
1560 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 8, NO. 4, OCTOBER 2017

Volt-VAr Control and Energy Storage Device
Operation to Improve the Electric Vehicle Charging
Coordination in Unbalanced Distribution Networks
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Abstract—In this paper, a new approach is presented to solve
the electric vehicle charging coordination (EVCC) problem con-
sidering Volt-VAr control, energy storage device (ESD) operation
and dispatchable distributed generation (DG) available in three-
phase unbalanced electrical distribution networks (EDNs). Dy-
namic scheduling for the EVCC is proposed through a step-by-step
methodology, which solves a mixed integer linear programming
(MILP) problem for the whole time period. The objective is to mini-
mize the total cost of energy purchased from the substation and DG
units, the cost of energy curtailment on electric vehicles, the cost of
energy injected from the ESDs, and the cost of energy curtailment
on the ESDs. The Volt-VAr control considers the management of
on-load tap changers, voltage regulators, and switchable capacitors
installed along the grid. Furthermore, the formulation takes into
account the voltage dependence of the loads, while the steady-state
operation of the unbalanced distribution systems is modeled using
linear constraints. The proposed model was tested in a 178-node
three-phase unbalanced EDN considering a one-day time period.

Index Terms—Electric vehicle charging coordination (EVCC)
problem, energy storage devices (ESDs), mixed integer linear
programming (MILP), Volt-VAr control, voltage-dependent load
model.

ACRONYMS

CB Capacitor bank
DG Distributed generation
DoD Depth of discharge
EDN Electrical distribution network
ESD Energy storage device
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EV Electric vehicle
EVCC Electric vehicle charging coordination
MILP Mixed integer linear programming
MINLP Mixed integer nonlinear programming
OLTC On-load tap changer
SOC Initial state of charge
VR Voltage regulator
VVC Volt VAr control

NOMENCLATURE

Constants:

ζG
n,t Energy cost at node n at time t

ζEV
c , ζSD

c EV and ESD energy curtailment costs
ζSD Unit cost for the active power taken from the

ESD
αn,f , βn,f Load voltage dependence parameters of the

active and reactive power at node n, phasef
γ (e,m, f) Function that indicates whether EV e is con-

nected at node m and phase f
γ (u,m, f) Function that indicates whether ESD u is con-

nected at node m and phase f
ηe Charging efficiency of the charging station for

EV e
η+

u , η−
u Charging and discharging efficiencies of the

charging station for ESD u
Δt Duration of time interval t
Δcb , Δvr Maximum number of operations allowable

over the time period for the CBs and VRs
φn Minimum power factor for the operation of

the DG at node n
Bn Maximum number of CB modules at node n
Bsh

mn,f Shunt susceptance of circuit mn, phase f

E
EV
e , E

SD
u Energy capacity of EV e and ESD u

Eini
e Initial state of charge of EV e

E
SDf
u Goal for the state of charge of ESD u at the

end of the time period
ESDi

u Initial state of charge of ESD u
Imn Maximum current flow magnitude of

circuit mn
Iim ∗
mn,f ,t , I

re∗
mn,f ,t Imaginary and real part of the estimated

current of the VR in circuit mn, phase f ,
time t
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Po
n,f ,t , Q

o
n,f ,t Nominal active and reactive power demand at

node n, phasef , time t

P
EV ch
e Maximum power consumption of EV e

P
SD
u Maximum charging/discharging active power

of ESD u
P

G
n Maximum active power of the DG at node n

Qesp
n CB module reactive power capacity at

node n.
Q

G
n,Q

G
n

Maximum and minimum reactive powers of
the DG at node n

Rmn,f ,h Resistance of circuit mn between phases f
and h

%Rmn Regulation percentage of the VR in circuit mn
Tpmn Maximum number of steps of the VR in

circuit mn
V , V Upper and lower voltage magnitude limits
Vo Nominal voltage
V im ∗

n,f ,t , V
re∗
n,f ,t Imaginary and real part of the estimated volt-

age at node n, phase f , time t
Xmn,f ,h Reactance of circuit mn between phases f

and h

Variables:

Bn,t Modules of the CB in operation at node n,
time t

btmn,f ,t,k Binary variable that describes the tap posi-
tion of the VR in circuit mn, phase f , time t,
position k

EEV
e Energy of EV e at the end of the time period

EEV c
e Energy curtailment on EV e at the end of the

time period
ESD

u,T Energy of ESD u at the end of the time period
ESDc

u Energy curtailment on ESD u at the end of the
time period

I
c(re)
mn,f ,t,k Real part of the VR current calculation aux-

iliary variable in circuit mn, phase f , time t,
position k

Icbim
n,t , Icbre

n,t Imaginary and real part of the current gener-
ated by the CB at node n, time t

IDim
n,f ,t , I

Dre
n,f ,t Imaginary and real part of the load current at

node n, phase f , time t
IEV im
e,t , IEV re

e,t Imaginary and real part of the current de-
manded by EV e, time t

IGim
n,f ,t , I

Gre
n,f ,t Imaginary and real part of the current gener-

ated at node n, phase f , time t
Iim
mn,f ,t , I

re
mn,f ,t Imaginary and real part of the current in circuit

mn, phase f , time t
ISDim
u,t , ISDre

u,t Imaginary and real part of the current de-
manded by ESD u, time t

PD
n,f ,t , Q

D
n,f ,t Active and reactive power demand at node n,

phase f , time t
PG

n,t , Q
G
n,t Active and reactive power generated at node

n, time t
PEV

e,t EV e active power consumption, time t

PSD+

u,t , PSD−
u,t Charging and discharging power of the ESD

u, time t

Qcb
n,t Reactive power delivered by a CB at node n,

time t
tpmn,f ,t Integer variable for the number of steps of the

VR in circuit mn, phase f , time t
V im

n,f ,t , V
re
n,f ,t Imaginary and real part of the voltage at node

n, phase f , time t

V
c(re)
mn,f ,t,k Real part of the VR voltage calculation aux-

iliary variable in circuit mn, phase f , time t,
position k

ye,t Binary variable associated with the charging
state of EV e, time t

I. INTRODUCTION

INCREASING energy efficiency and reducing energy costs
through a Volt VAr control (VVC) in electrical distribution

networks (EDNs) has received plenty of attention in recent years
[1]–[4]. The VVC problem finds a control scheme for the proper
operation of the devices in the EDN that manage variations in
voltage magnitudes and reactive power flows. These devices in-
clude among others, voltage regulators (VRs), capacitor banks
(CBs) and on-load tap changers (OLTCs) [5]–[8]. Recently, sev-
eral VVC methodologies have been presented in the specialized
literature. In [1], it is proposed a centralized function for VVC,
in which, a state estimation based on pseudo-measurements
using neural networks is used as input for the VVC. A multi-
objective optimization for the VVC was presented in [2]. In
this work, a strategy was formulated based on an hourly load
forecast for the next day, taking into account the active power
demand reduction and the voltage magnitude deviation. Finally,
a deterministic framework based on a mixed-integer quadrati-
cally constrained programming problem capable of optimally
controlling the Volt-VAr problem was formulated in [3].

In recent years, energy storage devices (ESDs) have emerged
as a solution to even out the power mismatch between renewable
power generators and consumption. The ESDs store the surplus
of power for use during time periods of low power generation.
Nevertheless, the performance of ESDs has also proven advan-
tageous in improving the economic and technical operation of
the EDN [9]–[11]. Reference [9] discussed how the proper func-
tioning of the ESDs in the EDN can improve the economic use of
the existing generation, transmission and distribution infrastruc-
ture. A mixed-integer second-order cone programming model
was presented in [10] to solve the optimal operation problem of
ESDs in a radial EDN. The presented approach was tested in two
single-phase systems and no dynamic control was presented for
ESD charging. In [11], a demand-side management approach
was proposed through a day-ahead optimization process for
ESDs and distributed generation (DG). This formulation only
considered end users, disregarding the economic and operational
constraints.

Lately, the number of electric vehicles (EVs) connected to
EDNs has received more attention. Because the EVs use the
energy from the grid to charge their batteries, a high penetration
of EVs can cause the EDN to work outside of acceptable oper-
ational limits [12]. The development of EV charging schedules
to prevent issues such as overloads and voltage limit violations
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is essential [13]. Several works have approached the EV charg-
ing coordination (EVCC) problem [13]–[16]. In [13], an EVCC
problem approach was presented. The formulation could prop-
erly handle large populations and the random arrival of EVs, but
the impact of the EVs on the grid was not considered. A math-
ematical model for EV integration into the grid was presented
in [14]. An economical evaluation was assessed in order to find
the optimal energy cost that would benefit both EV owners and
the EDN operator. In [15], a multi-period optimization for EV
charging in EDNs was presented. The optimization aimed at
minimizing the cost of charging EVs. An algorithm based on
sensitivities was proposed for the real-time EVCC in [16], con-
sidering the random arrivals/departures of EVs, voltage profiles,
and power generation limits in order to minimize the total energy
cost.

The presented approach overcomes the shortcomings of pre-
vious studies, which solved the VVC and the EVCC separately,
by engaging both problems in a more global control optimiza-
tion of the EDN. Furthermore, the advantages offered by ESDs
and dispatchable DG units are also considered in this formula-
tion. While VVC devices and ESDs improve the operation of
the EDN, the formulation seeks to avoid violations of opera-
tional limits and reduce the overall costs in the grid. In addition,
the EVCC tries to optimally charge the EVs plugged into the
EDN, while avoiding the issues that a high EV penetration may
cause.

This work proposes an approach that simultaneously uses
the VVC (management of OLTCs, VRs, and CBs), ESD op-
eration, and dispatchable DG units to improve the EVCC in a
three-phase unbalanced EDN. Different from the single phase
equivalent, the three-phase unbalance representation allows the
inclusion of the mutual coupling effects in the circuits, reaching
a more realistic representation. Moreover, in order to develop a
thorough analysis and a more accurate economic improvement,
the load’s voltage dependency is also taken into account.

In order to integrate the described devices and achieve
the aforementioned objectives, a mixed-integer nonlinear
programming (MINLP) formulation is found. Linearization
techniques are later used to obtain a mixed-integer linear
programming (MILP) model that can be solved using commer-
cial software, guaranteeing the optimal solution to the prob-
lem. A step-by-step methodology that offers a broad view
of the EDN’s behavior in future periods is used to solve
a 24h time period. The proposed formulation was tested in
an EDN with 34 medium-voltage nodes and 144 low-voltage
nodes. The results demonstrate the efficiency and robustness
of the methodology. This work’s main contributions are as
follows:

1) A step-by-step methodology that solves the EVCC prob-
lem and finds the optimal operation of the EDN, through-
out a centralized coordination which takes into account
the benefits and flexibility brought to the grid by VVC
devices, ESDs, and dispatchable DG units.

2) A multi–period MILP formulation to solve the EVCC
problem together with VVC, ESD operation and dispatch-
able DG units in a three-phase unbalanced EDN, in which
loads are represented via a voltage dependent load model.

II. PROBLEM FORMULATION AND SOLUTION TECHNIQUE

This section describes the EVCC problem as well as the
advantages and all technical concerns related to the VVC and
the ESD operation. A step-by-step methodology proposed to
solve the EVCC, taking into account VVC, ESD operation, and
dispatchable DG units in a three-phase unbalanced EDS and
using a voltage dependent load model, will be presented.

A. EVCC, VVC and ESD scheduling

1) EVCC: The EVCC problem aims to find an optimal
schedule for the battery charging of the EVs connected into
the EDN in a specific time period. This charging scheduling not
only has to satisfy the EV owner needs, but also must avoid
technical limit violations due to excessive EV load connected
into the grid. An improvement in the EVCC can lead to: An eco-
nomic betterment in the operation of the system, i.e., reduction
in energy losses; an amelioration in the fulfillment of technical
limits; a cost reduction in the EV recharge; or a reduction in the
energy curtailment of the EVs at departure.

In order to find a solution for the EVCC problem, the follow-
ing considerations are assumed:

1) The initial SOC of every vehicle is known when the vehi-
cle is plugged into the grid.

2) The batteries can be controlled in each time interval into
which the time period is divided.

3) The EV user may provide a departure time when the ve-
hicle is plugged; otherwise, it will be assumed that the
vehicle will remain plugged in until a probable time in-
terval, determined by the historical of departure of the
EV.

2) VVC: The VVC is defined as a control strategy to manage
the voltage magnitudes and the reactive power flow throughout
the EDN. This management consists of periodic adjustments
over devices that inject reactive power into the grid to improve
the voltage drop and devices that directly control voltage mag-
nitude [7], [8]. In general, the VVC defines control actions in
OLTCs, VRs, and fixed–switchable CBs.

To properly carry out the adjustment over VVC devices, the
control actions might be handled by a managed operation. This
operation often follows local decision–making based on local
measurements of the EDN, i.e., each device is controlled in-
dependently. However, each action affects the EDN operation
and the performance of other devices. Thus, an integrated co-
ordination of all VVC devices, based on remote measurements
on the EDN and operator knowledge, is necessary to obtain
an optimal EDN operation through VVC. For centralized co-
ordination, a communication infrastructure and an optimized
decision-making algorithm is required to achieve an optimal
integrated VVC [17].

Keeping voltage magnitudes inside acceptable limits while
optimizing energy loss reduction has been the classical approach
when solving the VVC problem. Nonetheless, in recent works
the VVC is also used to adjust the voltage profile to manage
total demand, since a reduction in voltage magnitude levels can
represent a decrease in power consumption [2]. Therefore, con-
sidering the effects of special loads in the EDN operation, the
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Fig. 1. Step-by-step flowchart of the proposed methodology.

VVC can be a useful tool to improve the solution of the new
challenges emerging in the EDN operation. Hence, an optimized
dynamic coordination of the grid can be obtained with the in-
clusion of the VVC, allowing a more flexible adjustment of the
EDN, while avoiding voltage limits breaches in the presence of
special loads such as EVs.

3) ESD Operation: As mentioned, the solution of the pro-
posed methodology must define an optimal charging agenda for
the ESDs. For the ESDs, the charging schedule is responsible
for throttling the battery charge and for allowing the EDN to
use the stored energy. Thus, the formulation must determine the
optimal schedule to charge and discharge the ESDs at each time
interval. It is assumed that:

1) The ESDs cannot be discharged beyond their specified
Depth of Discharge (DoD).

2) The ESDs can be controlled through communication de-
vices in order to define the charging state at each time
step.

3) For each ESD, a goal is defined for the SOC at the end of
the time period (e.g., same as the initial SOC). This goal
is used to represent the utilization of the ESDs after the
considered time period (e.g., one day ahead).

B. Voltage Dependent Load Model

The demand of an EDN is classified into loads that can be
represented as: a) constant power loads, b) constant impedance
loads, c) constant current loads, or d) a combination of these.
In a VVC framework for EDNs, the load’s voltage dependency
is a key aspect of the suitable representation of the network
operation. As discussed in [2], [3], and [18], VVC models are
highly dependent on the accuracy of the load representation.
Dependence on the voltage magnitude and frequency is consid-
ered in the load models; mathematically, this dependence can be
represented by static and dynamic load models described by the
traditional ZIP model. For this analysis, two static models are
commonly studied: the polynomial load model and the exponen-
tial load model [19]. The exponential expression of the load’s
sensitivity to the voltage and frequency variation is represented

by (1) and (2).

PD = Po

(
V

Vo

)α

(1 + Kpf (fr − fo
r )) (1)

QD = Qo

(
V

Vo

)β

(1 + Kqf (fr − fo
r )) (2)

where, fr represents the frequency of the bus voltage and fo
r

represents the nominal frequency. The coefficients Kpf and Kqf

are the frequency sensitivities for the active and reactive power
loads, respectively. In this work, the effects associated with
frequency are disregarded. Furthermore, with an appropriate
adjustment of the constants α and β the model can be restricted
to the steady-state analysis case (i.e., dependence directly on
the voltage magnitude). Appropriate values for these constants
may be found in previous works, such as [20].

C. Methodology

The proposed methodology defines the status of the control
devices (VRs, and CBs), as well as the charging status of the
EVs in the network by solving an optimization problem. The
operation of the EDN is modeled considering a given horizon
(e.g., one-day), which is divided in time intervals. The time
duration for every time interval is represented by Δt . The set T
orders time intervals into which the time period is divided.

As shown in Fig. 1, the proposed MILP model is solved
at the beginning of each time interval considering the actual
number of connected EVs; besides, a forecast for the parameters
related to possible EV plugs, such as estimated arrival times
and initial state of charge (SOCs), is also taken into account.
A dynamic scheduling (rolling multi-period optimization for
the EVCC) is performed determining at each time interval the
optimal charging agenda of the EVs plugged and to be plugged
into the grid. This dynamic scheduling is a part of the step-by-
step methodology proposed, which will also determine at each
time interval the control scheme for VVC devices, DG units and
ESDs on the remaining time period. When a forecasted EV is
actually plugged in, the parameters are updated. Nevertheless,
if an EV does not arrive during the estimated time interval, a
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different estimation may be used or the EV may be disregarded
altogether. It should be noted, that the EVs may arrive and
depart during any time interval of the time period. Therefore,
the EV’s charging agenda will be generated between arrival and
departure, ideally dispatching a fully charged battery for every
vehicle. Different techniques may be applied to estimate the
arrivals, departures, and initial SOCs of the EVs, as presented
in [22]–[24].

Operational constraints such as voltage limits, active and re-
active power generation limits, and maximum current limits, are
taken into account in the model. This way, a step-by-step solu-
tion is constructed over the entire time period. The solution at
each time interval will determine the charging state for the EVs
and ESDs, the energy delivered by the DG units, the number
of modules operating in each CB, and the tap position for each
phase of every VR. The nature of the control variables associ-
ated with each device is binary, which makes the VCC problem
hard to solve. In order to reduce the computational complex-
ity, only the control variables for the current time interval are
treated as binary variables, i.e., control variables for the remain-
ing time intervals are relaxed. This strategy makes it possible
to solve the EVCC problem with reduced computational effort,
obtaining the solution for the current time interval using updated
information. An important upside of this methodology is that
it offers a broad view of the state of the EDN throughout the
whole time period.

D. Mixed-Integer Nonlinear Programming Model for EVCC

A mixed integer nonlinear programming (MINLP) model is
presented in (3)–(38) for the proposed EVCC problem. The
solution found by the formulation must define: the power de-
livered by each dispatchable DG unit (PG

n,t), the number of
modules connected in each CB (Bn,t), the tap position for each
VR (tpmn,f ,t), the charging schedule for each EV (yn,t), and
the charging and discharging schedule for each ESD (PSD+

u

and PSD−
u , respectively).

1) Objective Function (OF): Represented by (3), the OF
aims to minimize the cost of the energy provided by the substa-
tion (SE) (first term), the DG energy cost (second term), the cost
of the energy curtailment on EVs (third term), and the cost of
the energy injected from the ESDs to the grid (fourth term), and
to penalize the deviation from the defined goals for the SOC of
the ESDs (fifth term).

min
∑
f∈F

∑
t∈T

ζG
SE ,tΔt

(
V re

SE ,f ,tI
Gre
SE ,f ,t + V im

SE ,f ,tI
Gim
SE ,f ,t

)

+
∑
n∈N

∑
t∈T

ζG
n,tΔtP

G
n,t +

∑
e∈Ξ

ζEV
c EEV c

e

+
∑

u∈SD

∑
t∈T

ζSD ΔtP
SD−
n,t +

∑
u∈SD

ζSD
c ESDc

u (3)

2) Load Flow Constraints: The equations (4)–(13) model
the steady-state operation of a three-phase unbalanced EDN
considering the presence of DG units (set DG), CBs (set CB),

VRs (set V R), ESDs (set SD) and EVs (set Ξ).

IGre
n,f ,t +

∑
n∈C B

Icbre
n,d +

∑
km∈L∪V R

Ire
km,f ,t −

∑
mn∈L

Ire
mn,t

−
( ∑

km∈L

Bsh
km,f +

∑
mn∈L

Bsh
mn,f

)
V im

m,f,t

2
= IDre

m,f ,t

+
∑
e∈Ξ

IEV re
e,t γ(e,m, f) +

∑
u∈SD

ISDre
u,t γ(u,m, f)

(4)

IGim
n,f ,t +

∑
n∈C B

Icbim
n,d +

∑
km∈L∪V R

Iim
km,f ,t −

∑
mn∈L

Iim
mn,t

−
( ∑

km∈L

Bsh
km,f +

∑
mn∈L

Bsh
mn,f

)
V re

m,f ,t

2
= IDim

m,f,t

+
∑
e∈Ξ

IEV im
e,t γ(e,m, f) +

∑
u∈SD

ISDim
u,t γ(u,m, f)

(5)

IDre
n,f ,t = (PD

n,f ,tV
re
n,f ,t + QD

n,f,tV
im
n,f ,t)/V re2

n,f ,t + V im 2

n,f ,t (6)

IDim
n,f ,t = (PD

n,f ,tV
im
n,f ,t − QD

n,f,tV
re
n,f ,t)/V re2

n,f ,t + V im 2

n,f ,t (7)

PD
n,f ,t = Po

n,f ,t

(√
V re2

n,f ,t + V im 2

n,f ,t/Vo

)αn , f

(8)

QD
n,f,t = Qo

n,f ,t

(√
V re2

n,f ,t + V im 2

n,f ,t/Vo

)βn , f

(9)

V re
m,f ,t − V re

n,f ,t =
∑
h∈F

(Rmn,f,hIre
mn,h,t − Xmn,f,hIim

mn,h,t)

(10)

V im
m,f,t − V im

n,f ,t =
∑
h∈F

(Xmn,f,hIre
mn,h,t + Rmn,f,hIim

mn,h,t)

(11)

V 2 ≤ V re
n,f ,t

2 + V im
n,f ,t

2 ≤ V
2

(12)

0 ≤ Ire
mn,f ,t

2 + Iim
mn,f ,t

2 ≤ Imn
2

(13)

∀mn ∈ L,∀n ∈ N, f ∈ F, t ∈ T

where, F , L, and N , are the sets of phases, circuits and nodes,
respectively. The balance of the currents at each node is rep-
resented by (4) and (5). Moreover, γ is a binary function that
takes a value of 1 if the EV e or ESD u are connected at node
m and at phase f . The load currents shown in (6) and (7) define
the relationship between voltage, current and the active and re-
active powers demanded by the loads. Moreover, (8) and (9) are
the exponential representation of the load’s voltage dependency.
Equations (10) and (11) are the result of applying Kirchhoff’s
Voltage Law to each independent loop of the EDN. Finally, the
limits for the voltage magnitude and current capacity in each
circuit are stated in (12) and (13), respectively.
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3) DG Constraints: The operation limits of the DG units
are defined by (14)–(16), while the active and reactive power
injections are represented by (17)–(18), respectively.

0 ≤ PG
n,t ≤ P

G
n (14)

QG
n
≤ QG

n,t ≤ Q
G
n (15)

|QG
n,t | ≤ PG

n,t tan(arccos(φn )) (16)

PG
n,t/3 = V re

n,f ,tI
Gre
n,f ,t + V im

n,f ,tI
Gim
n,f ,t (17)

QG
n,t/3 = −V re

n,f ,tI
Gim
n,f ,t + V im

n,f ,tI
Gre
n,f ,t (18)

∀n ∈ N |n∃DG, f ∈ F, t ∈ T

4) CBs Constraints: Similar to the DG units, the active and
reactive power of the switchable CBs are represented by (19) and
(20). The value for the active power injection of every CB will
always be equal to zero. Equation (21) represents the number
of capacitor modules connected to the grid for each bank, while
the allowable limit of modules is modeled by (22). Finally, as
the lifetime of switchable CBs is significantly impacted by the
number of operations (23), this limits the maximum number of
operations permitted over the entire time period.

0 = V re
n,f ,tI

cbre
n,f ,t + V im

n,f ,tI
cbim
n,f ,t (19)

Qcb
n,t/3 = −V re

n,f ,tI
cbim
n,f ,t + V im

n,f ,tI
cbre
n,f ,t (20)

Qcb
n,t = Bn,tQ

esp
n (21)

0 ≤ Bn,t ≤ Bn (22)∑
t∈T

|Bn,t − Bn,t−1 | ≤ Δcb (23)

∀n ∈ N |n∃C B , f ∈ F, t ∈ T

5) VR and OLTC Constraints: The mathematical model of
a VR or a OLTC is shown in (24)–(27). In this model, (24)
represents the real regulated voltage and (25) represents the
real regulated current on each VR/OLTC. Expression (26) rep-
resents the minimum and maximum limits of the tap position
represented by the integer variable tpmn,f ,d . Analogue to (23),
(27) limits the maximum number of operations allowable for
a VR/OLTC over the time period in order to avoid excessive
wear and tear of these devices. Expressions similar to (24) and
(25) were implemented to describe the imaginary component
for both the regulated voltage and current.

V re
n,f ,t = (1 + %Rmntpmn,f ,t/Tpmn )V re

m,f ,t (24)

Ire
km,f ,t = (1 + %Rmntpmn,f ,t/Tpmn )Ire

mn,f ,t (25)

− Tpmn ≤ tpmn,f ,t ≤ Tpmn (26)∑
t∈T

|tpmn,f ,t − tpmn,f ,t−1 | ≤ Δvr (27)

∀mn ∈ L|mn∃V R , f ∈ F, t ∈ T

6) ESD Constraints: For the ESDs, (28) and (29) represent
the active and reactive power exchange between each ESD and
the grid. In (30), the energy balance in an ESD is written in

terms of the energy that must be charged, the charging power in
each time interval and the defined goal for the SOC at the end of
the charging period. Equation (31) defines the energy stored in
each SD at every interval and (32) limits the ESD’s energy level
ensuring that it does not exceed the battery’s maximum capacity
or the pre-established DoD. Finally, (33) defines the limits for
the charging and discharging active powers for each ESD.

(PSD+
u,t − PSD−

u,t )/3 = V re
u,tI

SDre
u,t + V im

u,t ISDim
u,t (28)

0 = −V re
u,tI

SDim
u,t + V im

u,t ISDre
u,t (29)

E
SDf
u = ESD

u,T + ESDc
u (30)

ESD
u,t = ESDi

u +
∑

k∈T ,k≤t

Δk (PSD+
u,t η+

u − PSD−
u,t /η−

u ) (31)

min(ESDi
u , E

SD
u DoD) ≤ ESD

u,t ≤ E
SD
u (32)

0 ≤ PSD+
u,t , P SD−

u,t ≤ P
SD
u ∀u ∈ SD, t ∈ T (33)

7) EV Constraints: The active and reactive powers of the
EVs are presented in (34) and (35), respectively. The instant
power in (36) is represented in terms of the maximum charging
power and the binary control variable yn,t . Constraint (37) de-
termines the energy curtailment on each EV, as (38) determines
the energy of each EV at departure. The variable yn,t has a value

of 1 if the EV battery is charging at its maximum power P
EV ch
e

and a value of 0 otherwise.

PEV
e,t = V re

e,t I
EV re
e,t + V im

e,t IEV im
e,t (34)

0 = −V re
e,t I

EV im
e,t + V im

e,t IEV re
e,t (35)

PEV
e,t = P

EV ch
e ye,t (36)

E
EV
e = EEV

e + EEV c
e (37)

EEV
e = Eini

e +
∑
t∈T

ΔtP
EV
e,t ηe ∀e ∈ Ξ, t ∈ T (38)

E. Mixed-Integer Linear Programming Model for EVCC

To enhance the robustness of the solution and to enable
the utilization of classic optimization methods and commercial
solvers, linearization techniques are applied to the nonlinear
expressions in (3)–(38) in order to obtain a MILP formulation.

1) Linearization for Power Flow Nonlinear Constraints:
Constraints (6)–(9), (12), and (13), are nonlinear expressions.
Equations (6)–(9) are rewritten as shown in (39) and (40). Con-
straints (41) and (42) show the first-order linearization for (39)
and (40) around an estimated operation point (V re∗

n,f ,t , V
im ∗
n,f ,t).

Furthermore, (12) and (13) are linearized as presented in [21].

g(V re
n,f ,t , V

im
n,f ,t) = Po

n,f ,t

V re
n,f ,t

Vo
αn , f

(
V re2

n,f ,t + V im 2

n,f ,t

) α n , f
2 −1

+ Qo
n,f ,t

V im
n,f ,t

Vo
βn , f

(
V re2

n,f ,t + V im 2

n,f ,t

) β n , f
2 −1

(39)
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h(V re
n,f ,t , V

im
n,f ,t) = Po

n,f ,t

V im
n,f ,t

Vo
αn , f

(
V re2

n,f ,t + V im 2

n,f ,t

) α n , f
2 −1

− Qo
n,f ,t

V re
n,f ,t

Vo
βn , f

(
V re2

n,f ,t + V im 2

n,f ,t

) β n , f
2 −1

(40)

IDre
n,f ,t = g∗ +

∂g

∂V re

∣∣∣∣
∗
(V re

n,f ,t − V re∗
n,f ,t) +

∂g

∂V im

∣∣∣∣
∗

(V im
n,f ,t − V im ∗

n,f ,t) (41)

IDim
n,f ,t = h∗ +

∂h

∂V re

∣∣∣∣
∗
(V re

n,f ,t − V re∗
n,f ,t) +

∂h

∂V im

∣∣∣∣
∗

(V im
n,f ,t − V im ∗

n,f ,t) (42)

∀n ∈ N, f ∈ F, t ∈ T

2) Linearization of DG, CBs, ESDs and EVs Nonlinear Con-
straints: The nonlinear expressions of the DG, CBs, ESDs
and EVs (constraints (17), (18), (19), (20), (28), (29), (34)
and (35)) are approximated using an estimated operation point
(V re∗

n,f ,t , V
im ∗
n,f ,t) as shown in [21]. The quality of the estimated

operation point will define the approximation error. Historical
data and the EDN operator knowledge, nominal values for the
voltage magnitudes, or a linear relaxation of the MILP model
initially solved (in which the binary nature of the decision vari-
ables is temporarily ignored), could be used to estimate the
operation point.

3) Linearization of VR/OLTC Nonlinear Constraints: In the
expressions (24) and (25), the product of the decision variables
tpmn,f ,t and, Vm,f,t or Imn,f ,t on the real and imaginary compo-
nents is linearized. To obtain linear expressions, the integer num-
ber of steps is represented as a set of binary variables btmn,f ,t

and the products tpmn,f ,tVm,f ,t , tpmn,f ,tImn,f ,t are substituted
by the variables V c

mn,f ,t,k and Ic
mn,f ,t,k , respectively, on the real

and imaginary components.

V re
n,f ,t = (1 − %Rmn )V re

m,f ,t +
2T pm n∑

k=1

%Rmn

Tpmn

V
c(re)
mn,f ,t,k (43)

Ire
km,f ,t = (1 − %Rmn )Ire

mn,f ,t +
2T pm n∑

k=1

%Rmn

Tpmn

I
c(re)
mn,f ,t,k

(44)

2T pm n∑
k=1

btmn,f ,t,k − Tpmn = tpmn,f ,t (45)

|V re
m,f ,t − V

c(re)
mn,f ,t,k | ≤ V (1 − btmn,f ,t,k ) (46)

|V c(re)
mn,f ,t,k | ≤ V btmn,f ,t,k (47)

|Ire
mn,f ,t − I

c(re)
mn,f ,t,k | ≤ Imn (1 − btmn,f ,t,k ) (48)

|Ic(re)
mn,f ,t,k | ≤ Imnbtmn,f ,t,k (49)

btmn,f ,t,k ≤ btmn,f ,t,k−1 (50)

∀mn ∈ L|mn∃V R , f ∈ F, t ∈ T, k ∈ 1..2Tpmn

Fig. 2. 178-nodes test system.

Expressions (43)–(50) are linear extensions of (24)–(27),
where (43) represents the calculation of the regulated voltage
and (44) represents the calculation of the regulated current for
the real component. Equation (45) associates the binary vari-
able with the tap integer variable. Constraint (46) defines the
auxiliary variable V c

mn,f ,d,k and (47) describes its limits. In the
same way, (48) defines the auxiliary variable Ic

mn,f ,d,k and (49)
describes its limits. Expression (50) represents the sequencing
of the binary variable btmn,f ,d in the previous tap position. For
time intervals in which the binary nature of the control variables
is disregarded, the equations above are not suitable. Therefore,
(51) and (52) are used to calculate the relaxed value of bt for
each VR/OLTC.

In other words, (43)–(50) are used to calculate the tap po-
sition in the actual time interval and, (50), (51) and (52) are
constraints applied to the rest of the time period. Similar to the
approximated values of the voltages, the quality of the approx-
imated values of the currents (Ire∗

mn,f ,t and Iim ∗
mn,f ,t) depends on

the EDN operator’s knowledge. Expressions similar to (43)–(52)
were implemented to linearize the imaginary component.

V re
n,f ,t = (1 − %Rmn )V re

m,f ,t +
2T pm n∑

k=1

btmn,f ,t,k
%Rmn

Tpmn

V re∗
n,f ,t

(51)

Ire
km,f ,t =(1− %Rmn)Ire

mn,f ,t +
2T pm n∑

k=1

btmn,f ,t,k
%Rmn

Tpmn

Ire∗
mn,f ,t

(52)

∀mn ∈ L|mn∃V R , f ∈ F, t ∈ T

III. TESTS AND RESULTS

To assess the proposed methodology, tests were carried out on
a three-phase EDN with 34 nodes at medium voltage (24.9 kV)
and 144 nodes at low voltage (480 V) shown in Fig. 2. The EDN
was adapted from the IEEE 34-node test system; for further in-
formation, the complete description of the EDN used is available
in [25]. The test system includes a DG unit at node 8, an ESD
at node 23, a VR connected at the end-point of circuit 16-17
and a CB at node 31. Moreover, phases A, B, and C were loaded
with 33%, 35%, and 32% of the total demand, respectively. The
values of the parameters α and β, used to represent different
types of loads in the voltage dependent model, are presented
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TABLE I
HOURLY ENERGY COSTS AND LOAD VARIATIONS

Hour Energy cost % of peak Hour Energy cost % of peak
($/kWh) load ($/kWh) load

08:00 0.0442 50 20:00 0.0875 89
09:00 0.0529 55 21:00 0.0837 87
10:00 0.0606 63 22:00 0.0721 75
11:00 0.0673 70 23:00 0.0625 69
12:00 0.0721 75 00:00 0.0529 59
13:00 0.0798 83 01:00 0.0385 46
14:00 0.0847 88 02:00 0.0327 44
15:00 0.0866 90 03:00 0.0317 42
16:00 0.0914 95 04:00 0.0336 41
17:00 0.0933 97 05:00 0.0327 40
18:00 0.0962 100 06:00 0.0394 45
19:00 0.0895 91 07:00 0.0423 48

in [25]. The hourly energy costs and load variation percentages
are shown in Table I. It was assumed that EVs could arrive and
depart at any time interval during the period in bold, based on
the fact that this is the time window when the EV demand has a
greater impact.

The DG unit energy cost ζG
n,t was equal to 0.045 US$/kWh,

while its maximum active power was 350 kW and its minimum
and maximum reactive powers were equal to −175 kVAr and
175 kVAr, respectively. Finally, the minimum power factor for
the operation was 0.90.

The ESD was assumed to be owned by the EDN operator.
Hence, the cost for the active power injected into the grid by
the ESD ζSD was disregarded. Moreover, the ESD maximum
energy capacity was 3 MWh, with a maximum charge and dis-
charge power of 300 kW, 10% of DoD , and charging and dis-
charging efficiencies of 100%. The expected ESD SOC at the
end of the time period was set at its initial energy level. Finally,
the curtailment costs ζSD

c was set to 100 US$/kWh.
The VR was assumed to be a three-phase VR built from three

single-phase VRs. This feature offers the flexibility of control-
ling each phase independently. Each single-phase VR could vary
the voltage with a regulation ratio of ±10%; in addition, this
ratio was equally distributed across 16 tap positions (±8). Fur-
thermore, the switchable CB capacity was 300 kVAr, divided
into 6 individual modules. For these tests, the maximum num-
ber of allowable operations for both CB and VR (Δcb and Δvr ,
respectively) were set at unreachable values, i.e., the number of
operations for each device over the time period was unlimited.

In addition, 180 consumers with EVs were considered in the
network, representing almost a 40% penetration. Two types of
EVs were considered: the ‘Tesla Model S’ with a 70 kWh battery
capacity and 10 kW charging power [26], and the ‘Nissan Leaf’
with a 24 kWh battery capacity and 4 kW charging power [27].
Moreover, a 100% efficiency for all EV charging stations was
assumed and the curtailment cost for the EVs ζEV

c was set to
100 US$/kWh.

The proposed MILP model was written in the mathematical
language AMPL [28] and solved using the commercial solver
CPLEX [29], on a computer with an Intel i7 4770 processor.
Tests were carried out for four different cases with the following
control alternatives:

TABLE II
SUMMARY OF THE TEST CASES

SE DG Total EV Energy Objective
Case Energy Energy Energy Curtailment Function

Cost ($) Cost ($) Cost ($) (kWh) ($)

I 1957.69 314.98 2272.67 274 29672.67
II 1969.79 336.18 2305.97 104 12705.97
III 1905.24 279.13 2184.37 0 2184.37
IV 1852.81 287.94 2140.75 0 2140.75

1) Case I: ESD not available; VVC predefined.
2) Case II: ESD enabled; VVC predefined.
3) Case III: ESD not available; VVC enabled.
4) Case IV: ESD enabled; VVC enabled.

For the Cases I and II, in which the VVC was predefined,
the VVC devices followed preset settings. These settings are
defined by the EDN operator following the daily conventional
demand pattern.

Table II shows a summary of the results from the test cases.
Case I, which includes only the control over the EVs plugged
into the system, presented the worst solution, with high EV
energy curtailment and expensive overall energy cost. From
Case II, it can be seen how the enabling of the ESD in the
grid leads to a significant reduction in the EV energy curtail-
ment, hence, an improvement in the EVCC solution. Besides,
Case II presented an increment on the overall energy costs due
to a higher EV demand attended. Moreover, Case III shows how
with the inclusion of the VVC, the grid is able to attend the
whole EV demand, avoiding technical limit breaches. Finally,
the best OF value with the lowest overall energy cost and no EV
energy curtailment was obtained in Case IV, demonstrating the
advantages of the proposed control methodology.

The time limit for the solution process at each time interval
was 600 s. If the time limit was reached and the optimal solution
had not been found, the best integer solution yet found was
adopted. Furthermore, it was verified that the gap presented
in those time intervals, in which the solver could not find the
optimal solution within the specified time limit, never exceeded
0.1%.

Fig. 3 shows the active power injected into the grid by the
SE, the DG unit, and the ESD for Cases I–IV, respectively. In
addition, this figure shows, for all cases, the power demanded by
the EVs and the ESD when charging (by convention, the active
power due to these demands is shown in negative values). It
should be noted that the methodology found an optimal schedule
to recharge the EVs mainly at low-cost energy time intervals.
Nevertheless, energy curtailments were presented when the grid
was unable to meet the EV demand. When VVC was enabled,
the EDN could completely charge the EVs during the low-cost
energy time intervals, thereby achieving a better OF. On the other
hand, the ESD improves the EVCC by allowing a higher number
of EVs to be scheduled at the last time intervals. Furthermore,
as the VVC was enabled, the total amount of power demanded
in the time period decreased as well as the energy bought from
the DGs.
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Fig. 3. Active power injected into the grid for a) Case I, b) Case II, c) Case
III and d) Case IV.

The VVC pre-set profile and the VVC schemes for Cases III
and IV are shown in Table III. For every case, the VVC seeks to
fulfill the technical constraints and determine the best econom-
ical operation of the EDN. When enabled, all the modules of
the CB were plugged into the grid; this permits a greater volt-
age reduction at the VR, therefore, achieving a better economic
performance. Although the limit for the number of switching op-
erations was set at a very large number, the number of switching
operations for any VVC device over the entire time period for
Cases III and IV was below 30.

Fig. 4 shows the minimum voltage magnitude profiles for
each time interval in the EDN, evidencing the fulfillment of
voltage limits in all cases. Due to the voltage dependency of
the loads, in the cases where the VVC was enabled (Cases III

TABLE III
VR TAP POSITION RANGE FOR EACH PHASE AND CB MODULES

Time intervals 07–12 13–21 22–01 02–06

Predefined A, B, C {2} {4} {2} {1}
Settings CB {3} {5} {3} {1}

A {−6, −3} {−3, −1} {−4, 4} {−1, 4}
Case III B {−4, −2} {−1, 1} {2, 6} {−5, 5}

C {−6, −4} {−3, −2} {−1, 0} {−1, 5}
CB {6} {6} {6} {6}
A {−5, −3} {−3, −1} {−4, 4} {−2, 3}

Case IV B {−4, −2} {−1, 0} {1, 5} {−3, 5}
C {−5, −4} {−3, −2} {−1, 2} {−6, 4}

CB {6} {6} {6} {6}

Fig. 4. Minimum voltage profile.

and IV), the minimum voltage profile was kept as close as
possible to the lower boundary. This feature can be quantified
by the economical operation improvement shown in Table II.
Thereby, comparing Cases I and III, there is a reduction in
the overall energy cost of the EDN throughout the entire time
period, even though the EVs were completely attended only in
Case III.

To properly validate the importance of the voltage dependent
load model, the formulation was solved considering constant
power in the load representation (i.e., α = 0 and β = 0). A
power flow considering the voltage dependent load model was
later executed, fixing the control variables obtained from the
constant power test. The results showed that the solutions ob-
tained using an approach without proper load modeling breached
technical limits when applied to the grid. Furthermore, the so-
lution obtained from the constant power test not only exceeded
operational constraints, but also presented higher OF.

Finally, in order to evaluate the precision of the proposed
formulation, all the decision variables of the solution found by
the methodology [i.e., the power delivered by each dispatchable
DG unit (PG

n,t); the number of modules connected in each CB
(Bn,t); the tap position for each VR (tpmn,f ,t); the charging
schedule for each EV (yn,t); and the charging and discharging
schedule for each ESD (PSD+

u and PSD−
u , respectively)] in Case

IV were used to solve a conventional AC power flow. Thereby,
for the OF, the error found by comparing the MILP formulation
and the conventional power flow was 0.023%. Moreover, the
voltage magnitude error percentage obtained for all nodes at
the time intervals with the highest conventional load and EV
demand (hours 18:00 and 01:00, respectively), is presented in
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Fig. 5. Voltage magnitude error percentage between the MILP model solution
in Case IV and the conventional power flow for time intervals 18:00 and 01:00.

Fig. 5. It is worth noting that this error percentage does not
exceed 0.005% at 18:00 hours and 0.06% at 01:00 hours. Hence,
these results validate the presented MILP formulation as an
accurate approximation of the EDN steady-state operation.

IV. CONCLUSION

A new methodology based on a mixed-integer linear pro-
gramming model for the electric vehicle charging coordination
(EVCC) problem considering Volt VAr control (VVC), energy
storage device (ESD) operation, and dispatchable distributed
generation (DG) units in a three-phase unbalanced electrical
distribution network (EDN), taking into account a voltage de-
pendent load model, was presented. The proposed formulation
was tested on an EDN with 34 medium–voltage nodes and 144
low–voltage nodes. The results showed that the optimized op-
eration of the DG, ESD, VVC devices, and EV recharge rep-
resented an overall energy cost reduction and guaranteed the
avoidance of technical limit violations.

The dynamic coordination was proved to be efficient, because
it defines the step to be implemented and gives a broad view of
the EDN state throughout the whole time period. Moreover,
this methodology handles the randomness in the electric vehicle
(EV) arrival and departure times, initial state of charge, battery
sizes, and forecast errors.

The presented results highlight the importance of the pro-
posed methodology, which encompasses the optimal control of
the aforementioned devices. Besides, they foreground how the
ESDs help in the avoidance of energy curtailment in EV recharg-
ing and how the VVC scheme becomes more suitable in order
to avoid voltage limit violations in the EDN.
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