit variance,

Γt is the conditional correlation matrix of the standardized residuals, ηit = εit/
√
hit.

The dynamic conditional correlation can be estimated as

Γt = {diag(Qt)
−1/2}Qt{diag(Qt)

−1/2}, (4)

where Qt is a k × k symmetric positive definite matrix given by

Qt = (1− d1 − d2)Q̄+ d1ηt−1η
′

t−1 + d2Qt−1. (5)

Q̄ stands for unconditional variance matrix of the ηt. The parameters d1 and d2 are

scalars which capture the effect of previous shocks and previous dynamic correlation

on the current conditional correlation. They have non-negative values and should

∗The volatility proxies used in this study and their estimation are described in the following
section.
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satisfy d1+d2 < 1. DCC is not linear but can be estimated using a two-step method

based on the classical maximum likelihood function. A first step is to estimate

the univariate GARCH from equation (3) and in a second step, the correlation

coefficients are estimated. For technical details about the estimation, the reader is

referred to Silvennoinen and Teräsvirta (2009).

2.2. Volatility proxies

The HAR model was originally designed for modeling realized volatility which is

based on the root of the sum of squared intraday returns (Andersen and Bollerslev,

1998). Limited by data unavailability at the high-frequency level, this study employs

daily data. The unconditional volatility in this case is usually estimated in literature

using daily closing prices. However, this estimator is obviously very noisy since it

does not consider the information given by the price movements within the period of

reference. Extreme value estimators are capable of improving estimation precision to

a substantial extent. Range-based estimators are based upon the idea that a price

range over a time interval may capture volatility better than the corresponding

squared returns because the range arises from the whole observed price process

whereas the return data is sampled at fixed time points. Extended research on

the evaluation of range-based volatility estimators proves the efficiency of these

estimators for various assets and time periods (Alizadeh et al., 2002, Vipul and

Jacob, 2007, Jacob and Vipul, 2008, among others).

In this study, the estimators of Parkinson (1980), Garman and Klass (1980)

and Rogers and Satchell (1991) are adopted. Assuming a driftless price process,

Parkinson (1980) estimates volatility by considering the logs of the daily high (Ht)

and low (Lt) prices,

σ2
PK,t = 0.3607 (Ht − Lt)

2 . (6)

Garman and Klass (1980) extend the estimator of Parkinson (1980) by incorporating
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the log opening (Ot) and closing prices (Ct),

σ2
GK,t = 0.511 (Ht − Lt)

2 − 0.019((Ct −Ot) (Ht + Lt − 2Ot)

−2 (Ht −Ot) (Lt −Ot))− 0.383 (Ct −Ot)
2 . (7)

Rogers and Satchell (1991) develop an estimator that does not require a zero drift,

σ2
RS,t = (Ht − Ct) (Ht −Ot) + (Lt − Ct) (Lt −Ot) . (8)

Furthermore, the estimators presented above are one-period measures. To

obtain multi-period volatility measures, necessary for estimating equation (1), we

calculate a simple mean over N trading days,

ln(σt−1,t−N) =
1

N

N∑

i=1

ln(σt−i), N = 5, 22. (9)

3. Data and preliminary analysis

The current study is based on futures data of Brent crude oil, natural gas and gasoil

traded at the ICE. The data cover a period of 7 years and two months between

May 2005 and June 2012. Our sample period starts from May 2005 because in April

2005, the entire ICE portfolio of energy futures became fully electronic. Since nearby

contracts are traded more actively, and there are contracts maturing every month

of the year, they are rolled over at the expirations to obtain a long time-series data.

The data are obtained from Datastream and include daily settlement prices, open,

high and low prices, open interest and trading volume entries.

To avoid staleness of the data series caused by public holidays which are in-

cluded in the data series of Datastream or missing values, we consider solely the days

when all three contracts have positive open interest and trading volume data. By es-

timating volatility after deleting the days when one or more of the futures contracts

do not exhibit valid data, it is ensured that vt−1,t−5 and vt−1,t−22 in equation (1)

refer always to identical historical time periods. Thus, we aim to eliminate any non-
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Table 1: Data characteristics

Descriptive statistics Correlation
Mean SD Skew Kurt Min Max PK GK RS

Natural Gas

PK 0.279 0.217 2.862 15.681 0.006 2.445 1.000
GK 0.269 0.197 2.903 20.077 0.006 2.816 0.954 1.000
RS 0.262 0.202 3.783 39.623 0.007 3.486 0.851 0.966 1.000

Gasoil

PK 0.273 0.139 1.811 5.164 0.058 1.161 1.000
GK 0.290 0.149 1.992 6.395 0.048 1.283 0.966 1.000
RS 0.294 0.161 2.266 9.246 0.040 1.700 0.914 0.982 1.000

Brent

PK 0.293 0.167 2.520 10.547 0.065 1.860 1.000
GK 0.297 0.163 2.613 11.144 0.068 1.787 0.954 1.000
RS 0.292 0.167 2.650 11.193 0.048 1.701 0.876 0.977 1.000

Note: PK is the Parkinson estimator. GK and RS denote the Garman-Klass and Rogers-Satchell estimators,
respectively. The sample period runs from May 2005 to June 2012.

synchronicity which may have a distorting effect on potentially existing volatility

transmission patterns. In total, volatility data for 1812 trading days are available.

Since the data emerge from the same market place, it is to be emphasized that the

analysis does not need to cope with issues of overlapping trading and non-trading

times, as for example in Lin and Tamvakis (2001).

Table 1 provides descriptive statistics for the daily annualized volatilities for all

employed estimators. The volatility time series obtained with the three estimators

have a very similar average magnitude per asset, especially for natural gas and

Brent crude oil. The standard deviations reported in the third column show that

the volatility of all three assets itself exhibits significant time series variation with

natural gas (gasoil) being most (least) volatile. Furthermore, all estimates show

positive skewness and large kurtosis and are thus in line with documented stylized

facts about financial market volatility. Additionally, table 1 includes correlation

matrices among the considered volatility proxies. It becomes obvious that they

move closely together, as expected, with PK and RS showing lowest correlations

(but still above 0.85) between each other.

Figure 1 illustrates the general volatility dynamics over the entire sample under
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Figure 1: Plots of annualized daily volatility obtained with the Garman Klass (GK)
estimator

consideration for the case of GK. The volatility structures of Brent oil and gasoil

seem to be similar, following major events experienced by global financial markets

since 2005. In contrast, the volatility dynamics of natural gas shows a different

pattern, probably more triggered by its seasonal demand and storage cycles. This

observation is conform to the conclusion of Ewing et al. (2002) that natural gas

return volatility responds more to events like supply interruptions and changes in

reserves.

The stationarity of the univariate time series under consideration is a key

assumption of the VHAR estimation and the tests for Granger causality. In the

following, the logarithmic range-based volatilities are tested for stationarity with
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the Augmented Dickey-Fuller (ADF) test for unit roots, Phillips and Perron (1988)

(PP) test and Elliott et al. (1996) (EPS) test. Results of all three unit root test

show that the time series of the logarithmic volatility range-based estimates at hand

are stationary and are summarized in table 2.

Table 2: Unit root tests

ADF PP ERS
H0: unit root H0: stationarity H0: unit root

Parkinson estimator

Brent -15.27 -26.50 -15.19
Gasoil -16.16 -27.53 -14.64
Natural gas -14.51 -21.80 -13.77

Garman-Klass estimator

Brent -14.65 -25.34 -12.28
Gasoil -13.71 -27.04 12.24
Natural gas -16.23 -20.48 -14.07

Rogers-Satchell estimator

Brent -15.89 -27.40 -10.30
Gasoil -17.27 -28.72 -15.28
Natural gas -14.48 -22.17 -12.26

Note: Unit root tests are run for log range-based volatility. ADF is the Augmented Dickey-Fuller test. PP is the
Phillips-Peron Test. ERS is the Elliott-Rothenberg-Stock test for stationarity. The t-values of the ADF and PP
tests are compared with the Dickey-Fuller (DF) critical values. The critical values tabulated in Elliott et al. (1996)
are used for to evaluate the EPS test. All test values are significant at the 1% level.

4. Empirical results

In this section, the results of the tests for Granger causality and the transmission

models are presented, followed by a discussion of the dynamic correlation structure

of the energy futures volatilities.

4.1. Granger causality tests

The Granger causality tests (Granger, 1969) are based on the full VHAR model

presented in section 2. If vk does not Granger cause v1, all of the coefficients on

the volatility components vt−1,k, vt−1,t−5,k and vt−1,t−22,k are zero in the equation for
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v1. This linear restriction can be tested using Wald-statistics (Lütkepohl, 2005).

Furthermore, because the relationship is not symmetric, Granger causality in one

direction does not imply causality in the other direction.

Table 3: Multivariate Granger causality tests

PK GK RS

Brent Gasoil Nat Gas Brent Gasoil Nat Gas Brent Gasoil Nat Gas

Brent - 0.24 0.15 - 0.01 0.15 - 1.80 0.48
(0.63) (0.70) (0.97) (0.70) (0.18) (0.49)

Gasoil 3.10 - 0.01 5.74 - 0.01 8.59 - 0.01
(0.08) (0.98) (0.02) (0.93) (0.00) (0.94)

Nat Gas 3.26 2.62 - 7.26 6.15 - 7.71 6.40 -
(0.07) (0.11) (0.01) (0.01) (0.01) (0.01)

Note: The first column represents endogenous variables in a single equation from the VHAR system. Columns 2 to
4 give the Granger causality F-values for pairs of equations within the system. The corresponding p-values of the
F-statistics are shown in parentheses.

The data in table 3 summarizes the multi-equation F-tests for the equality of

coefficients. The first column represents the endogenous variables (volatility com-

ponents) in an equation from the VHAR system. The values are test statistics for

the variables in the column to Granger-cause the variable in the raw. For instance,

the F-value that the Brent volatility components based on different time periods

Granger-causes today’s gasoil Garman-Klass range-based volatility is 5.74, which is

significant at the 2% level.

For all three range-based volatility estimates, very similar patterns in the

Granger causality relationships can be observed. In the sample period under consid-

eration, Brent crude oil volatility leads the volatility of gasoil and natural gas. This

causality is significant at maximum of 2% significance level for GK and RG and at

the 10% level for PK. This is a reasonable result, since crude oil is a large compo-

nent of the gasoil production costs and there is a theoretical framework discussed

above expecting linkage between natural gas an oil. Furthermore, gasoil volatility

seems to have an impact on the future volatility of natural gas futures, with Granger

causality being significant at 1% level for both GK and RS and around 10.5% for

PK. Based on the results of the Granger causality tests, we now seek to gain further

insights into the mechanism of volatility transmission by estimating a VHAR model
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comprising short-, medium- and long-term volatility components of all three energy

futures under consideration.

4.2. Regression results

The estimation is started with the full model defined in the equation (1) and the

best model is chosen stepwise using the Akaike information criterion (AIC). To save

space, only the coefficients of the restricted models with the lowest AIC are reported.

The regression results are summarized in table 4 and include estimations made with

all three considered range-based volatility proxies for robustness purposes. βi,B (i =

1, 5, 22) denotes the previous daily, weekly and monthly logarithmic volatility for

Brent crude oil, respectively. βi,G and βi,N label the corresponding variables for

gasoil and natural gas futures contracts.

Starting with Brent, it appears that its volatility is affected mostly by the infor-

mation in its own three components. The findings established with RS suggest that

additionally the short-term volatility component of gasoil might carry significant

information for the current volatility of Brent. However, this cannot be confirmed

using the other two volatility proxies. Across all three volatility estimators, the own

long-term volatility component appears to be largest in terms of magnitude followed

by the medium- and short-term components indicating that volatility over longer

time intervals has a strong influence on volatility over shorter time intervals.

The current volatility level of gasoil, in turn, does not depend on its own

short-term component, but in all three cases rather on the short-term volatility

of Brent. This is an interesting result, confirming the findings arisen from the

multivariate Granger causality tests. Furthermore, the volatility of gasoil futures

depends significantly on its own medium- and long-term components. RS suggests

an additional medium-term impact by both other assets which is noticeably smaller

in magnitude and significant only at the 10% level. In the case of gasoil, similarly to

Brent, the own long-term volatility component exhibits the largest magnitude and

highest t-values whereas the short-term component happens to be by far the least

important out of all three in terms of magnitude.
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Table 4: Regression results

PK GK RS
Brent Gasoil Nat Gas Brent Gasoil Nat Gas Brent Gasoil Nat Gas

β0 -0.15 -0.17 -0.19 -0.16 -0.17 -0.20 -0.16 -0.18 -0.21
(-3.77) (-4.70) (-3.50) (-4.02) (-4.64) (-3.31) (-3.65) (-4.17) (-3.87)

β1,B 0.12 0.13 - 0.10 0.11 - 0.05 0.10 -
(3.65) (4.65) - (2.88) (3.97) - (1.51) (3.06) -

β5,B 0.33 - - 0.34 - - 0.27 0.09 -
(6.51) - - (6.65) - - (5.15) (1.52) -

β22,B 0.47 - 0.31 0.47 - 0.12 0.51 - 0.31
(8.66) - (2.31) (8.81) - (1.75) (8.45) - (2.36)

β1,G - - - - - - 0.09 - -
- - - - - - (3.08) - -

β5,G - 0.35 - - 0.34 -0.10 - 0.30 -
- (7.04) - - (6.70) (-1.62) - (4.57) -

β22,G - 0.43 -0.29 - 0.46 - - 0.41 -0.29
- (8.14) (-2.17) - (8.66) - - (7.27) (-2.19)

β1,N - - 0.23 - - 0.21 - -0.03 0.20
- - (6.60) - - (6.10) - (-1.45) (5.61)

β5,N - - 0.38 - - 0.39 - 0.04 0.35
- - (6.87) - - (6.96) - (1.44) (6.34)

β22,N - - 0.29 - - 0.31 - - 0.33
- - (5.59) - - (5.85) - - (5.91)

d1 0.0130 0.0081 0.0053
d2 0.9806 0.9859 0.9889

Note: Parameter estimates for the final restricted equations of the volatility transmission models are reported.
βi,B (i = 1, 5, 22) denotes the previous daily, weekly and monthly logarithmic volatility for Brent crude oil, respec-
tively. βi,G and βi,N label the corresponding variables for gasoil and natural gas futures contracts. The best model
is established stepwise using the AIC. The corresponding Newey-West t-statistics are given in parentheses. d1 and
d2 are the parameters in (5).

The volatility equation for natural gas reveals a slightly different picture. In

relation to the short- and medium-term volatility impact, only the own components

seem to carry relevant information for its current volatility level. In the long-term

contest, a significant positive impact is attributed, besides to β22,N , also to Brent.

Furthermore, PK and RS identify a similarly large but negative impact of the long-

term variance component of the gasoil. In contrast to the other two assets, the

largest importance in terms of magnitude is attributed to the own medium-term

component. It is closely followed by the long-term components β22,B and β22,N

whose magnitudes move closely together (except for the case of GK) but the own

component β22,N shows consistently higher t-values. Again, the own short-term

volatility component is significant but exhibits the lowest magnitude.

To sum up, the regression results document the existence of volatility spillovers

in the ICE energy market and reveal interesting insights in the structure of the rela-

tionship. The source of the causality between Brent oil and gasoil is the short-term
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volatility of crude oil. While the middle and long-term components in the gasoil

volatility are incorporated in its own time series, short-term shocks are determined

solely by the fluctuation in the crude oil prices. Because crude oil is the major pro-

duction component of gasoil, the volatility spillover can be interpreted as a reaction

of the investors to sudden shocks in the production cost.

The findings for natural gas and crude oil suggest that the major source of

the volatility transmission is the long-term volatility component; i.e., acting of long-

term agents and the expected future size of trends and risk, as indicated by Corsi

(2009), in the commodity time series. The short-term volatility includes significant

information for its own future daily volatility development, but has no or only a

weak impact on the volatility of the other considered energy futures. Brent oil

seems broadly unaffected by volatility of gasoil and natural gas, but for all three

estimators the long-term volatility of crude oil has an effect on the daily volatility

of natural gas. Because both products are potential substitutes as an energy source

or could be even linked through some pricing specifications as mentioned above, it

is reasonable to expect that the origin of the relationship might be in the long-term

expected future trends and risk. Furthermore, the long-term (PK, RS) and the

medium-term (GK) volatility has a negative contribution to the future natural gas

volatility. The fact that Brent crude oil volatility is leading other energy futures

on the ICE seems plausible as well, since the oil futures exhibit significantly larger

trading volumes and open interest. Overall, the regression results substantiate the

interpretation of the Granger causality test results.

A further interesting aspect regards the comparison of our results with the

findings of Bubák et al. (2011) who first use a similar multivariate time-series spec-

ification to document and examine volatility spillovers among Central European

currencies and the EUR/USD foreign exchange. The authors establish that each

currency has a different volatility transmission pattern but in terms of magnitude,

the largest impact is attributed in most cases to the own medium-term volatility

component. A crucial point for explaining the shift of the most important volatil-

ity component towards the long-term element may be the nature of the explored
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markets. Presumably, energy futures market data consistently exhibit a more pro-

nounced dependence on its own monthly volatility due to storage cost and in this

sequel, convenience yield effects which are not represented in the spot forex mar-

kets but are generally of persistent nature and hence not negligible when studying

commodity markets.

4.3. Conditional correlations

In the text which follows, the evolution of pairwise dynamic conditional correlations

between the range-based volatility estimates is discussed. The estimations are based

on the DCC-GARCH model by Engle (2002) introduced in section 2.1. The DCC

curve obtained with the Garman-Klass estimator is plotted in figure 2. The results

gained by using the remaining estimators allow for a qualitatively very similar inter-

pretation and the figures were omitted in order to save space. For all three volatility

proxies the condition holds that d1 + d2 < 1.

For all pairs, a time-varying and volatile pattern is present in the correlation

structure. However, the conditional correlations for Brent oil vs. natural gas, and

gasoil vs. natural gas remain bounded only between -0.15 and 0.15, with a small

peak observable in the period between 2008 and 2009, which is a reasonable result

in the backdrop of the recent turmoil in the global financial markets. The Brent oil

vs. gasoil correlation, on the other hand, has a clear positive magnitude bounded

between 0.65 and 0.85. Recently, the DCC curve fluctuates around 0.8, which is an

obvious sign for the strong instantaneous relationship between the volatility time

series. The evolution of the curve shows a continuously rising magnitude of the

relationship between the volatilities of the two energy futures. While the correlation

fluctuates between 0.65 and 0.75 before 2008, after 2008 the correlation remains

mostly over 0.8. The DCC curve does not exhibit any significant spikes; solely

a small peak is observable at the beginning of 2008, which occurs simultaneously

with similar peaks in the remaining curves. This is most presumably related to the

rising uncertainty in the financial and commodity markets related to the Lehman

crash and the following financial distress. Overall, the pairwise DCC analysis reveals
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interesting aspects of volatility interdependencies, conform to the reported regression

results.
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Figure 2: Plots of conditional correlations implied by the DCC model using the
Garman-Klass (GK) volatility estimator

5. Conclusion

This study is novel in the application of a multivariate HAR model with range-

based volatility estimates for studying volatility transmission patterns in energy

futures market data. Splitting volatility in three components defined over different

time horizons allows for gaining additional insights in the nature of volatility co-

movements, compared to commonly used GARCH related approaches. This paper
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is the first to utilize this methodology for the energy markets dataset. In particular,

volatility transmission patterns are studied for nearest maturity futures on crude

oil, gasoil and natural gas traded at the ICE. Crude oil is an essential component of

production costs for gasoil which supposes the existence of significant co-movements

in prices and volatilities of related financial products. Natural gas and crude oil,

on the other hand, are to some extent substitutes as an energy source and are

possibly linked via pricing specific of the ICE; hence it is reasonable to assume

interdependences between their price fluctuations. As proxies for daily realized

volatility, the range-based estimators of Parkinson (1980), Garman and Klass (1980)

and Rogers and Satchell (1991) are employed. All three allow for qualitatively

very similar interpretation of the results and confirm the robustness of the findings.

Considering range-based estimators within the HAR framework is relatively seldom

in the literature on financial market volatility.

The regression results support the interpretation of the Granger causality tests,

largely documenting the existence of volatility spillovers in the energy futures mar-

ket. In the case of Brent oil and gasoil ICE futures, the own historical long-term

components appear to have the largest impact on current volatility in terms of mag-

nitude whereas the strongest impact on natural gas volatility is ascribed to its own

mid-term component. Moreover, crude oil volatility seems to lead the volatility of

gasoil and natural gas. The causality between crude oil and gasoil appears to arise

from the short-term volatility of Brent oil since short-term shocks are determined

solely by the fluctuation in the crude oil futures prices. This volatility transmis-

sion effect may be interpreted as a investors’ reaction to shocks in production costs.

On the other hand, for natural gas and crude oil, the major source of volatility

transmission appears to be the monthly volatility component caused by long-term

agents. Brent oil seems broadly unaffected by the variation of its potential substi-

tutes, whereas the long-term volatility of crude oil has an effect on the daily volatility

of natural gas. Hence, the daily ranges of Brent crude oil futures carry significant

information for the volatility evolution of other energy futures on the ICE. The pair-

wise dynamic conditional correlations analysis supports our conclusions. There is a
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strong positive instantaneous correlation between the oil and gasoil futures volatility,

while the remaining two pairwise correlations fluctuate around zero. Overall, the

results are relevant for research on investment strategies and thus of a high practical

importance.
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