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Abstract

Volcanic eruptions have long been studied for their wide range of climatic effects. Although global-scale climatic impacts
following the formation of stratospheric sulfate aerosol are well understood, many aspects of the evolution of the early vol-
canic aerosol cloud and regional impacts are uncertain. In the last twenty years, several advances have been made, mainly
due to improved satellite measurements and observations enabling the effects of small-magnitude eruptions to be quantified,
new proxy reconstructions used to investigate the impact of past eruptions, and state-of-the-art aerosol-climate modelling
that has led to new insights on how volcanic eruptions affect the climate. Looking to the future, knowledge gaps include the
role of co-emissions in volcanic plumes, the impact of eruptions on tropical hydroclimate and Northern Hemisphere winter
climate, and the role of eruptions in long-term climate change. Future model development, dedicated model intercomparison
projects, interdisciplinary collaborations, and the application of advanced statistical techniques will facilitate more complex
and detailed studies. Ensuring that the next large-magnitude explosive eruption is well observed will be critical in providing

invaluable observations that will bridge remaining gaps in our understanding.
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Introduction

Volcanic eruptions have been the most important natural
cause of climate change for millennia (e.g. Hegerl et al.
2003; Schurer et al. 2013; 2014), and understanding their
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impact on climate is vital for investigating how the climate
responds to an external forcing and for predicting future
volcanic impacts that may influence society (e.g. Gao et al.
2021a; Huhtamaa et al. 2021; Raible et al. 2016; Toohey
et al. 2016). The fundamentals of how eruptions impact the
climate are well-established: sulfur dioxide (SO,) emitted
during an eruption forms sulfate aerosol that scatters incom-
ing solar radiation, causing a negative radiative forcing. If
SO, is injected into the stratosphere, where the aerosol can
reside for several years, the eruption can lead to a significant
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decrease in surface insolation and produce surface cooling
(e.g. Dutton and Christy 1992; McCormick et al. 1995; Rob-
ock and Mao 1995). Sulfate aerosol also absorbs infrared
radiation that can lead to a heating of the stratosphere (e.g.
Labitzke and McCormick 1992; Stenchikov et al. 1998;
Young et al. 1994). Both the cooling and heating effects
lead to a cascade of further impacts. The cooling can reduce
precipitation and ocean heat content, the heating can change
circulation in the atmosphere, and the volcanic aerosol itself
can impact atmospheric chemistry leading to ozone deple-
tion (see Robock 2000 for a review). A summary of climate
impacts arising from large-magnitude eruptions (defined
here as explosive eruptions with injections of more than 5
Tg of SO, into the stratosphere) is shown in Fig. 1. How-
ever, the intricacies of these wider impacts are less well
understood than the overall impact on radiation and sur-
face temperature, owing to a lack of observations following
large-magnitude eruptions. Most of our knowledge stems
from observations of the 1991 eruption of Mt. Pinatubo,
the most recent large-magnitude eruption to have occurred.
In addition, differences in the results from different climate

Satellite, balloon, aircraft, drone and ground-
based measurements of volcanic emissions

models and discrepancies between simulated and observed
or reconstructed responses indicate that our understanding
is far from complete (e.g. Chylek et al. 2020; Clyne et al.
2021; Pauling et al. 2021; Tejedor et al. 2021a, b; Wilson
et al. 2016; see Zanchettin et al. 2016 for a review).

Observations, proxy reconstructions
and modelling of volcanic eruption climate
effects: advances over the last twenty years

Numerous advances in the field of volcanic effects on climate
have been made in the last twenty years despite the absence
of a large-magnitude eruption. We now have comprehensive
datasets of volcanic SO,, sulfate aerosol and aerosol extinc-
tion from ground-based, balloon and satellite measurements
(e.g. Carn et al. 2016; Kremser et al. 2016; von Savigny et al.
2020). These data provide much better constraint on volcanic
emissions and include daily and near-global observations
that show where SO, and aerosol are dispersed. Improve-
ments in the algorithms used in satellite retrievals have also
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Fig.1 Summary of major climate impacts following a large-mag-
nitude eruption and the processes that produce them, updated from
Timmreck (2012). Processes are in bold, climate impacts in blue.
Italic text outlines the methods used to understand volcanic-climate
impacts (observations, proxy reconstructions and modelling). Key
outstanding research questions are shown in boxes. SST is sea sur-
face temperature, ITCZ is Intertropical Convergence Zone and ENSO
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is El Nifio Southern Oscillation. Review papers since that of Rob-
ock (2000) include those by Cole-Dai (2010) (ice core focus), Tim-
mreck (2012) (climate modelling focus), Kremser et al. (2016) (non-
volcanic and volcanic stratospheric aerosol) and Swingedouw et al.
(2017) (explosive eruptions and modes of variability). A collection of
highlights on the topic of volcanoes and climate can be found in the
2015 Past Global Changes (PAGES) magazine (LeGrande et al. 2015)
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enabled revised estimates of the emissions of past erup-
tions, for example those of the 1991 Mt. Pinatubo eruption
(Carn 2021; Fisher et al. 2019). A notable advance has been
the development of the Global Space-based Stratospheric
Aerosol Climatology (GloSSAC) (Kovilakam et al. 2020;
Thomason et al. 2018), which is a continuous record of
stratospheric aerosol optical properties from 1979 to 2018.
We have observed a minimum in stratospheric aerosol from
1998 to 2000, and in the years following, observations have
demonstrated that stratospheric aerosol variability has been
dominated by small-magnitude (<5 Tg SO,) eruptions (Sol-
omon et al. 2011; Vernier et al. 2011), which have also been
important in offsetting some anthropogenic greenhouse gas
forcing (e.g. Monerie et al. 2017; Ridley et al. 2014; Santer
et al. 2014; 2015; Schmidt et al. 2018). The recognition that,
together, small-magnitude eruptions are important for cli-
matic perturbations is a shift from the traditional idea that
it is only the large stratospheric-injecting events that matter
for climate (although these do have much larger impacts
per eruption). Observations, as well as aerosol modelling,
in particular following the 2014-2015 Holuhraun eruption
in Iceland, have also shown that eruptions that emit gases
mainly into the troposphere can increase the reflectivity of
clouds through an aerosol interaction known as the aerosol-
indirect effect. This causes an additional radiative forcing of
climate (e.g. Gettelman et al. 2015; Malavelle et al. 2017,
McCoy and Hartmann 2015; Schmidt et al. 2010; 2012).
Reconstructions of past temperature variability and of
past volcanic radiative forcing have also improved, reveal-
ing more details about large historic eruptions and their
potential impacts (Sigl et al. 2015). Peaks in sulfate con-
centrations in ice cores have been used for many years to
identify the occurrence of eruptions, as some of the volcanic
sulfate aerosol is eventually deposited on the ice sheets and
preserved in the ice (Fig. 1). The ice core sulfate concen-
trations are used to estimate the amount of sulfur that was
injected into the atmosphere and the potential impact on
climate (Arfeuille et al. 2014; Crowley and Unterman 2013;
Gao et al. 2008). Several new, long and seasonally to annu-
ally resolved ice core records of volcanic sulfate (Cole-Dai
2010; Sigl et al. 2015) have thus helped to clarify the his-
tory and climate forcing of past volcanic eruptions. New
reconstructions provide estimates of stratospheric SO, emis-
sions, eruption latitudes and the stratospheric aerosol optical
depth for eruptions over the last 2500 years (Toohey and
Sigl 2017) to 10,000 years (Sigl et al. 2022). These recon-
structions provide considerable updates to previous recon-
structions which had large uncertainties and discrepancies
in terms of dates and magnitudes for some eruptions (Jun-
gclaus et al. 2017). Volcanic emissions and forcing recon-
structions are important because they are needed as input to
climate model simulations and for comparison with recon-
structions of past temperature (e.g. Jungclaus et al. 2017;

Sigl et al. 2015; Timmreck et al. 2021; Wilson et al. 2016).
New large-scale tree-ring reconstructions of Northern Hemi-
sphere (NH) surface temperature that better capture rapid
temperature changes, and which are less prone to long-term
memory effects, have shown the dominant role that volcanic
eruptions exerted over preindustrial climate variability (e.g.
Anchukaitis et al. 2017; Biintgen et al. 2021; King et al.
2021; Schneider et al. 2017; Wilson et al. 2016).

Climate model simulations of volcanic eruptions have
evolved considerably in the last twenty years (Timmreck
2012; Timmreck et al. 2018). Climate models have higher
spatial resolutions, allowing regional impacts to be better
captured. They are also more complex, including more pro-
cesses such as interactive chemistry and aerosol microphys-
ics. As a result, simulating the effects of volcanic eruptions
has evolved from simply turning down the magnitude of the
incoming solar radiation to mimic the effects of volcanic
aerosol (e.g. Bauer et al. 2003; Peng et al. 2010; Yoshimori
et al. 2005), to prescribing aerosol properties (e.g. Ammann
et al. 2003; Eyring et al. 2013; Gao et al. 2008), to simulat-
ing eruptions from an initial emission of SO, (e.g. 2006
Mills et al. 2016; SPARC 2006; Timmreck et al. 2018).
Improved datasets of volcanic aerosol properties allow erup-
tions to be better represented in models that: 1) do not have
complex aerosol schemes or choose not to use them because
of computational cost or 2) prescribe the aerosol properties
to be fully consistent with observations and to ensure that
the radiative forcing from eruptions is consistent with other
models (Zanchettin et al. 2016; 2022). Improved volcanic
aerosol forcing datasets that include revised estimates of
the post-Pinatubo period and the effects of small-magnitude
eruptions have led to better matches between observations
and model output of recent surface and tropospheric tem-
peratures trends (e.g. Haywood et al. 2014; Fyfe et al. 2013;
2021; Santer et al. 2014) and of stratospheric warming after
the 1991 Mt. Pinatubo eruption (e.g. Arfeuille et al. 2013;
Revell et al. 2017; Rieger et al. 2020).

Global climate models with stratospheric aerosol micro-
physical schemes simulate the aerosol lifecycle. This
includes the conversion of SO, to sulphuric acid vapour,
the formation (nucleation) and growth (through condensa-
tion and coagulation) of sulfate aerosol, its atmospheric
transport, chemical and radiative interactions and deposi-
tion (Kremser et al. 2016). These models allow volcanic
eruptions to be simulated with greater realism and for the
effects of changing the eruption source parameters to be
easily explored. Studies have demonstrated that the spe-
cific climatic impact is dependent on the emission mag-
nitude, eruption season, altitude of emission and latitude
of the volcano (e.g. Arfeuille et al. 2014; Marshall et al.
2019; Metzner et al. 2014; Stoffel et al. 2015; Toohey et al.
2011; 2019). Aerosol-climate modelling studies have also
demonstrated the importance of aerosol growth in limiting
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the climate response as larger particles are less efficient at
scattering radiation and fall out of the atmosphere more
quickly than smaller particles (e.g. Arfeuille et al. 2014;
English et al. 2013; Pinto et al. 1989; Timmreck et al. 2010).
Accounting for aerosol growth subsequently reduces the
surface temperature response following large-magnitude
eruptions and has resulted in better agreement between
simulated cooling and that reconstructed from tree rings for
some large eruptions in the last millennium (Stoffel et al.
2015). Aerosol-climate modelling studies have also shown
the importance of stratospheric heating due to absorption of
infrared radiation by sulfate aerosol, as well as by ash and
S0O,, for lofting aerosol and its subsequent dispersion (e.g.
Aquila et al. 2012; Muser et al. 2020; Niemeier et al. 2021;
Pitari et al. 2016; Sekiya et al. 2016; Stenchikov et al. 2021).

Novel techniques, such as statistical emulation, have also
been applied to aerosol-climate model simulations (Marshall
et al. 2019). Statistical emulators can be used to understand
how uncertainties in model inputs, in this case different erup-
tion source parameters, can change the model output, such as
the radiative forcing caused by an eruption. These emulators
replace the model and can be used to make predictions of
what the climate impact may be for any given eruption, even
if it has not been simulated directly with the model. An exam-
ple of an emulator surface that predicts the radiative forcing
from explosive eruptions occurring at different latitudes and
with different SO, emissions is shown in Fig. 2.

Summary of climate impacts

Over the past two decades, observations, proxies and mod-
elling have, together, led to a better understanding of the
wide range of volcano-climate impacts as outlined in Fig. 1.
Impacts include:

e Changes to atmospheric dynamics (e.g. DallaSanta et al.
2019; Diallo et al. 2017; Toohey et al. 2014; Bittner et al.
2016b) including NH winter warming (e.g. Bittner et al.
2016a; Coupe and Robock 2021; Zambri and Robock
2016; Zambri et al. 2017)

e Ozone depletion (e.g. Brenna et al. 2019; Dhomse et al.
2015; Klobas et al. 2017; Ming et al. 2020; Solomon
et al. 2016)

e A reduction in precipitation (e.g. Iles et al. 2013; Man
et al. 2021; Stevenson et al. 2016; Trenberth and Dai
2007)

e Weaker monsoons (e.g. Fadnavis et al. 2021; Liu et al.
2016; Man et al. 2014; Paik et al. 2020; Zhuo et al. 2021)

e Reduced ocean heat content (e.g. Church et al. 2005;
Dogar et al. 2020; Gleckler et al. 2006; 2016; Gupta and
Marshall 2018)
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Fig.2 Time-integrated volcanic radiative forcing over three years
(in MJ m™2) as a function of eruption latitude and SO, emission (in
Tg of SO,) as predicted by a Gaussian process emulator trained from
aerosol-climate simulations of a wide range of explosive eruptions
( modified from Marshall et al. 2019). The emulator allows radiative
forcing to be predicted for a wide range of eruptions that were not
explicitly simulated and which can be evaluated in a fraction of the
time taken to run a climate model simulation

e Shifts in the position of the Intertropical Convergence
Zone (ITCZ) (e.g. Colose et al. 2016; Erez and Adam
2021; Haywood et al. 2013; Iles and Hegerl 2014; Ridley
et al. 2015)

e Increased sea ice (e.g. Miller et al. 2012; Gagné et al.
2017; Pauling et al. 2021; Zanchettin et al. 2014)

e Shifts in phases of modes of climate variability (see
Swingedouw et al. 2017 for a review) including the
North Atlantic Oscillation (e.g. Hermanson et al. 2020;
Sjolte et al. 2021; Zanchettin et al. 2013) and the El Nifio
Southern Oscillation (ENSO) (e.g. Khodri et al. 2017,
McGregor et al. 2020; Pausata et al. 2020; Predybaylo
et al. 2020; Stevenson et al. 2016)

e Changes to Atlantic Meridional Overturning Circulation
and Atlantic Multidecadal Variability (e.g. Fang et al.
2021; Mann et al. 2021; Ménégoz et al. 2018; Pausata
et al. 2015; Waite et al. 2020)

e Disruption to the Quasi-Biennial Oscillation (Brenna
et al. 2021; DallaSanta et al. 2021)

e Changes to the carbon cycle (e.g. Delmelle et al. 2015;
Eddebbar et al. 2019; Foley et al. 2014; Frolicher et al.
2011)

Studies have demonstrated that, following eruptions,
adjustments in atmospheric temperature and constituents,
such as clouds and stratospheric water vapour, lead to addi-
tional radiative effects that alter the overall volcanic forc-
ing (e.g. Gregory et al. 2016; Marshall et al. 2020; Schmidt
et al. 2018). Co-emissions of halogens are important for
catalysing ozone depletion, which leads to stratospheric
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cooling that alters both the radiative balance and aerosol
size, further impacting the radiative forcing (Staunton-Sykes
et al. 2021). Kroll et al. (2021) demonstrated that indirect
increases in stratospheric water vapour following eruptions,
which affects the radiative budget, depends on the eruption
magnitude, the shape of the aerosol layer and its height with
respect to the tropopause.

In addition to the recognition that small-magnitude erup-
tions matter for climate, high-latitude eruptions have also
been shown to be more important than previously thought.
Analysis of volcanic SO, emission reconstructions, tree-
ring temperature reconstructions and aerosol-climate model
simulations suggest that large high-latitude eruptions can
significantly impact NH climate, producing stronger hemi-
spheric cooling than tropical eruptions of the same magni-
tude (Toohey et al. 2019).

Knowledge gaps, uncertainties and future
opportunities

For many of the climate impacts listed above, the exact
response such as the timing, magnitude or spatial heteroge-
neity often differs not only between climate model studies,
but also between model-simulated and observed or recon-
structed responses (e.g. Driscoll et al. 2012; Pauling et al.
2021; Wilson et al. 2016; Zanchettin et al. 2016; Zhuo et al.
2020; Zuo et al. 2021). Aerosol-climate modelling studies
have also demonstrated large discrepancies in the simulated
aerosol size and dispersion following past large eruptions
such as the 1815 eruption of Mt. Tambora, which leads to
differences in the radiative impact, and is a result of differ-
ences in the models’ chemistry and aerosol schemes (Clyne
et al. 2021). Here we outline some of the main knowledge
gaps and research questions and suggest how they may be
addressed in the future.

Processes in the volcanic cloud

Although observations of volcanic emissions have improved,
uncertainties in satellite retrievals mean that it is still dif-
ficult to differentiate the components of even the best-
observed volcanic clouds. This includes measurements of
the magnitude and vertical distribution of SO,, halogens,
water, ash and ice, and the amount and size of sulfate aerosol
particles. Accurate estimates of these properties are needed
to predict the potential climate impact and are required as
input to aerosol-climate models. The 1991 eruption of Mt.
Pinatubo remains a benchmark simulation for climate mod-
els. However, some aerosol-climate models must inject 10
Tg of SO,, lower than that inferred from satellite observa-
tions (~ 14-23 Tg; Guo et al. 2004), in order to best match
with extinction measurements (Dhomse et al. 2014; 2020;

Mills et al. 2016; 2017). This suggests that either a sink of
SO, in the models is missing, such as scavenging by ash
and ice, that the injection altitude and/or simulated loft-
ing of the aerosol was incorrect (Stenchikov et al. 2021),
or that the satellite retrievals overestimated the emission.
Most of the ash produced during an eruption is short-lived
in the atmosphere (Rose et al. 2001), but satellite, aircraft
and balloon measurements indicate that some ash particles
can remain airborne for many days to months (e.g. Mossop
1964; Pueschel et al. 1994; Vernier et al. 2016). Laboratory
studies have shown that ash surfaces react with various gases
and liquids such as SO,, sulphuric acid, hydrochloric acid,
hydrofluoric acid, ozone and water (e.g. Delmelle et al.
2018; Durant et al. 2008; Gutiérrez et al. 2016; Maters
et al. 2017). However, the impacts of ash—-SO, interac-
tion, for example, on the stratospheric SO, lifetime and
sulfur burden have only recently been demonstrated in cli-
mate modelling (Zhu et al. 2020). Outstanding questions
therefore include:

o What is the ratio of SO, to ash and to what extent do they
separate as they disperse?

e How much of the SO, is scavenged by ash and ice and
how does this impact the amount and size of sulfate aero-
sol and therefore the climate impact?

e How large do the aerosol particles grow?

Going forward, more complex aerosol-climate models
will enable the evolution of sulfate aerosol to be investi-
gated in more detail. Examples include the addition of co-
emissions, interactive photolysis where SO, and aerosol can
affect the photolysis rates which impacts the conversion rate
of SO, to sulfate (Osipov et al. 2020), and meteoric smoke
particles, on which sulphuric acid can condense (e.g. Brooke
et al. 2017; Mills et al. 2005; Saunders et al. 2012). Co-
emissions of water and halogens can impact the chemical
formation of the sulfate aerosol (LeGrande et al. 2016), but
large uncertainties remain in the magnitudes of these emis-
sions for past eruptions (Mather 2015) and not all models
include them. Increasing experimental and observational
data describing these processes, such as rates and magni-
tudes of SO, uptake by ash under various atmospherically
relevant conditions (Lasne et al. 2022), present opportunities
to integrate interactions involving co-emissions in model-
ling studies of the climate impacts of explosive eruptions.
The Interactive Stratospheric Aerosol Model Intercompari-
son Project (ISA-MIP; Timmreck et al. 2018) will provide
the first intercomparison of stratospheric aerosol properties
amongst aerosol-climate models and proposes several stand-
ardised model experiments where results will be compared
to in situ and satellite observations. Results should lead to
an understanding of some of the structural and paramet-
ric uncertainties in models and how these differ between

@ Springer
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simulations of large-magnitude eruptions, such as the 1991
eruption of Mt. Pinatubo, and small-magnitude eruptions.

Ultimately, the next large-magnitude eruption that occurs
will offer the opportunity for new observations, in particular
of interactions between SO,, ash, water and halogens, as
well as the aerosol size distribution. Such an event will pro-
vide a new test case for climate models. Both national (Carn
et al. 2021; Fischer et al. 2021) and international response
initiatives (VolRes; https://wiki.earthdata.nasa.gov/display/
volres) have been developed to coordinate efforts to ensure a
rapid response that will enable scientists to gain invaluable
observations and to assess the potential impact on climate
in the immediate aftermath of the eruption.

Regional impacts

The response of the NH winter climate and the response of
ENSO to a volcanic forcing is particularly uncertain. Win-
ter warming following large tropical eruptions is mecha-
nistically often linked to a strengthening of the NH polar
vortex, but models have not always been able to capture
the response (e.g. Bittner et al. 2016a; Driscoll et al. 2012;
Toohey et al. 2014; see Zambri et al. 2017 for an overview),
and the mechanism has been questioned (Polvani et al.
2019; Polvani and Camargo 2020), although re-supported
by, for example, Azoulay et al. (2021). Coupe and Robock
(2021) demonstrated that models could accurately simulate
the winter warming after the eruptions of Agung in 1963,
El Chichén in 1982 and Mt. Pinatubo in 1991, if they also
accurately simulated the El Nifio states that accompanied
these eruptions. Observations and modelling suggest that El
Nifio events are more likely in the year following an eruption
(e.g. Adams et al. 2003; Khodri et al. 2017; Stevenson et al.
2017), although models are still imperfect at capturing the
response, and not all observations support the link (Dee et al.
2020, but see Robock 2020; Zhu et al. 2022).

Changes to regional precipitation and the strength of
monsoons are also uncertain due to complex spatial pat-
terns, intermodal spread, discrepancies between proxies and
disagreement between model simulations and observations
or proxy reconstructions (e.g. Gao and Gao 2018; Iles et al.
2013; Rao et al. 2017; Tejedor et al. 2021a). Hemispheric
asymmetry in the sulfate aerosol distribution is important
for the response of regional hydroclimate (e.g. Colose et al.
2016; Haywood et al. 2013; Jacobson et al. 2020; Yang
et al. 2019), but the exact spatial distribution of aerosol is
unknown for eruptions prior to the satellite era and there-
fore there are uncertainties in the volcanic forcing that some
models rely upon. The response of precipitation and mon-
soons is also modulated by ENSO (e.g. Gao et al. 2021b;
Paik et al. 2020; Singh et al. 2020). Outstanding questions
include:

@ Springer

e  How does the combination of ENSO and the forcing from
eruptions (stratospheric heating and tropospheric cool-
ing) impact NH winter circulation?

o [s there a robust response of regional hydroclimate?

Multi-decadal impacts

Closely spaced volcanic eruptions have been hypothesised
to lead to sustained cooling via ocean and sea-ice feedbacks
(e.g. Miller et al. 2012; Toohey et al. 2016; van Dijk et al.
2021). However, uncertainties remain regarding the role of
internal variability and the dependence on the current cli-
mate state (e.g. Moreno-Chamarro et al. 2017; Schneider
et al. 2009; Slawinska and Robock 2018; Zanchettin et al.
2012). An outstanding question is, thus: Would a cluster of
eruptions cause long-term cooling in today’s climate, or in
the future? For a review of how climate change itself affects
the climate impact of eruptions (climate-volcanic impacts),
see Aubry et al. (2022, this issue).

Dedicated model intercomparison projects such as the
Volcanic Forcing Model Intercomparison Project (VolMIP;
Zanchettin et al. 2016), which is motivated by discrepancies
between models, will be vital in improving our understand-
ing of both regional and long-term impacts. The project
defines a common volcanic forcing input and sets of initial
conditions, which will account for previous uncertainties
in modelling studies. Advanced statistical techniques, such
as emulation, will also enable further detailed studies to
explore the sensitivity of climate impacts to parameterisa-
tions in models and to the properties of the eruption, as pro-
posed, for example, by Timmreck et al. (2018).

Reconstructing past volcanic forcing

Although reconstructions of past volcanic forcing have
improved (Toohey and Sigl 2017), there is uncertainty in
the conversion between volcanic sulfate deposition and the
stratospheric sulfur burden, with modelling studies demon-
strating that this depends on the properties of an eruption
(Marshall et al. 2021; Toohey et al. 2013) and the model
itself (Marshall et al. 2018). Uncertainties in past volcanic
forcing underpin many model-data discrepancies (e.g. Stof-
fel et al. 2015; Wilson et al. 2016; Zanchettin et al. 2019).
Thus, an outstanding question is: How much can ice core
sulfate records tell us about the radiative forcing, such as
the magnitude, duration, and spatial structure?

Closer connections have now been formed between mod-
elling centres, volcanologists and observation specialists.
This has been fostered by international groups such as the
Volcanic Impacts on Climate and Society (VICS) PAGES
working group. Multi-disciplinary studies that combine pet-
rological, historical and climate modelling evidence have led
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to the attribution of previously unidentified eruptions (from
sulfate spikes in ice cores) to specific volcanoes, including
the 1257 eruption of Samalas (Lavigne et al. 2013) and the
43 BCE eruption of Okmok (McConnell et al. 2020). Attrib-
uting more of the unidentified eruptions to specific volca-
noes will aid in improving past reconstructions. Improve-
ments in the techniques used to measure sulfur isotopes in
ice cores have also been made, which can indicate whether
the sulfur emissions were injected into the troposphere or the
stratosphere (e.g. Baroni et al. 2008; Burke et al. 2019; Sava-
rino et al. 2003b). Further aerosol-climate modelling studies
to investigate the relationship between sulfate deposition and
the radiative forcing, additional ice core records, analyses of
sulfur as well as oxygen isotopes (e.g. Gautier et al. 2019;
Martin 2018; Savarino et al. 2003a), and more proxy recon-
structions especially from the Southern Hemisphere where
few records are currently available, will tell us more about
these past eruptions and their climate impact.

Conclusions

Research into volcanic effects on the climate has evolved
considerably over the last twenty years even in the absence
of a large-magnitude eruption. We have better observations
of eruptions, better proxy records of temperature changes,
better reconstructions of past volcanic forcing from ice core
records and state-of-the-art aerosol-climate models that
allow eruptions to be simulated in greater detail and uncer-
tainties to be explored. Ultimately, advances will be made
following observations and modelling of the next large (> 5
Tg SO,) eruption, from dedicated model intercomparison
projects (VoIMIP and ISA-MIP), as well as from interdis-
ciplinary studies and collaborations between atmospheric
scientists, climate modellers, volcanologists and histori-
ans. At the time of writing, we are just beginning to see the
impact from the January 2022 eruption of Hunga Tonga-
Hunga Ha’apai, the first explosive eruption since Mt. Pina-
tubo in 1991 to be observed by satellites where material has
been injected to extremely high levels in the stratosphere
(>30 km). Although initial estimates of the SO, emission
are too low (~0.4 Tg, https://so2.gsfc.nasa.gov/omps_2012_
now.html#hunga, last accessed 28/1/22) to cause global
cooling, we anticipate that this eruption will be the focus
of many studies to come, especially in understanding inter-
actions between ash, water, ice, halogens and sulfur in the
volcanic plume, and impacts on regional weather.
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