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Research Article

Volcanogenic Pseudo-Fossils from the *3.48Ga
Dresser Formation, Pilbara, Western Australia

David Wacey,1 Nora Noffke,2 Martin Saunders,1 Paul Guagliardo,1 and David M. Pyle3

Abstract

The *3.48 billion-year-old Dresser Formation, Pilbara Craton, Western Australia, is a key geological unit for
the study of Earth’s earliest life and the habitats it occupied. Here, we describe a new suite of spheroidal to
lenticular microstructures that morphologically resemble some previously reported Archean microfossils.
Correlative microscopy shows that these objects have a size distribution, wall ultrastructure, and chemistry that
are incompatible with a microfossil origin and instead are interpreted as pyritized and silicified fragments of
vesicular volcanic glass. Organic kerogenous material is associated with much of the altered volcanic glass;
variable quantities of organic carbon line or fill the insides of some individual vesicles, while relatively large,
tufted organic-rich laminae envelop multiple vesicles.

The microstructures reported herein constitute a new type of abiogenic artifact (pseudo-fossil) that must be
considered when evaluating potential signs of early life on Earth or elsewhere. In the sample studied here,
where hundreds of these microstructures are present, the combined evidence permits a relatively straightforward
interpretation as vesicular volcanic glass. However, reworked, isolated, and silicified microstructures of this
type may prove particularly problematic in early or extraterrestrial life studies since they adsorb carbon onto
their surfaces and are readily pyritized, mimicking a common preservation mechanism for bona fide micro-
fossils. In those cases, nanoscale analysis of wall ultrastructure would be required to firmly exclude a biological
origin. Key Words: Microfossils—Pseudo-fossils—Volcanic vesicles—Archean life—Pilbara Craton—Dresser
Formation. Astrobiology 18, xxx–xxx.

1. Introduction

The two regions on Earth that have played dominant
roles in the identification of early Archean microfossils,

namely, the Barberton Mountain Land of South Africa and
the Pilbara Craton of Western Australia, are dominated by
volcanic sequences, and both contain a significant component
of volcanoclastic sediments (Walsh, 2004; Van Kranendonk,
2006; Westall et al., 2006; Van Kranendonk et al., 2007).
Chert and sandstone units from which microfossils have been
described (e.g., Westall et al., 2006; Sugitani et al., 2007,
2010; Wacey et al., 2011) frequently occur intercalated with
such volcanoclastic sediment, and some microfossil-hosting
cherts have been interpreted as silicified volcanoclastic sed-
iment (Lowe, 1999; Westall et al., 2006). Hence, vesicular
volcanic glass and microbial textures could occur in close

proximity to one another, within the same rock beds or even
the same thin sections.

The recognition of the similarity between vesicular vol-
canic microstructures and potential Archean cells dates back
at least half a century (Engel et al., 1968). However, such
early studies were concerned only with differentiating ves-
icles in basalt versus potential microfossils in chert, two
very distinct lithologies that can easily be differentiated in
the field or in thin section; early studies did not consider that
altered vesicular volcanic glass could be reworked into chert
or other sediments. More recent work has shown that ve-
sicular volcanics can occur as microclasts within Archean
bedded chert (Westall et al., 2006; Brasier et al., 2013) or
silicified sandstone (Wacey et al., 2017). These are typically
heavily silicified, replacing and disguising the original vol-
canic composition (e.g.,Westall et al., 2006); some Archean
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vesicular clasts have been shown to contain linings/coatings
of organic material (Lepot et al., 2011; Brasier et al., 2013),
while others appear to have been colonized by biofilms
(Westall et al., 2006, 2011).

The morphological similarity between organic-lined vol-
canic vesicles and early biotic cells, where both have been
silicified, raises problems for robustly identifying early life
on Earth or elsewhere. It is notable that, in discussions
concerning the biogenicity of putative Archean cells, an or-
igin as altered vesicular volcanic glass has, to the best of our
knowledge, never been considered. In contrast, other abio-
genic mechanisms for creating spheroidal to lenticular
microstructures, for example as carbon-coated silica spher-
ulites, have been routinely discussed (e.g., Ueno et al., 2006;
Westall et al., 2006; Sugitani et al., 2007). This contribution
aims to bring microfossil-like volcanic microstructures to the
attention of the wider astrobiological community. We illus-
trate a range of microstructures interpreted as silicified and
pyritized vesicular volcanics in one of the most important
geological units for the study of early life on Earth, noting
their association with kerogenous organic material. We dis-
cuss the similarities and differences between these structures
and bona fide cells, and between these structures and some
previously described putative Archean microfossils.

2. Materials and Methods

2.1. Field location/sampling

The Dresser Formation is located within the East Pilbara
granite greenstone terrane of the Pilbara Craton, Western
Australia (Fig. 1a). The formation contains some of Earth’s
oldest and best-preserved volcanic and sedimentary rocks
(Fig. 1b; Barley et al., 1979;Hickman, 2012), and its age is well
constrained at 3.481– 3.5Ga (Australian Stratigraphic Names
Database, Dresser Formation Stratigraphic Number 36957).
The Dresser Formation is exposed in a ca. 25 km2 area in the
North Pole Dome and includes bedded chert, carbonate, and
siliciclastic portions, plus pillow basalt and dolerite (Nijman
et al., 1999; Van Kranendonk et al., 2008). The sedimentary
rocks are interpreted to have been deposited under shallow
water and low-energy conditions (Buick and Dunlop, 1990)
within a caldera-like setting, with significant contemporaneous
growth faulting and tectonic activity accompanied by volcanic
activity and hydrothermal fluid flow (Van Kranendonk et al.,

2008; Djokic et al., 2017). The sample (ca. 17· 9· 7 cm in
size) was collected from an outcrop on the slope of ‘‘Stroma-
tolite Hill,’’ Fig. 1c (Noffke et al., 2013), and thin sections were
made from the central nonweathered portion.

2.2. Optical microscopy

Petrographic analysis was carried out on four standard
uncovered polished geological thin sections (*30 mm thick)
by using a Leica DM2500M microscope, with 4· , 10· ,
20· , and 50· lenses, located within the Centre for Micro-
scopy Characterisation and Analysis (CMCA) at The Uni-
versity of Western Australia (UWA). Images were captured
with a digital camera and Toupview imaging software.

2.3. Laser Raman microspectroscopy

Laser Raman analyses were carried out at the University
of Bergen with a Horiba LabRAM HR800 integrated con-

focal Raman system and LabSpec5 acquisition and analysis
software, and at UWA with a WITec alpha 300RA+ in-
strument and WITec Project/Control FOUR acquisition and
analysis software. Samples were standard uncovered geo-
logical thin sections, which allowed optical and chemical
maps to be superimposed. At Bergen, analyses were carried
out by using a 514.5 nm laser, 100 mm confocal hole, 1800 l/
mm grating and 50 · /0.5 objective lens, while at UWA
analyses were carried out by using a 785 nm laser, 100mm
confocal hole, 600 l/mm grating, plus 20 · /0.4 and 100· /
0.9 objective lenses. Laser centering and spectral calibration
were performed daily on a silicon chip with characteristic Si
Raman band of 520.4 cm-1. Count rates were optimized
prior to point spectra acquisition or hyperspectral mapping
by using the dominant quartz Raman band of 465 cm-1. The
laser was focused at least 1 mm below the surface of the thin
sections to avoid surface polishing effects, and the laser
excitation intensity at the sample surface was in the 1–5mW
range. Spectra were collected in the 100–1800 rel. cm-1

region in order that both 1st-order mineral vibration modes
and 1st-order carbonaceous vibration modes could be ex-
amined simultaneously. For mineral identification from
Raman spectra, dual acquisitions were taken from each
analysis point, each with an acquisition time of 4 s. Spectral
decomposition and subsequent image processing were per-
formed with the Labspec5 or Project FOUR software, with
baseline subtraction using a 3rd-, 4th-, or 5th-order polyno-
mial. Raman maps were acquired with the spectral center of
the detector adjusted to 944 cm-1 and with 1–1.5mm spatial
resolution. Carbon maps were created by integrating over
the*1600 cm-1 ‘‘G’’ Raman band, quartz maps by using the
*465 cm-1 Raman quartz band, pyrite maps the *378 cm-1

Raman pyrite band, and anatase maps the*145 cm-1 Raman
anatase band. Control checks for contamination by epoxy
were carried out by using the *830 cm-1 and 650 cm-1

Raman bands (see Supplementary Figs. S1 and S2; Supple-
mentary Data are available online at www.liebertonline.com/
ast). Three-color overlay images were created with Image J
software.

2.4. Focused ion beam (FIB) preparation

of transmission electron microscope (TEM) samples

A dual-beam FIB system (FEI Nova NanoLab) at the
Electron Microscopy Unit, University of New South Wales,
was used to prepare TEM wafers from the thin sections de-
scribed above, coated with *30nm of gold. Electron beam
imaging within the dual-beam FIB was used to identify mi-
crostructures of interest in the thin sections, allowing site-
specific TEM samples to be prepared. The TEM sections
were prepared by a series of steps involving different ion
beam energies and currents (see Wacey et al., 2012, for de-
tails), resulting in ultrathin wafers of c. 100 nm thickness.
These TEM wafers were extracted with an ex situ microma-
nipulator and deposited on continuous-carbon copper TEM
grids. FIB preparation of TEM sections allows features below
the surface of the thin sections to be targeted, thus eliminating
the risk of surface contamination producing artifacts.

2.5. TEM analysis of FIB-milled wafers

Transmission electron microscope data were obtained
with a JEOL 2100 LaB6 TEM equipped with a Gatan Orius
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CCD camera and Tridiem energy filter operating at 200 kV,
located in CMCA. Energy-filtered TEM elemental maps
were obtained by using the conventional three-window
technique (Brydson, 2001), with energy windows selected to
provide optimum signal-to-noise.

2.6. FIB-SEM 3D nanotomography

Focused ion beam milling and scanning electron micro-
scope (SEM) imaging in three dimensions was performed on
a FEI Helios Plasma dual-beam instrument at the Hillsboro
NanoPort of Thermo Fisher Scientific. The protocol was a
significantly modified version of that described by Wacey
et al. (2012), with milling and imaging parameters opti-
mized to suit the type of sample (i.e., a relatively large
pyritic microstructure within a silica matrix). A region of
interest (ROI) previously identified by optical microscopy,
approximately 140· 140 · 30 mm in size, was covered with a
protective (c. 2 mm thick) platinum layer. Bulk milling to
isolate the large ROI was performed with a Xe plasma ion
beam; the ROI was then extracted from the thin section with
a micromanipulator and attached to a carrier grid to perform
the 3D analysis. Three-dimensional milling and imaging
was performed with the Auto Slice & View G4 software
with a 59 nA beam current and slice thickness of 100 nm.
Each newly milled face was imaged (6060 · 2578 pixels,
resulting in *23 nm pixel size) by using a concentric
backscatter detector (CBS) and SEM parameters of 2 kV
accelerating voltage and 3.2 nA beam current. A total of
1383 slices was milled, giving a total analysis volume of
approximately 580,000mm3. The sequential FIB-SEM na-
notomography images were imported into the AVIZO 8.0
software package. Here, they were stacked, aligned, and
individual components (e.g., pyrite, which is bright white on
the CBS images) were segmented. Models were visualized
and rendered in AVIZO 8.0, and images were captured from
multiple orientations in 3D space.

2.7. Nanoscale secondary ion mass spectrometry

(NanoSIMS) ion mapping

High spatial resolution and high sensitivity ion mapping
was performed with a CAMECA NanoSIMS 50, located at
CMCA. The sample mount was the same as that used during
sulfur isotope analysis by Wacey et al. (2015), having
subsequently been repolished and coated with a thin (c.
10 nm) layer of gold to provide conductivity at high volt-
age. Potential contamination of surface pores by epoxy was
checked for using Raman micro-spectroscopy (Supplemen-
tary Figs. S1 and S2), and these areas were avoided during
NanoSIMS analyses. Details of qualitative ion mapping with
NanoSIMS in multicollector mode were given by Wacey
et al. (2008) and Kilburn and Wacey (2011). Briefly, a fo-
cused primary Cs+ ion beam, with a beam current of 2–4 pA,
was rastered over the sample surface, and the sputtered ions
were extracted to a double focusing mass spectrometer.
Images with sub-100 nm spatial resolution mapping relative
ion intensity were acquired over fields of view ranging from
25 to 40 mm2. Prior to each analysis, the sample area was
pre-sputtered to remove surface contamination, implant Cs+

ions into the sample matrix, and attain an approximate
steady state of secondary ion emission (cf. Gnaser, 2003).
Ion maps of oxygen (16O-), carbon (12C2

-), nitrogen

(12C14N-), sulfur (34S-), and iron sulfide (56Fe32S-) were
then produced simultaneously from the same sputtered
volumes of sample. Two-color overlay images of 12C14N-

and 34S- were created with Image J software. Only relative
concentrations of ions can be obtained when using this
NanoSIMS methodology. Without multiple standards, no
inferences can be made from these data concerning either
the absolute concentration of elements or the percentage
concentration of one element compared to another.

3. Results

3.1. Microstructure morphology, distribution,

and chemistry

Vesicular microstructures are abundant in all thin sec-
tions examined, occurring through most of the *5 cm
stratigraphic depth covered by each thin section. They are
most abundant in association with *50–300 mm thick dark
(pyrite and carbon-rich), tufted laminae, but also occur in
clearer nonlaminated regions (Fig. 2a). They range in
shape from spheroidal to elliptical to eye-shaped and len-
ticular, with spheroidal forms dominating, especially for
the smaller vesicles. They range in long-axis diameter from
*10 to *250 mm. A size frequency distribution (Fig. 3a;
n = 250) shows that smaller vesicles (10–30 mm) are most
common, but both the mean vesicle size (57 mm) and the
standard deviation (50 mm) are large. Vesicles can be sol-
itary (Fig. 2a, 4h), but commonly they occur as pairs
(Fig. 4d–4e, 4l–4m), triplets (Fig. 4n), and larger groups
(Fig. 4i, 4k), occasionally arranged as chains; many share
common walls (Fig. 4d, 4l–4m, blue arrows) and show
evidence for coalescence (Fig. 4l–4m). Several vesicles are
incomplete, with distinctive curved walls being abruptly
terminated by silica-filled gaps, giving the impression of
erosion or rupturing (Fig. 2c–2d).

Using light microscopy and Raman spectroscopy, we ob-
served that most vesicle walls appeared to be composed of
pyrite (Figs. 4d–4o, 5a, 5c–5d). However, on closer exami-
nation, using scanning electron microscopy (SEM), trans-
mission electron microscopy (TEM), and NanoSIMS, we
could see that the vesicle walls in fact comprised over 50%
quartz plus hundreds to thousands of nanograins of pyrite
within this quartz matrix (Figs. 6–8). There is no continuous
wall, rather a wall region defined by the presence of these
pyrite nanograins. In some cases, where there are aggrega-
tions of multiple vesicles, these wall regions can attain
thicknesses of over 100mm and coalesce to join up adjacent
vesicles (e.g., Fig. 2c). In other cases, glass alteration pre-
serves a ‘‘triple-junction’’ structure (Fig. 9f). Titanium-rich
minerals (e.g., anatase and titanite) are occasionally found
associated with the wall regions of the vesicles as well as in
the tufted laminae (Fig. 10).

Vesicles can be infilled in a variety of ways. Many vesicles
are almost entirely quartz-filled (e.g., Fig. 4h), some have
alternating layers of quartz plus the same nanopyrite/quartz
mixture that defines the wall regions (Fig. 4o), some have
partial linings of organic particles (Fig. 10f), some have
sparsely distributed organics throughout (Fig. 5c, 7b), some
are entirely filled with dense balls of a mixture of nano-
crystalline pyrite and quartz (Fig. 9h–9i), while others have
seemingly remained partially empty (now holes in the thin
section; Fig. 4m, arrowed). A minor proportion of vesicles,

4 WACEY ET AL.



including large spheroidal, eye-shaped, and lenticular mor-
photypes, have large quantities of kerogenous carbon within
or lining their wall zones, accompanied by only relatively
small amounts of pyrite (Fig. 5b).

4. Discussion

4.1. Comparisons with microfossils

The Dresser vesicular microstructures exhibit a number of
features that could lead to a favorable comparison to indig-
enous microfossils. The vesicles are abundant in each thin
section and frequently occur in clusters reminiscent of mi-
crobial behavior. Many have spheroidal, elliptical, and len-
ticular morphologies that are closely comparable to some
previously reported Archean microfossils (e.g., Walsh, 1992;
Sugitani et al., 2007, 2010; Wacey et al., 2011). Their sizes
(*10–250mm) lie in the range of extant prokaryotes and of
reported Archean microfossils, although Archean microfos-
sils as large as 250mm are very rare ( Javaux et al., 2010).

Many vesicles are associated with organic material that
has a Raman signal consistent with disordered kerogen. In

some cases, this organic material is concentrated in narrow
regions in the vicinity of the vesicle wall (Fig. 5b). The
organic material is also of a thermal maturity consistent with
both the metamorphic grade of the Dresser Formation rocks
and with previous reports of organic carbon in these samples
(Noffke et al., 2013), indicating that it is not a younger
contaminant (see also Supplementary Figs. S1 and S2 for
data quality control protocols that rule out laboratory con-
tamination). In addition, the vesicles occur in sedimentary
rock samples that contain both macroscopic and micro-
scopic microbially induced sedimentary structures, as pre-
viously reported by Noffke et al. (2013), and potential sulfur
isotope evidence for metabolic cycling (Ueno et al., 2008;
Shen et al., 2009; Wacey et al., 2015). Hence, the context of
the samples is plausible for life, and evidence for life has
been previously reported from this environment.

On closer examination, however, the vesicles fail a number
of accepted biogenicity criteria. For example, the vesicles
have thick (frequently 5–100mm), dispersed wall zones in-
stead of thin continuous to semicontinuous walls as demon-
strated when using identical electron microscopy protocols

FIG. 2. (a) Overview of a petrographic thin section of the study sample from the Dresser Formation showing the dominant
microtextures, including abundant vesicular structures (one large example marked by red arrow). Note also the dark,
sometimes tufted, laminae (blue arrows) that envelop multiple vesicles. (b) Photomicrograph from a Miocene volcanoclastic
sediment from the South China Sea showing devitrified basaltic volcanic glass (gl) with vesicles now infilled with carbonate
(carb); image reproduced with permission from Li et al. (2015). (c–d) Microstructures from the Dresser Formation whose
morphologies are analogous to the fragment of Miocene vesicular devitrified volcanic glass in (b).

DRESSER FORMATION PSEUDO-FOSSILS 5



for bona fide Precambrian microfossils (e.g., Wacey et al.,

2012, 2014). Bona fide Precambrian cell walls can be of ra-
ther variable thickness; for example, carbonaceous walls of
Huroniospora sp. from the 1.9Ga Gunflint Chert range from
c. 100 nm to 1mm in thickness (Wacey et al., 2012, 2013;
Lepot et al., 2017). Pyrite crystal overgrowths may locally
further increase cell wall thickness during pyritization, with
pyritized Huroniospora occasionally attaining thicknesses of
2–5mm (Wacey et al., 2013). However, this is still an order of
magnitude thinner than many of the Dresser vesicles studied
here (Figs. 4 and 9). The ultrastructure of the pyrite that
replaces bona fide cells is also significantly different to that
seen for the Dresser vesicles. In the Gunflint Formation, for
example, the pyrite closely replicates the morphology of the
original cell wall, forming a continuous ring and incorporat-
ing nanograins of quartz within pores in the pyrite (Wacey
et al., 2013). The Dresser wall zones, however, show the
opposite pattern, with quartz seemingly incorporating nano-
grains of pyrite (Figs. 6–8).

Many vesicle wall zones comprise a number of linked
semispheres or spheres (Figs. 8, 9d–9e), again mineralized by
a mixture of quartz plus nanograins of pyrite. These sphe-
roidal structures are rather variable in size and can be up to
*20mm in diameter (Fig. 9d). Bona fide cells can be fos-
silized via spheroidal growth of quartz; for example, it has
been shown that silica nanospheres can nucleate and grow
within cell and sheath walls in modern hot-spring environ-
ments (Schultze-Lam et al., 1995), and this type of miner-
alization has been used as an analogue for the fossilization of

microorganisms in ancient silica-rich oceans (Wacey et al.,

2012). However, such silica spheres are generally <500 nm in
diameter and do not incorporate nanograins of pyrite, so they
are not analogous to the much larger mixed-mineralogy
Dresser wall spheres reported here. It is also notable that the
linked spheres comprising the walls of some of the larger
vesicles (e.g., Fig. 9e) are essentially identical in morphology
to the multitude of smaller vesicles found throughout nearby
regions of the thin sections (Fig. 9h–9i), and both large and
small vesicles can display the same coalescing morphology,
strongly suggesting all have a common genesis.

Organic carbon is only rarely found within the wall region
of Dresser vesicles. When it does occur in the wall region, it
does not form any sort of cohesive structure reminiscent of a
cell wall. In carbon-rich wall zones, organic carbon takes on a
granular appearance and is dotted throughout the c. 2–10mm
width of the wall zone (Fig. 5b), while in pyrite-rich wall
zones organic carbon occurs rather randomly, associated with
only a small proportion of the pyrite nanograins (Figs. 6e, 7a).
More commonly, organic material occurs inside the vesicles,
either as a partial narrow lining (Fig. 10f) or scattered in low
concentrations throughout the vesicle (Figs. 5c, 7b). Many
vesicles are not associated with organic material (Fig. 5a).
The majority of the organic material in the thin sections ac-
tually occurs outside the vesicles, in dense pyritized laminae
(Noffke et al., 2013) that appear to wrap around or envelop
multiple vesicles (Fig. 2a).

The grouping and coalescence of vesicles is also incon-
sistent with a biological origin. Pairs, triplets, and larger

FIG. 3. (a) Frequency distribution
of Dresser Formation vesicle diame-
ters (plotted in such a way as to
compare with microfossil frequency
distributions given in Schopf, 1976,
and Wacey et al., 2011). (b) Cumu-
lative distribution of Dresser Forma-
tion vesicle diameters (plotted in such
a way as to compare with cumulative
scoria bubble diameters given in Rust
and Cashman, 2011).
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groups of spheroidal vesicles often contain individual mem-
bers of very different sizes (Fig. 4i, 4k, 4m–4n), inconsistent
with, for example, newly divided cells or cell colonies (e.g.,
Knoll, 2015). Similarly, adjacent lenticular vesicles can also
be of significantly different sizes and have significantly dif-
ferent length/width ratios (Fig. 4d–4e). The common joining
points between groups of vesicles are also inconsistent with
an origin as cells; for example, pyritized ‘‘triple-junctions’’
can be several tens of micrometers across and form densely
pyritized triangles with concave sides (Fig. 9f–9g, arrows).

The size frequency distribution (Fig. 3a) is unlike that of a
typical biological assemblage, with no examples of vesicles in
the <10mm size category, a size which corresponds to, by far,
the largest proportion of prokaryotic cells (Whitman et al.,

2012), a mean vesicle diameter of 57mm, and a large standard
deviation of 50mm. This contrasts with mean microfossil di-
ameters of 10.5mm (st. dev.= 2.8mm), 5.3mm (st. dev.= 2.5
mm), and 9.3mm (st. dev.= 1.9mm) for cells from the*3.4Ga
Strelley Pool, *1.9Ga Gunflint, and *0.9Ga Bitter Springs
Formations, respectively (Schopf, 1976; Wacey et al., 2011).

Finally, many of the vesicles in the 10–30mm size range are
partly or entirely filled with pyrite, so that they now resemble
solid spheres or semispheres (e.g., Fig. 9h–9i). Pyritization of
Precambrian microfossils typically does not result in balls of
pyrite; even very small (c. 1mm diameter) bacteria tend to
retain a hollow center (later silica filled) when observed at
high spatial resolution (e.g., Fig. 3 of Wacey et al., 2013). The
distribution of pyrite in the Dresser spheres is more consistent
with the infilling of spheroidal spaces within a substrate rather
than the pyritization of biological cells.

4.2. Comparisons with vesicular volcanic sediment

For the reasons outlined above, the Dresser vesicles cannot
be interpreted as microfossils, so some other mechanism of
formation is required. The Dresser Formation has been in-
terpreted as being deposited within an active volcanic caldera
(Van Kranendonk et al., 2008; Djokic et al., 2017), so a
logical explanation for these microstructures might involve
comparison with vesicular volcanic rocks.

FIG. 5. Association of organic material with the Dresser Formation vesicles. (a) Photomicrograph and associated Raman
phase map showing no organic material associated with a group of small vesicles. (b) Photomicrograph and associated
Raman phase map showing significant amounts of organic carbon within, and potentially lining, the wall zone of a larger
vesicle. (c) Photomicrograph and associated Raman phase map showing plentiful organic carbon within a large vesicle but
not directly associated with the pyritic ‘‘wall.’’ (d) Photomicrograph and associated Raman phase map showing significant
organic carbon in the vicinity of a group of small vesicles but not directly correlated with them. For all Raman phase maps,
carbon is red, pyrite is green, and quartz is blue. Along the bottom row are representative Raman spectra for the quartz
matrix, pyrite-rich zones, and carbon-rich zones. The Raman bands used for mapping each of these phases are shaded
(quartz *465 cm-1 in blue; pyrite *378 cm-1 in green; and carbon G*1600 cm-1 in red).
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Volcanic vesicular fabrics may commonly be heavily
modified or destroyed by burial compaction and diagenesis
(Branney and Sparks, 1990). However, a number of in-
stances of vesicular pyroclastic rocks have previously been
reported from the Pilbara Craton (Buick and Dunlop, 1990;
Westall et al., 2006; Van Kranendonk et al., 2008; Brasier
et al., 2013). In these cases, vesicular textures appear to
have been preserved by very early diagenetic silicification
(e.g., Brasier et al., 2013). The same is likely true of the
Dresser Formation, with multiple phases of hydrothermally
driven silicification and pyritization demonstrated to have
been occurring contemporaneously with explosive volcanic
activity and sediment deposition (Van Kranendonk et al.,

2008). Subsequently these rocks have only experienced low-
grade metamorphism (maximum of lower greenschist fa-
cies) and very little strain (Van Kranendonk et al., 2007),
permitting preservation of remarkable vesicular textures.

Comparisons of Dresser Formation vesicle morphology
with modern volcanogenic textures are striking (Figs. 2, 4,
and 9). A number of regions of the Dresser thin sections
contain linked spheroids or partial spheroids that strongly
resemble reworked fragments of devitrified vesicular volcanic
glass (compare modern equivalent in Fig. 2b with the Dresser
structures in Fig. 2c–2d). Each type of vesicle shape observed
in the Dresser Formation, from spheroidal to eye-shaped to

highly lenticular (Fig. 4d–4o), can be replicated in thin
sections of modern vesicular volcanic glass (Fig. 4a–4c).
Likewise, the log-normal vesicle size frequency distribu-
tion (Fig. 3a), pattern of cumulative vesicle size distribu-
tion (Fig. 3b), and general range of vesicle sizes are also
consistent with observations of modern scoria samples
(e.g., Mangan and Cashman, 1996; Herd and Pinkerton,
1997; Rust and Cashman, 2011).

Some of the more unusual features of the Dresser sam-
ples, such as examples of one or more smaller vesicles lying
within a larger vesicle (Fig. 4g), can also be seen in modern
volcanic glass (arrows in Fig. 2a). The grouping patterns of
Dresser vesicles (Fig. 4i) plus the concavo-convex rela-
tionships of shared vesicle walls (Fig. 4l–4m) are also rep-
licated in modern vesicular volcanic textures (Fig. 4b
[ringed area], 4c). The intriguing Dresser texture of multiple
linked semispheres or spheres making up the wall zone of
larger vesicles (Fig. 9d–9e) is analogous to a bubble wall
texture found in modern lava flows (Fig. 9a), although it is at
somewhat of a smaller scale. An alternative explanation for
these linked pyritized ‘‘wall spheres’’ could be as a result
of granular palagonitization of volcanic glass (cf. Furnes
et al., 2007). In this scenario, pyrite could replace the early
rounded palagonite granules, while the remainder of the ves-
icle or glass shard is silicified. Remnants of concave triangular

FIG. 6. High-resolution analysis of a typical vesicular microstructure from the Dresser Formation. (a) Photomicrograph of
a spheroidal vesicle; blue line indicates region extracted for TEM analysis. (b) Bright-field TEM image showing that the
vesicle ‘‘wall’’ comprises silica (mid-gray) with hundreds of nanograins of pyrite (dark gray). (c–e) Energy-filtered TEM
elemental maps of iron, oxygen, and carbon from the boxed area in (b). Small amounts of carbon appear to be associated
with only three of the pyrite nanograins.
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junctions between triplets of Dresser vesicles (Fig. 9f–9g)
are analogous to those seen in modern volcanic glass
fragments and diagnostic of bubble coalescence (Fig. 9b).
Patterns of pyrite partially or completely infilling modern
volcanic vesicles (Fig. 9c) replicate those seen for many of
the smaller Dresser vesicles (Fig. 9h–9i). Primary sulfide
coatings have been reported from vesicles in mafic mag-
mas from a range of submarine settings including fresh
submarine pillow basalts and seamount lavas (e.g., Moore
and Calk, 1971; Ackermand et al., 1998).

The original mineralogy of the Dresser volcanic clasts has
been almost entirely replaced by silica and pyrite, which
hinders firm chemical identification of the original magmatic
compositions, though the vesicular morphology has been
fortuitously preserved in places by early pyritization. Tradi-
tional devitrification products of clay minerals and zeolites
have also been replaced by silica. Titanium-rich minerals are
observed within a small proportion of the vesicles and in
some parts of the tufted laminae (Fig. 10). This is consistent
with our volcanogenic interpretation but does little to deter-
mine the original magma composition. Non-uniform distri-
bution of the vesicular microtextures suggests that the
primary deposits may have been a stratified tephra sequence
(perhaps vitric ash or vesicular scoria clasts) deposited into
a shallow caldera lake. The vesicular textures that are pre-
served are more consistent with the bubble textures observed
in fluidal mafic clasts (scoria), rather than the interconnected
vesicle textures associated with silicic pumice (e.g., Heiken
and Wohletz, 1985; Rust and Cashman, 2011). Variations in
extent of silicification, and pyrite content, may reflect vari-

ability in the original composition of the units, perhaps in-
dicative of a sequence of interbedded silicic and mafic
tephras. Mafic glasses would certainly have both elevated Fe
and S contents, compared to silicic glasses.

There is undoubtedly an association of organic material
with some of the Dresser vesicles (Figs. 5–7 and 10). Potential
biofilms colonizing volcanic sediments have been reported
previously from early Archean rocks of the Pilbara (3.45Ga
Kitty’s Gap Chert, Westall et al., 2006, 2011; 3.46Ga Apex
Basalt, Brasier et al., 2013), and it has been suggested that
volcanoclastic grains provided bioessential elements for che-
molithotrophic biofilms, while redox reactions at their surface
could provide an energy source for biological metabolism
(Westall et al., 2006, 2011; Brasier et al., 2011). This is
supported by modern experiments and observations showing
that biofilms have an affinity for volcanic glass (Thorseth
et al., 1992; Bryan et al., 2004). Previous work on this unit in
the Dresser Formation has revealed several microbially in-
duced sedimentary structures, including the tufted organic-
rich laminae within these very same thin sections (Noffke
et al., 2013). Microbial biofilms appear to have colonized the
tephra sporadically, perhaps dependent on the rate of rain-
down of the ash, with colonization only in quiescent times.

4.3. Could some previously reported Archean

microfossils be vesicular volcanic glass?

The data presented above illustrate that microstructures
within vesicular volcanic glass (e.g., spheres, ellipsoids,
concentric spheroids, and lenses) can mimic some of the

FIG. 7. Nanoscale association of organic material and pyritized vesicles. Three sets of photomicrographs and accom-
panying NanoSIMS ion maps showing that small amounts of organic material occur in close proximity to pyritized vesicle
walls but rarely within the walls. For the NanoSIMS maps, organic material is in red, pyrite in green, and quartz in black.
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morphologies of previously reported Archean microfos-
sils. Hence, these new data have a twofold application in
the early life and astrobiology fields: firstly, they provide
an alternative abiogenic hypothesis that can be tested
against biogenic scenarios for future potential microfossil
discoveries on the early Earth or other planets; secondly,
they can be used in potential re-evaluations of previous
reports of Archean microfossils. It is, of course, beyond
the scope of this contribution to speculate on the origin of
every Archean spheroidal or lenticular microstructure that
has been claimed to be a microfossil. Unfortunately, many
of these are poorly illustrated, lack geological context, and
may never be analyzed with modern high-resolution
techniques (see review in Wacey, 2009).

Of the Archean microfossils that are well character-
ized, one morphotype is particularly worthy of discussion in
light of the new data presented above. Large spindle-shaped

microfossils (later referred to as lenticular or flanged len-
ticular microfossils) have been described from the *3.4Ga
Kromberg Formation of South Africa (Walsh, 1992) and
from the*3.4Ga Strelley Pool Formation and 3.0Ga Farrel
Quartzite of Western Australia (Sugitani et al., 2007, 2009,
2010, 2013, 2015a, 2015b; Grey and Sugitani, 2009; Lepot
et al., 2013). These microfossils seem somewhat out of
place in an evolutionary context with no extant prokaryote
analogues, instead being most analogous to the extant eu-
karyote taxon Pterosperma, whose previous fossil record is
restricted to much younger rocks, with the earliest evidence
at *1.3–0.9Ga in the form of Pterospermopsis (Schopf and
Klein, 1992) and Pterospermella (Samuelsson et al., 1999).

The geological settings of the Kromberg, Strelley Pool,
and Farrel Quartzite fossils are consistent with potential
reworking of vesicular volcanics into chert sediments. For
example, at least one of the Kromberg Formation cherts has

FIG. 8. Three-dimensional analysis of a typical vesicular microstructure from the Dresser Formation. (a) Photo-
micrograph of a spheroidal vesicle; blue box indicates the ROI analyzed in 3D. (b) SEM image showing large trenches
milled around the structure in preparation for lifting out the ROI for 3D analysis. (c) SEM image of the ROI attached to the
analysis grid prior to 3D data collection. (d) SEM-BSE image (1 of 1383 collected) of a cross section through the vesicle
showing typical morphology of the vesicle ‘‘wall’’ area, including balls of pyrite nanograins (arrow) in a silica matrix. (e)
SEM-BSE image looking through a void space within the sample toward a number of vesicular compartments (red arrows)
that can be directly compared to those seen in SEM images of modern pumice (see, e.g., Fig. 1 of Deniz, 2012). (f–g) 3D
model of the pyritic component of the reconstructed vesicle viewed from two different orientations emphasizing the spheres
and semispheres of nanopyrite that comprise the wall region.
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been interpreted as silicified volcanic ash, while others cap
volcanic flows and volcanoclastic deposits (Lowe and Knauth,
1977; Walsh, 1992). Clasts of vesicular ash have been found
in the Strelley Pool Formation (Wacey et al., 2017), and si-
licified volcanoclastics occur within a few millimeters of the
black chert from which the Farrel Quartzite lenticular mi-
crofossils are described (Sugitani et al., 2007).

The spindle/lenticular microfossils range from about 10 to
135 mm in length (Walsh, 1992; Sugitani et al., 2007, 2009,
2010, 2013, 2015a; Grey and Sugitani, 2009; Lepot et al.,
2013; Fig. 11m–11q). In common with the Dresser micro-
structures described herein, individual specimens <10mm in
diameter (i.e., typical size of prokaryotes) are not present. In
many cases, their walls are granular and appear to be up to
15 mm thick (Walsh, 1992), which is incompatible with cell
walls but closely comparable to our Dresser Formation
vesicles (e.g., Fig. 5b). Illustrations of some spindles in the
work of Walsh (1992) show one or more spheroidal interior

bodies that are closely comparable to the vesicle-within-
vesicle microstructures shown in both modern vesicular
glass and the Dresser Formation (Figs. 4 and 11).

Where groups of spindles are illustrated, a high propor-
tion (e.g., 62 colonies out of 80 from Sugitani et al., 2013)
have their long axes aligned; notably, some large spindles
are associated with (or potentially attached to) one or more
smaller spindles or spheres (Fig. 11m; Walsh, 1992). These
features are closely comparable to our aligned Dresser
vesicles of differing sizes (e.g., Figs. 4e and 11d) and could
be interpreted as the coalescence of spindle-shaped vesicles
in ash shards. Not all previously described lenticular fossils
are hollow (silica-filled); many have internal granular car-
bonaceous material and/or sulfides mixed with silica (Su-
gitani et al., 2010, 2013). Likewise, some lenticular fossils
lack a recognizable cell wall (Sugitani et al., 2013), so they
could be interpreted as void spaces filled with silica, car-
bon, and sulfides. Finally, the size frequency distribution of

FIG. 9. Further comparison of microstructures found within ‘‘modern’’ volcanic glass and those found in the Dresser
Formation. (a) Large Kilauea lava bubble with multiple smaller bubbles on the surface; image courtesy of USGS/Hawaiian
Volcano Observatory. (b) Fragment of 74 ka rhyolitic volcanic glass from the South China Sea showing distinct triple
junction between adjacent vesicles; image reproduced with permission from Buhring et al. (2000). (c) Vesicular basalt with
pyrite partially infilling the vesicles (e.g., arrow), from Leg 193 of the Ocean Drilling Program; image reproduced with
permission from Binns et al. (2002). (d–e) Examples of large vesicles with smaller ‘‘bubbles’’ at their margins from the
Dresser Formation (compare with (a)). (f–g) Structures from the Dresser Formation interpreted as altered volcanic glass
preserving ‘‘triple-junction’’ features comparable to that arrowed in (b). (h–i) Small vesicles from the Dresser Formation
partially (arrowed) or entirely infilled with pyrite (compare with (c)).
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spindles shows a rather large mean and standard deviation of
spindle diameters (e.g.,Walsh, 1992), much like our Dresser
structures herein.

However, detailed analytical work by Sugitani and col-
leagues on the Farrel Quartzite and the Strelley Pool For-
mation lenticular microfossils has revealed various features
that are more difficult to reconcile with a volcanogenic or-
igin. Firstly, the lenticular structures have been described
both from thin sections and from acid macerates from
both the Farrel Quartzite (Grey and Sugitani, 2009) and the
Strelley Pool Formation (Sugitani et al., 2015a). It is un-
known whether quantities of organic material that line
volcanogenic vesicles would survive such an acid macera-
tion process intact; simple aggregations of carbonaceous
particles would likely disintegrate during preparation (Grey
and Sugitani, 2009), but more continuous organic films (or
even biofilms) colonizing volcanic vesicles may survive. It
is also possible that the spindles observed in Strelley Pool,
Farrel, and Kromberg thin sections are different entities to the
lenticular fossils with disc-shaped flanges found in Strelley
Pool and Farrel palynological extracts. If so, then the flanged
microstructures are likely the best candidates for microfos-
sils, but many of the nonflanged spindles in thin sections
could be better explained as volcanogenic vesicles. Sec-
ondly, the grouping of some of the lenticular structures does
not seem compatible with a volcanogenic origin. Although

clusters of lenticular structures frequently have their long
axes aligned (in common with volcanogenic examples), the
long axes of members of several colonies are rather ran-
domly orientated (e.g., Fig. 13 of Sugitani et al., 2007).
Thirdly, features such as tapering carbonaceous equatorial
flanges (e.g., Sugitani et al., 2009) and potential thin, torn,
or folded walls (Sugitani et al., 2007) are much more dif-
ficult to explain in a volcanogenic scenario than in a cellular
scenario. Fourthly, there are d13C heterogeneities within the
microstructures that appear to be texture-specific (Lepot
et al., 2013). These heterogeneities were used to support a
biological origin for the spindles and other Strelley Pool
microfossils, but the data do not completely rule out the
spindles forming from two (or more) generations of organic
material with distinct isotopic compositions inherited from
distinct organic precursors. That said, such heterogeneities
would be unlikely if the spindles were volcanic vesicles
lined by simple organic films unless the organics came from
multiple sources, but could more easily occur if they were
lined by biofilms. Experiments into the colonization of ve-
sicular volcanic sediments by prebiotic organic films, and by
biofilms, are now needed to firmly exclude such scenarios.

Large ellipsoids (up to*80mm in diameter) also occur as
a minor component of a suite of microfossils described from
the basal sandstone member of the Strelley Pool Formation
(see Figs. 1a–1b and 4a–4b of Wacey et al., 2011). These

FIG. 10. Titanium-rich minerals associated with the Dresser Formation vesicular structures. (a) Bright-field TEM image
of part of a vesicular ‘‘wall’’ region, from a lenticular microstructure. (b) Three-color overlay EDS map of the region shown
in (a) highlighting the association of pyrite (represented by green iron map), organic material (represented by red carbon
map), and titanite (represented by blue titanium map); black region in this map is quartz. (c) Transmitted-light thin section
photomicrograph of tufted lamina associated with vesicular structures. (d) Three-color overlay Raman phase map of the
boxed region in (c) showing association of TiO2 (blue) with pyrite (green) and organic material (red) in the lamina; black
region in this map is quartz. (e) Transmitted-light thin section photomicrograph of a lenticular vesicle. (f) Three-color
overlay Raman phase map of the boxed region in (e) showing association of TiO2 (blue) with pyrite (green) and organic
material (red) in part of the vesicle; black region in this map is quartz. (g) Transmitted light thin section photomicrograph of
a large vesicular structure. (h) SEM-EDS map of titanium (blue) from the boxed region in (g) showing minor enrichment in
the vesicle.
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have walls that are somewhat granular in appearance, and at
least two examples have been shown to have a significant
component of pyrite mixed with discontinuous kerogenous
carbon within their walls (Wacey et al., 2011). In light of the
data presented above, plus the recent discovery of similar
tephra within the Strelley Pool Formation itself (Wacey
et al., 2017), a volcanogenic origin for these large ellipsoids
as well as other morphotypes within this assemblage must
now be tested.

5. Conclusion

Herein, we have analyzed a new suite of spheroidal to
lenticular microstructures from one of the oldest and best
preserved volcano-sedimentary rock units on Earth, the
*3.48 billion-year-old Dresser Formation, Pilbara Craton,
Western Australia. Although these microstructures superfi-
cially resemble some types of cellular microfossils, correla-
tive microscopy shows that they are most parsimoniously
interpreted as pyritized and silicified fragments of vesicular
volcanic glass. These types of microstructures represent a
new type of pseudo-fossil that must be considered in future

assessment of putative signs of primitive cellular life, either
on Earth or elsewhere in the Universe. Given the widespread
volcanic activity on the young Earth, and the propensity for
such microstructures to adsorb carbon onto their surfaces,
these pseudo-fossils may be particularly problematical for
early or extraterrestrial life studies. Furthermore, colonization
of volcanic habitats by primitive biofilms and reworking of
volcanic sediment into environments already inhabited by
biology may blur the boundary between abiotic vesicles and
biological cells. Hence, nanoscale morphological and che-
mical analyses of vesicle wall structure will likely be nec-
essary going forward in order to firmly differentiate between
such pseudo-fossils and potential biological remains.
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