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the same timing difference leads to insignificant changes, whereas 

post-pre-post induces a strong potentiation of synapses in hip-

pocampal cultures (Wang et al., 2005). Quite generally, triplet 

and quadruplet dependencies measured in various experiments 

(Froemke and Dan, 2002; Wang et al., 2005) cannot be explained 

by standard STDP models. Third, the STDP function derived from 

standard experiments with pairs of spikes (Markram et al., 1997; Bi 

and Poo, 1998; Sjöström et al., 2001) does not explain the depend-

ence of plasticity upon the timing of bursts of several postsynaptic 

spikes (Kampa et al., 2006; Nevian and Sakmann, 2006). Fourth, the 

outcome of synaptic plasticity depends on the dendritic location 

of the synapse (Froemke et al., 2005; Kampa et al., 2006; Letzkus 

et al., 2006; Sjöström and Häusser, 2006). Finally, plasticity can also 

be induced in the absence of postsynaptic firing, e.g., in voltage-

clamp experiments (Kelso et al., 1986; Artola et al., 1990; Ngezahayo 

et al., 2000). None of these aspects is taken into account in classical 

phenomenological STDP models (Gerstner et al., 1996; Kempter 

et al., 1999; Roberts, 1999; Song et al., 2000). Modifications of the 

classical STDP models including weight-dependence (Kistler and 

van Hemmen, 2000; van Rossum et al., 2000; Rubin et al., 2001) or 

alternative summation schemes (Izhikevich, 2003), introduction of 

frequency dependence (Froemke and Dan, 2002) or some voltage 

dependence (Brader et al., 2007) resolve at most one or two of the 

above issues, but not all of them.

The basic shortcoming of the family of classical phenomeno-

logical STDP models is an inappropriate focus on a single pair 

of pre- and postsynaptic spikes. There are a couple of promis-

ing phenomenological STDP models that go beyond the pair 

INTRODUCTION

Spike-timing-dependent plasticity (STDP; Bell et al., 1997; Markram 

et al., 1997; Bi and Poo, 1998; Sjöström et al., 2001) is induced for 

most synapses by stimulating pairs of pre- and postsynaptic spikes. 

For synapses between cortical or hippocampal pyramidal neurons, 

a presynaptic spike a few milliseconds before a postsynaptic one 

typically leads to long-term potentiation (LTP) whereas the reverse 

timing leads to depression (Markram et al., 1997; Bi and Poo, 1998; 

Sjöström et al., 2001), but other preparations exhibit a wide range 

of other dependencies upon spike timing (Bell et al., 1997; Debanne 

et al., 1998; Abbott and Nelson, 2000). Classical models of STDP 

(Gerstner et al., 1996; Kempter et al., 1999; Roberts, 1999; Song 

et al., 2000) take the dependence upon the time difference between 

pre- and postsynaptic spikes explicitly into account by a learning 

window or STDP function with two phases, one for potentiation 

and another one for depression (for a review see Gerstner and van 

Hemmen, 1992; Morrison et al., 2008). However, the dependence 

upon the timing of a pair of spikes visualized in the STDP function 

is only one of many aspects of plasticity. First, in standard pairing 

experiments, pairings are repeated several times. The final outcome 

of experiments depends non-linearly on the number of pairings 

and, for a fixed number of pairings, on the repetition frequency 

(Markram et al., 1997; Senn et al., 2001; Sjöström et al., 2001). 

Second, a symmetric triplet of spikes in a post-pre-post configu-

ration has the exact same two pairs as a symmetric pre-post-pre 

triplet. Hence, any pair-dependent STDP function predicts the same 

outcome for both protocols whereas experiments show significant 

differences (Wang et al., 2005). In particular, pre-post-pre with 
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 interaction, most notably the model of Senn and colleagues (Senn 

et al., 1997, 2001; Senn, 2002). This model exploits basic interac-

tions of spike triplets, such as pre-post-post or post-pre-pre (for 

reviews see Gerstner and Kistler, 2002; Senn, 2002). Because of 

these non- linearities, it is able to account not only for the tim-

ing dependence of experimental STDP, but also for the frequency 

dependence of STDP and some triplet effects (Senn, 2002). Similar 

in spirit is the model of Pfister and Gerstner (2006). In this model 

depression is induced by post-pre pairs, while LTP requires at least a 

triplet of spikes, e.g., pre-post-post or post-pre-post. The frequency 

dependence of STDP (Markram et al., 1997; Sjöström et al., 2001) 

then follows directly from the assumptions (Pfister and Gerstner, 

2006). However, neither the model of Senn et al. nor that of Pfister 

and Gerstner can be applied outside the realm of spike-triggered 

plasticity. In particular, no voltage dependence is included in these 

models. Effects of dendritic location are also out of the scope of 

these two models. Another category of models offers biophysical 

mechanisms of plasticity (Lisman and Zhabotinsky, 2001; Shouval 

et al., 2002; Miller et al., 2005; Rubin et al., 2005; Graupner and 

Brunel, 2007). Most of these are, however, not usually tested on 

more elaborate plasticity protocols.

In this paper, we aim at a unified explanation of all of the above 

experimental results with one single model, proposed previously 

(Clopath et al., 2008, 2010). The model is a minimal one in the 

sense that it should be complex enough to reproduce, at least quali-

tatively, the data mentioned above but still with a restricted number 

of parameters; and a phenomenological one in the sense that it is 

composed of abstract variables that are not directly linked to identi-

fied biophysical quantities. This approach enables the research to be 

generic, i.e., it presents a framework in which one can reason about 

synaptic plasticity experiments even when the biophysical pathways 

are unknown. Note that the framework could be the same, even if the 

biophysical implementation in terms of molecules differs from one 

type of synapse to the next. For example, synaptic depression in STDP 

experiments seems to depend crucially on calcium concentration in 

hippocampus (Bi and Poo, 2001), but also on retrograde messenger 

like endocannabinoid in visual cortex (Sjöström et al., 2003, 2004). 

The drawback of the phenomenological model is that the biophysi-

cal nature of synaptic plasticity cannot be addressed in this paper. In 

particular, we do not consider pharmacological data. Moreover the 

model only focuses on the induction of synaptic plasticity but not on 

its maintenance. It has to be combined with a model of consolidation 

(Clopath et al., 2008; Barrett et al., 2009) to arrive at a more complete 

description of synaptic plasticity across different time scales.

Even though we put some focus on a phenomenological explana-

tion of experimental plasticity results in dendrites we did not want 

to implement our plasticity model in a detailed biophysical neu-

ron model with multiple compartments and ion channels. While 

modeling backpropagating action potentials and dendritic spikes 

in biophysical models is possible (Achard and De Schutter, 2006; 

Druckmann et al., 2007), it is a project in its own right. Instead of 

explicitly modeling the dendritic effects we shortcut the argument 

and impose a putative time course of the voltage at the site of the 

synapse. The exact time course could have been the result of a more 

detailed model (which we did not do) or could come from experi-

mental measurements. Whenever such experiments were available 

we took that data into account.

MATERIALS AND METHODS

MODEL OF SYNAPTIC PLASTICITY

The plasticity model we are exploring in this paper is described 

in Clopath et al. (2010). It depends on the presynaptic spike time 

and on the (momentary or filtered) time course of the postsynaptic 

membrane potential. Depression and potentiation are modeled 

as two independent mechanisms and lead to a downregulation or 

upregulation of the synaptic weight w characterizing the strength 

of the connection from a presynaptic neuron to the postsynaptic 

neuron under consideration. For biophysical reasons we impose 

that the weight always stays between 0 and a maximal value w
max

.

The synapse is depressed if a presynaptic spike occurs when the 

neuron is depolarized for some time. We can formalize this idea 

mathematically defining a presynaptic spike train as a series of delta 

pulses X(t) = Σ
i
δ(t − t

i
) where t

i
 are the spike times. The postsynaptic 

membrane potential u is low-pass filtered with a time constant τ−

τ− − −= − +d

dt
u t u t u t( ) ( ) ( ).

Depression is induced at the moment of presynaptic spike arrival 

if the postsynaptic trace u− is above a threshold θ−. This typically 

happens if there was a postsynaptic spike some time before the 

presynaptic spike, leading to spike-timing dependence; if synaptic 

input at other synapses induced some compound EPSP and hence 

a depolarization at the site of the active synapse, leading to associa-

tivity of depression; if any source of depolarizing current input is 

given in an experiment. Mathematically, the change of the synapse 

is described by the differential equation

d

dt
w A X t u t w

−
− − +

= − −[ ] >LTD if( ) ( ) ,θ 0
 

(1)

where A
LTD

 is an amplitude (see Figure 1A). The notation [x]+ equals 

x if x is positive and is 0 otherwise. Downregulation of the synapse 

stops if w hits 0.

Potentiation of the synapse occurs if the following three con-

ditions are met simultaneously: (i) The momentary postsynaptic 

voltage u is above a threshold θ+ which is around the firing threshold 

of the neuron, in particular θ+ > θ−. (ii) The low-pass filtered voltage 

u+ is above θ−. (iii) A presynaptic spike occurred a few milliseconds 

earlier and has left a “trace” x  at the site of the synapse. The trace 

could represent the amount of glutamate bound at the postsynaptic 

receptor; or the percentage of NMDA receptors in an upregulated 

state or something similar.

The weight change during potentiation can be written as

d

dt
w A x t u t u t w w

+
+ + + − +

= + −[ ] −[ ] <LTP maxif( ) ( ) ( ) ,θ θ
 

(2)

where u+ is a similar to u− but with a filter time constant τ+ instead 

of τ− and x  is a low-pass filter of the presynaptic spike train with 

time constant τ
x
 (see Figure 1B)

τ
x

d

dt
x t x t X t( ) ( ) ( ).= − +

Note that the postsynaptic variable enters twice. First, we need a spike 

to overcome the threshold θ+ and second, the filtered membrane 

must be depolarized before the spike. This depolarization could 
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τ
V T T TT

d

dt
V V V= − −( )

rest

.

The neuron model has a number of variables listed above. For 

plasticity experiments considered here, it is crucial to have a spike 

after depolarization in order to have a trace of the spike lasting for 

about 50 ms, as explained in Clopath et al. (2010). It is therefore 

necessary to have an adaptive threshold, to prevent the neuron 

from spiking during this after spike phase. The exponential term 

and the adaption variable are not important for the results here 

but are part of the neuron model to make it more accurate, as 

shown in Clopath et al. (2007), Badel et al. (2008), and Naud et al. 

(2008). All the parameters are taken from Clopath et al. (2010) and 

are shown in Table 1.

PARAMETERS

The free parameters of the plasticity model are fitted to the different 

experiments described above (Markram et al., 1997; Sjöström et al., 

2001; Froemke and Dan, 2002; Wang et al., 2005; Kampa et al., 2006) 

(Table 2). The thresholds are fixed to the resting potential and the 

firing threshold for all the experiments except the ones of Froemke 

and Dan (2002) and Kampa et al. (2006). The error, defined as 

the difference between the experimental and the theoretical value 

squared, is minimized. For Figures 5 and 6, the STDP learning 

window is only characterized by two experimental data points. We 

thus gave those points five times more weight than the others in the 

be due to earlier action potentials which have left a  depolarizing 

spike after-potential which explains the relevance of post-pre-post 

or pre-post-post triplets of spikes (see Figure 1B); or to sustained 

input at other synapses, leading to associativity of LTP.

The total synaptic change is the contribution of depression and 

potentiation:

d

dt
w A X t u t

A x t u t u t

= − −[ ]
+ −[ ] −[ ]

− − +

+ + + − +

LTD

LTP

( ) ( )

( ) ( ) ( ) ,

θ

θ θ
 

(3)

where the differential equation is applied within the hard bounds 

0 < w < w
max

. The initial weight is put to w = 1 (arbitrary units) 

and the maximal weight to w
max

 = 1.6 (Figure 2), corresponding 

to a maximal weight increase by 60%, consistent with the experi-

ments of Markram and colleagues (Markram et al., 1997; Senn et al., 

2001). The free parameters of the plasticity models that need to be 

fitted to experiments are the two amplitudes A
LTD

 and A
LTP

 as well 

as the three time constants τ
x
, τ+, and τ−. Finally the thresholds θ+ 

and θ− can vary but for most of the experiments they are set to the 

firing threshold and the resting potential respectively.

NEURON MODEL

Since the voltage is a key quantity in our plasticity model, an 

appropriate neuron model is needed. Since the plasticity model is 

a phenomenological one, we opted also for a phenomenological 

neuron model. We took the Adaptive Exponential Integrate-and-

Fire (AdEx) model (Brette and Gerstner, 2005) described by

C
d

dt
u g u E g

u V
w z IL L L T

T

T

= − −( ) + −





− + +∆
∆

exp ad ,

where C is the membrane capacitance, g
L
 the leak conductance, E

L
 

the resting potential and I the stimulating current. The exponential 

term describes the rapid activation of the sodium channel, V
T
 is the 

threshold above which the dynamics is driven by this exponential and 

∆
T
 controls the rise in the upswing of the action potential. Integration 

is stopped if the u reaches 100 mV above rest which corresponds to 

the peak of the action potential. At this time, the voltage is reset to 

V
T

rest

. An adaptation variable w
ad

 (acting as a hyperpolarizing current) 

increases by an amount of b after each spike. Moreover adaptation is 

also coupled to the voltage. The adaptation dynamics is written as

τ
w L

d

dt
w a u E w

ad ad ad
= −( ) − ,

where a is responsible for a subthreshold adaptation and τ
wad

 is a time 

constant. In an extension to the AdEx model we added an additional 

current z responsible for a depolarizing spike afterpotential which is set 

to a value I
sp

 at each spike, decaying otherwise with a time constant τ
z

τ
z

d

dt
z z= − .

The z variable can be seen as a simplified description of a slowly 

inactivating sodium current such as the I
NaP

 (Magistretti and 

Alonsoa, 1999). Finally the threshold is adaptive as in Badel et al. 

(2008). At every spike the threshold jumps to V
T

max

 and decays to 
V

T
rest

 otherwise with a time constant τ
V

T

Table 1 | Parameters of the neuron model.

Parameters Value

C – membrane capacitance 281 pF

g
L
 – leak conductance 30 nS

E
L
 – resting potential −70.6 mV

∆
T
 – slope factor 2 mV

V
T

rest

 – threshold potential at rest −50.4 mV

τ
wad

 – adaptation time constant 144 ms

a – subthreshold adaptation 4 nS

b – spike triggered adaptation 0.805 pA

I
sp

 – spike current after a spike 400 pA

τ
z
 – spike current time constant 40 ms

τ
VT

 – threshold potential time constant 50 ms

V
T

max

 – threshold potential after a spike −30.4 mV

Table 2 | Parameters of the plasticity model fitted to different 

experiments.

Experiment θ− θ+  A
LTD

 A
LTP

 τ
x
 τ− τ+  

 (mV) (mV) (1/mV) (1/mV2) (ms) (ms) (ms)

Figure 2 −70.6 −45.3 21e−5 65e−6 13.3 13.8 58.7

Figure 3 −70.6 −45.3 14e−5 12e−5 15 10 7

Figure 4 −70.6 −65 48e−5 6e−5 11 95 5

Figure 5 −71.3 −62.7 27e−5 12e−5 9.6 10.5 200

Figure 6 −70.6 −45.3 16e−5 10e−5 46 23 2.6

The bold numbers represent the variables that were fitted. 
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the frequency at which these pairings are repeated. By injecting 

short current pulses into two pyramidal cells, five pairs of pre- 

and postsynaptic spikes with a lag of 2 ms are elicited at different 

frequencies and repeated 10 times every 4 s. The data (Markram 

et al., 1997) show no change of synaptic weight at low frequency 

pairing whereas LTP is induced at high frequency. Pair-based STDP 

rules (Gerstner et al., 1996; Kempter et al., 1999; Song et al., 2000), 

where a pre-post pair leads to LTP and a post-pre pair leads to 

LTD, cannot account for this frequency dependency. Indeed, inde-

pendent of the specific choice of parameters, pre-post pairings at 

low frequency will result in LTP with standard pair-based STDP 

models (Figure 2B, dashed lines); moreover raising the repetition 

frequency of the pre-post pairings induces a weak post-pre interac-

tion which decreases the potentiation in the pair-based models, 

whereas LTP increases in the experiments. This picture changes 

completely with our model (Figure 2B). The reason is that our 

model needs a post-pre-post triplet to induce potentiation. At 

low pairing frequencies such triplets are quasi inexistent since the 

interval between two postsynaptic action potentials is too long 

whereas higher frequencies induce the triplet interaction necessary 

for LTP (see Figures 1 and 2B).

In the modeling literature, the frequency dependence is also 

studied in an alternative scenario where both the pre- and postsyn-

aptic neuron fire stochastically with Poisson distributed interspike 

intervals. In our simulations, the presynaptic neuron fires at 10 Hz 

and the postsynaptic one fires at a fixed frequency different from 

one simulation experiment to the next. If plasticity is plotted as 

a function of the firing rate of the postsynaptic neuron (across 

repeated epochs of 1 s), both LTD and LTP are exhibited: low firing 

rates lead to LTD whereas high rates induce LTP (Figure 2C). This 

result is to be contrasted with the frequency dependence found 

in the same model with identical parameters in an experiment 

simulating repeated pre-post pairings as in Figure 2B. These results 

show that timing dependence and frequency dependence of synap-

tic plasticity interact. For the same firing frequency of, say 10 Hz, of 

pre- and postsynaptic neuron, systematic timing of action poten-

tials in the causal order of “pre before post” leads to strong LTP, 

whereas random timing of the same number of action potentials 

leads to significant LTD. The frequency dependence in Figure 2C is 

similar to the one of the well known Bienenstock–Cooper–Munro 

(BCM) model (Bienenstock et al., 1982). A standard pair-based 

rule, where all the pairs are considered, is linear with respect to 

the frequency. For a typical case where the integral of the STDP 

learning window is negative, the weight change decreased linearly 

with frequency. However, a pair-based rule where only the nearest 

pair is considered results in a non-linear frequency dependence, 

if an appropriate set of parameters is chosen (see Izhikevich and 

Desai, 2003) (Figure 2C, dashed red line). The qualitative fre-

quency dependence of the pair-based nearest-neighbor rule for 

the Poisson input is similar to, but much weaker than the one in 

our model (Figure 2, inset). For pairing experiments (Figure 2B), 

the models are qualitatively different.

A further question explored by Senn et al. (2001) was how many 

pairings were needed to induce potentiation. Pre- and postsynaptic 

spike trains of 20 Hz were paired with a postsynaptic spike delay 

of 2 ms, repeated 10 times every 4 s. The number of spikes in the 

paired trains was varied from 2 up to 20 in the experiment, and 

computation of the error. Note that the experimental values were 

taken from the figures of the different experimental papers (since 

we did not have the raw data) and thus the data points redrawn on 

the figures of the present paper are not precise.

RESULTS

As explained in Section “Materials and Methods,” our model of volt-

age based plasticity (Clopath et al., 2008, 2010) requires a minimal 

membrane voltage u− −> θ  at the site of the synapse in order to allow 

synaptic depression; and a momentary voltage larger than the firing 

threshold u > θ+ to allow potentiation to occur. The combination of 

potentiation and depression leads, in voltage clamp experiments, 

to a voltage dependence shown in Figure 1C which is reminiscent 

of that found in earlier studies on voltage dependence of synaptic 

plasticity (Kelso et al., 1986; Artola et al., 1990; Ngezahayo et al., 

2000). In a simulated STDP experiment, a single post-pre spike 

pairing leads to LTD if the time difference is short enough, but no 

plasticity is induced if the timing difference is too big or if the time 

is inversed (Figures 1A,B). However, a triplet of spikes in post-pre-

post configuration can induce a small amount of LTP, since the fol-

lowing three conditions are met: the first postsynaptic spike induces 

a trace in the average voltage u+ −> θ ; the presynaptic spike leaves 

a trace x > 0 at the site of the synapse; and the momentary voltage 

during the second postsynaptic action potential is sufficiently high 

to surpass the second threshold u(t) > θ+ (see Figure 1B). In our 

previous papers (Clopath et al., 2008, 2010), the model has already 

been shown to be in qualitative agreement with the voltage clamp 

experiment that is the basis of the Artola–Bröcher–Singer (ABS) 

plasticity rule (Artola et al., 1990), to yield a plausible dependence 

upon presynaptic frequency (Dudek and Bear, 1992), an STDP 

learning window (Markram et al., 1997), a burst-timing-dependent 

learning window (Nevian and Sakmann, 2006) as well as a tight 

relation between spike timing and voltage during manipulations 

of somatic voltage by current injection (Sjöström et al., 2001). In 

this paper, the model will be tested against several other classical 

experimental data on synaptic plasticity. Note that experimental 

data on STDP in different preparations and experimental condi-

tions is now so rich, that the list of tests that can be carried out and 

presented in a single paper cannot be exhaustive. The result section 

is organized in three parts. We first turn to the data from the classi-

cal 1997 STDP paper of Markram et al. (1997) and some follow-up 

experiments (Senn et al., 2001). We then address a couple of more 

recent studies that explored plasticity in dendrites. We emphasize 

that dendrites are not modeled explicitly. Rather, we consider plas-

ticity as a local event at the site of the synapse. Since the essential 

ingredient of our voltage based plasticity model is the time course 

of the voltage, it is sufficient to model the local voltage at the site of 

the synapse. In the final part, we focus on STDP experiments using 

slightly different protocols, for example extracellular stimulation, 

leading to a large compound EPSP in the postsynaptic neuron or 

hippocampal cultures which have slightly different dynamics than 

acute cortical slices.

STDP IS SENSITIVE TO FREQUENCY

As early as in 1997, Markram et al. (1997) showed that the amount 

of plasticity resulting in pre-post pairing does not only depend 

on the lag between the pre- and postsynaptic spike but also on 
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parings result in LTD. The net effect would give less LTP. Note the 

large error bars in the statistics of the experiments presented in 

Senn et al. (2001), which make the results consistent with a hori-

zontal fit (dashed green line) or with a decrease with the number 

of pairings.

BEYOND THE POINT NEURON: WHAT COUNTS IS THE VOLTAGE  

AT THE SYNAPSE

The plasticity model depends directly on the postsynaptic volt-

age at the synapse; depending on the location of the synapse 

along the dendrite, the time course of the voltage is expected 

to be different. A change in the time course of the modeled 

voltage during plasticity experiments enables us to explore the 

between 0 and 30 in our model. Isolated pre-post pairings showed 

no effects in the experiment (as can be seen from the LTP results at 

low frequency in Figure 2B), whereas pairings with two and more 

pre-post gave an effect (Senn et al., 2001). In our model, isolated 

pairings give no effect (because the triplet term is not activated), 

whereas two or more repetitions at 20 Hz induce LTP. In contrast 

to the results of Senn et al. more spikes lead in our model to a 

linear increase before plasticity enters into saturation (Figure 2D). 

This could be due to the fact that the sliding threshold for the LTD 

to LTP transition (Bienenstock et al., 1982; Clopath et al., 2010) 

is not taken into account in this simulation. Since each plasticity 

induction protocol lasts more than 40 s, it is possible that the first 

pairing leads to LTP but with time the threshold slides so that later 

FIGURE 1 | Schematics of the model. (A) LTD occurs at the time of a 

presynaptic spike (green) if the low-pass filtered voltage trace u− (magenta) is 

above θ− (dashed line). The amount of LTD is proportional to the size of the 

yellow box. If the timing difference between post- and presynaptic spikes is too 

big, no LTD is induced (bottom). (B) LTP requires three factors: a momentary 

voltage u (black) above θ+ (dashed line), the trace x  (red) left from a previous 

presynaptic spike above 0, and the trace u+ (blue) of the low-pass filtered voltage 

above θ− (dashed line). The three conditions are met at the moment of the 

second postsynaptic spike in a post-pre-post triplet (top panel), but not after a 

single pre-post pair (bottom). The amount of plasticity is proportional to the 

multiplication of the yellow boxes. (C) Presynaptic stimulation under voltage 

clamp conditions shows the relevance of the threshold θ− for onset of LTD and 

θ+ for the onset of the LTP contribution. LTP becomes dominant if the voltage is 

10 mV or more above θ+.

FIGURE 2 | Model depends on spike frequency. (A). Schematics of STDP 

experiment. Injection of a current pulse in the presynaptic neuron at t = 5 ms 

leads to an EPSP which is followed t = 15 ms by an action potential triggered by 

a current pulse into the postsynaptic neuron. (B) If pre-post pairings at lags of 

2 ms are repeated, the total amount of weight change (vertical) depends on the 

repetition frequency (horizontal axis). Model in blue, data redrawn from Markram 

et al. (1997) in green. A standard pair-based STDP model cannot account for the 

frequency, whatever the summation scheme (black dashed line: all pairs 

contribute; red dashed line: only pairs between the nearest spikes contribute to 

plasticity). (C) The frequency dependence is different, if both pre- and 

postsynaptic spikes are generated by a Poisson process (box: zoom). (D) The 

total amount of plasticity depends on the number of pre-post pairings at 2 ms 

lag. At least two pairs at 20 Hz are necessary. With our set of parameters, 

saturation at the maximal weight occurs for around seven pairings (model is 

blue, data redrawn from Senn et al. (2001) in green; in experiments, saturation is 

maybe already reached after two pairings, dashed green line).
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different pulse amplitudes are studied. In the first case, the current 

pulse is sufficient to elicit a postsynaptic spike (Figure 3A, left). 

We find that presence of the postsynaptic spikes resulted in LTP 

(Figure 3B, left). We assume that the spike in the basal dendrite has 

80% of the amplitude of a somatic spike. This scenario corresponds 

to the situation in the basal dendrites (where the action potential is 

damped); but also to the apical dendrites with depolarizing current, 

under the assumption that the depolarizing current is sufficient to 

allow transmission of the backpropagating action potential.

In the second case, the pulse amplitude of the injected cur-

rent is reduced so that it provokes a subthreshold response only 

(Figure 3A, right). We imagine that this corresponds to the situation 

that is seen by a synapse located distantly on the apical dendrite. 

Because of the large electrotonic distance, it will not feel the somatic 

action potential, but only voltage deflection of small amplitude. 

In our model, this scenario leads to LTD at the synapse, as in the 

apical dendrites (Figure 3B, right).

We note that the actual value of LTP in proximal synapses, pre-

dicted by the model, is slightly higher than that measured in experi-

ments. However, the data (Sjöström and Häusser, 2006) show that 

effects that the failure of a backpropagating action potential 

or the form of dendritic spikes could have on the outcome of 

plasticity experiments.

The role of backpropagating action potentials

In the protocol from Sjöström and Häusser (2006), five pre-post 

pairs of spikes at 50 Hz are induced 15 times every 10 s. The lag 

between the first pre- and the first postsynaptic spike is 10 ms. 

Data of Sjöström and Häusser (2006) show that such a high-

frequency pairing leads to LTP in basal dendrites, but to LTD 

in apical dendrites. A potential explanation is that LTP does not 

occur in distal dendrites, if there is a failure of the backpropagat-

ing action potential to reach the synapse. In agreement with this 

interpretation, LTP can be rescued in the apical dendrites if, in 

addition to the pairing, a depolarizing current in the dendrite is 

injected, boosting the backpropagating action potential (Sjöström 

and Häusser, 2006).

In a simulation of the high-frequency pairing experiment in our 

model of synaptic plasticity, we consider two different situations. In 

both cases, a current pulse is injected in the neuron model, but two 

FIGURE 3 | Plasticity results depend on voltage trajectory. (A) Eight 50 Hz 

pre-post pairings are induced by injection of somatic current pulses (center, 

schematic). We model the voltage time course at synapses located on the soma 

(dashed) and basal (solid) dendrite by the sequence of action potentials, shown on 

the left. The voltage time course at synapses located distally on apical dendrites is 

modeled as subthreshold response (right, solid line). (B) 50 Hz pre-post pairing 

leads to LTP (left column) when postsynaptic response consists of spikes as in the 

basal dendrite (or if the presence of backpropagating action potentials) and to LTD 

when the postsynaptic response stays subthreshold (right column). Green, data 

redrawn from Sjöström and Häusser (2006); blue, simulations.

FIGURE 4 | Burst-timing-dependent learning window. A postsynaptic burst 

of three spikes is paired with a presynaptic spike. (A) Assumed voltage 

waveform at the basal dendrite. (B) The total weight change plotted as a 

function of the time between the presynaptic spike and the start of the 

postsynaptic burst varies. Data redrawn from Kampa et al. (2006) in green, 

simulations in blue.
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Extracellular stimulation

In experiments of Froemke and Dan (2002), pairs and triplets of 

spikes are repeated 60 times at 0.2 Hz. The main difference to the 

pairing experiments of Markram et al. (1997) is that current injec-

tion into the presynaptic neuron is replaced by extracellular stimu-

lation of axonal fibers projecting onto the postsynaptic neuron 

(Figure 5A). Since presynaptic stimulation in these experiments 

(Froemke and Dan, 2002) is extracellular and most likely triggers 

activity in many presynaptic fibers, we adjust the postsynaptic 

response to the presynaptic activity to an amplitude of 2.5 mV, 

corresponding to the estimated size of compound EPSP. The real 

compound EPSP amplitude at the site of the synapse might be even 

bigger (Palmer and Stuart, 2009), but this seems to be a reason-

able estimate. If the time lag between the presynaptic spike arrival 

and postsynaptic firing is changed, the model generates a STDP 

function of the standard form, albeit with an amplitude slightly 

lower than that measured in experimental results (Figure 5B). In 

contrast to the results of Markram et al. (1997), LTP occurs in the 

pre-post configuration in our model despite the fact that the repeti-

tion frequency is only 0.2 Hz. The difference is due to the fact that 

extracellular stimulation leads to a significant depolarization of 

the postsynaptic membrane because of the large compound EPSP. 

This depolarization is followed in the pre-post configuration a few 

milliseconds later by a postsynaptic spike. Activation of the synapse, 

sustained depolarization before the spike, and momentary spiking 

are exactly the three requirements in the model to evoke LTP. The 

amount of potentiation in the learning window is however smaller 

in the model than in the experiment with this choice of EPSP ampli-

tude; a larger amplitude yields similar results. Note that the voltage 

threshold θ+ for LTP induction found by parameters optimization 

is about 11 mV above resting potential (see Table 2).

We use the same plasticity model also for the triplet experi-

ments conducted by Froemke and Dan (2002). Triplets of one 

pre- and two postsynaptic spikes are induced in four  different 

configurations: (a) pre-5ms-post-5ms-post, (b) post-5ms-

pre-10ms-post, (c) post-5ms-post-5ms-pre, and (d) post-

25ms-pre-5ms-post. Similarly, triplets of two pre- and one 

the connections closest to the soma undergo a synaptic change of 

about 150–200%, whereas those further away show less potentia-

tion. The experiential data in Figure 3A corresponds to an average 

over all “proximal” synapses.

The role of bursts in basal dendrites

Experiments of Kampa et al. (2006) studied the pairing of a presy-

naptic spike with a burst of three postsynaptic spikes at 200 Hz. 

Hence the total duration of a burst was 10 ms. The time between 

the presynaptic spike and the postsynaptic burst varies. Pairs of 

presynaptic spike and postsynaptic burst (three spikes, intra burst 

frequency of 200 Hz) were repeated 60 times every 10 s.

In agreement with the experimental results, a presynaptic spike 

followed 10 ms later by the start of the postsynaptic burst results in 

LTP whereas a postsynaptic burst followed 45 ms later by a presyn-

aptic spike gives LTD (Figure 4). Hence pre-before-burst yields LTP 

whereas burst-before-pre yields LTD, as expected. Experiments 

have shown that bursts, and hence dendritic calcium spikes, are 

important for the induction of plasticity (Kampa et al., 2006). This 

aspect is modeled here by the non-linear term for potentiation. 

The plasticity changes for −45 and +10 ms are found to be a stable 

result of our model over a broad range of parameters.

Surprisingly, however, burst-before-pre gives LTP in the experi-

ments, if the burst starts 15 ms before the presynaptic spike. Our 

model shows that this effect can be explained under the assumption 

of a low LTP threshold (θ+) in the basal dendrites. The optimal value 

is about 10 mV above rest (see Table 2). Since the spikes have a long 

depolarizing spike after-potential (Nevian et al., 2007) (Figure 4A), a 

low LTP threshold allows, for a timing difference burst-before-pre of 

15 ms, an overlap between presynaptic and postsynaptic events. Thus, 

a low threshold corresponds to a shift in the horizontal position of the 

transition from LTP to LTD in the burst-timing learning window.

PLASTICITY IN DIFFERENT PREPARATIONS

In the previous sections, we focused on data obtained from experi-

ments with multiple patch electrodes. In this last section, we explore 

plasticity data coming from different preparations.

FIGURE 5 | Results with extracellular stimulation. (A) Extracellular stimulation 

of presynaptic fibers followed 10 ms later by postsynaptic stimulation is described 

by a compound EPSP of 2.5 mV and the upswing of an action potential 

(schematic). (B) 60 repetitions of pre-post pairs lead to LTP despite a repetition 

frequency of only 0.2 Hz. The amount of LTP in our model (blue line) is smaller 

than in the corresponding experiment (green). The reverse firing leads to LTD. 

(C) Triplets consisting of two post- and one presynaptic spikes in various 

configurations (see drawing) are repeated at low frequencies. Presynaptic 

stimulation is extracellular. Line and bars: simulations, green: data redrawn from 

Froemke and Dan (2002). (D) Same, but triplets consisting of two pre- and one 

postsynaptic spike. The big error bars in (C,D) indicate that data are very noisy and 

thus it is only relevant whether triplets induce LTP or LTD in each configurations.
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synapses are depressing, the scenario (5, −15) is improved without 

altering the qualitative behavior of the other scenarios (data not 

shown).

DISCUSSION

The model presented in this paper can explain a number of syn-

aptic plasticity experiments. It covers the presynaptic frequency 

dependency (Dudek and Bear, 1992), voltage-clamp experiment 

(ABS rule) (Artola et al., 1990), spike-timing and pairing frequency 

dependency (Markram et al., 1997; Sjöström et al., 2001), tight rela-

tion between voltage and spike timing (Sjöström et al., 2001), and 

burst-timing-dependent plasticity (Nevian and Sakmann, 2006), 

as shown previously (Clopath et al., 2008, 2010). In addition, the 

model was tested here successfully on some subtle protocols that 

showed an influence of the cell morphology on plasticity results 

(Kampa et al., 2006; Sjöström and Häusser, 2006). Our interpre-

tation is that the morphology enters only indirectly and only as 

much as it leads to a change of the voltage trajectory at the site 

of the synapse, compared to the voltage at the soma. Accounting 

for presence or absence of backpropagating action potentials or 

dendritic location by an appropriate choice of the local voltage 

time course was found to be sufficient to describe the experiments 

considered. For example, the difference between plasticity at the 

basal and at the apical dendrite (failure of backpropagating action 

potential) can be explained only by the voltage difference. We think 

that this model is thus a good compromise between complexity and 

performance. Indeed, more detailed descriptions as provided by 

biophysical models (Lisman and Zhabotinsky, 2001; Shouval et al., 

2002; Miller et al., 2005; Rubin et al., 2005; Graupner and Brunel, 

2007) have a price to pay since they have many parameters to be 

tuned and cannot be treated analytically.

Some experimental results look at first sight contradictory, e.g., 

low frequency pairing leads to LTP in Froemke and Dan (2002) and 

no weight change in Sjöström et al. (2001). However, our math-

ematical model reconciles these two data, taking into account the 

postsynaptic spikes can have one of four possible timings: (a) 

pre-30ms-post-10ms-pre, (b) pre-3ms-post-10ms-pre, (c) post- 

5ms-pre-20ms-pre, and (d) pre-7ms-pre-3ms-post. All the 

eight data points can be explained qualitatively by the model 

(Figures 5C,D).

Pairs, triplets, and quadruplets elicited in culture hippocampal cells

In hippocampal culture, Wang et al. (2005) studied a large range 

of pair, triplet, and quadruplet experiments. All stimuli (pairs, tri-

plets, or quadruplets) are repeated 60 times at 1 Hz. Since neuronal 

and synaptic parameters in a culture can be somewhat different, 

we assumed a relatively large EPSP amplitude of 7.5 mV. With 

such a large EPSP we find, in analogy to the results in Figure 5, a 

standard STDP learning window for pairing experiments at 1 Hz 

(Figure 6B), however with a smaller amplitude compared to that 

of the experiment.

Our model enables us to account qualitatively for seven out of 

eight results with triplet stimulation. Triplets in the experiments 

of Figure 6 are designed so that the pair interactions (pre-post or 

post-pre) in the pre-post-pre triplet are identical to those in the 

post-pre-post triplet (Figure 6C, blue and red schematic traces). 

Hence a pure pair-based STDP rule would predict the same result. 

However, in our triplet model the effective contribution of LTP 

is different in the two configurations (Figure 6C). Moreover, the 

model also enables us to explain the quadruplet experiments that 

used the following configurations: pre-5ms-post-T-post-5ms-pre 

or post-5ms-pre-T-pre-5ms-post, where T varies (Figure 6D). The 

only point in Figure 6C which is badly fitted is the one in the 

paradigm with pre-5ms-post-15ms-pre. We wondered whether the 

quality of the fit would increase if we included short-term plasticity 

into the model framework. The reason is that our plasticity model 

predicts too much depression, but depression would be decreased 

if the EPSP caused by the second presynaptic spike has a smaller 

amplitude than the first one. It is not clear what type of short-term 

plasticity is expressed hippocampal culture synapses, but, if the 

FIGURE 6 | Pairs, triplets, and quadruplets of spikes in cultured 

hippocampal neurons. (A) Intracellular presynaptic stimulation results in a 

model EPSP of 7.5 mV (schematic). (B) STDP function in the pair-experiment. 

(C) Triplet experiments. ∆t
1,2

 in the post-pre-post configuration is the time 

between the single pre- and the two postsynaptic spikes (blue histogram bars 

and schematics) or, in the pre-post-pre experiment the time between the 

single post- and the two presynaptic spikes (red histogram bars and 

schematics). The four different post-pre-post triplets are: (a) post-5ms-pre-5ms-

post, (b) post-10ms-pre-10ms-post, (c) post-5ms-pre-15ms-post, and (d) 

post-15ms-pre-5ms-post. The four different pre-post-pre triplets are: (a) 

pre-5ms-post-5ms-pre, (b) pre-10ms-post-10ms-pre, (c) pre-15ms-post-5ms-

pre, and (d) pre-5ms-post-15ms-pre. Lines and bars: simulations. Green 

circles: data redrawn from Wang et al. (2005). (D) Quadruplet experiment (see 

main text).
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presynaptic neurons connecting the same postsynaptic cell with syn-

apses at different dendritic locations. Since the neurons are highly 

non-linear (Larkum et al., 2009), it is important to study the precise 

voltage time course at the postsynaptic site as well as the dynamics 

of some biophysical quantities related to plasticity mechanism, e.g., 

calcium. What are the aspects of plasticity that need to be explored 

next? Apart from the functional implication of synaptic plasticity in 

networks that is understudied, the relation between early-long-term, 

late-long-term and short-term plasticity needs to be understood. Is 

the molecular machinery for consolidation present during standard 

STDP protocol (e.g., plasticity related proteins)? What is the role of 

neuromodulators? Are the synapse binary, do they have a few states 

or are they continuous? The molecular details of plasticity are not 

well modeled by the theoreticians except for a few promising mod-

els (Lisman and Zhabotinsky, 2001; Miller et al., 2005; Rubin et al., 

2005; Graupner and Brunel, 2007). Biophysical questions have to be 

addressed for all major synapse types. Hopefully the structure of the 

model is constant across synapses, so that just the parameters vary 

due to different molecular roles, which would enable us theoreticians 

to develop consistent modeling framework but it is not clear that 

single model is sufficient to account for different synapse types.

An obvious extension of the work presented in this paper would 

be to associate the plasticity model with a detailed biophysical neuron 

model with multiple compartments that would automatically gener-

ate, for arbitrary stimuli, the appropriate voltage time course at the site 

of the synapse. This implies that active dendrites must be considered 

so as to allow the backpropagation of somatic action potentials as well 

as intrinsic dendritic spikes under appropriate stimulation. Finally, 

our model cannot grasp sensitivity upon synaptic strength, for exam-

ple shown by Bi and Poo (1998), but in principle we can make the 

amplitudes for depression and potentiation dependent directly on the 

synaptic weight. The exact shape of this function can be inspired by 

previous studies (van Rossum et al., 2000; Gütig et al., 2003; Morrison 

et al., 2007). Additional work in that direction is planned. The list of 

STDP experiments is long and we did not try to fit all the available 

experimental data. Here we have shown that a diverse set of experi-

ments from different labs can be explained by our model. However, we 

think that our model cannot provide an explanation of the following 

results. Letzkus et al. (2006) show that a presynaptic spike followed by 

a postsynaptic burst induces LTP in proximal synapses whereas reverse 

timing leads to depression, which is in agreement with our model. 

However, in distal synapses, the results are opposite: a presynaptic 

spike before a postsynaptic burst induces LTD and post before pre 

results in potentiation. These results are a priori not reproducible by 

our model. Maybe the neuron non-linear dynamics would allow to 

reconcile our model with these data, but in order to tackle this prob-

lem a more detailed neuron model is necessary. Second, the study of 

Wittenberg and Wang (2006) shows that a pre- and a postsynaptic 

spike pairing induces only LTD. Moreover, potentiation is expressed 

after only tens of presynaptic spike with postsynaptic burst pairing 

whereas depression can only be measured after hundreds of pairings. 

This dependency is not captured by our model; an additional long 

time constant would help to describe this phenomenon.
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different preparations. Indeed, the STDP learning window from 

Froemke and Dan (2002) is obtained with extracellular stimulation, 

which results in a large compound EPSP. This large compound 

EPSP allows the model to fulfill the three conditions for LTP.

The fitted parameters differ for the various experiments, up to 

an order of magnitude. This is however not surprising since the 

preparations and the synapse types are different. For example, τ
x
 is 

three times bigger in hippocampal slices (fitted from data of Wang 

et al., 2005) than in visual cortex (fitted from Sjöström et al., 2001). 

Would that mean that the dynamics of, say glutamate binding, is 

slower in hippocampal slices? We think a lot more experimental 

data are needed before such conclusions should be drawn.

What are the limitations of our model compared to the other 

plasticity models? First, standard STDP models (Gerstner et al., 1996; 

Song et al., 2000) cannot account for frequency dependency since 

they only consider pair interactions of spikes: pre-post for potentia-

tion and post-pre for depression. The original model of Froemke 

(Froemke and Dan, 2002) did not catch the frequency dependency 

either, as explained in Froemke et al. (2006). This frequency depend-

ency can be described by non-linear spiking models such as the 

model of Senn et al. (2001) or the one of Pfister and Gerstner as 

Pfister and Gerstner (2006) but, by construction, these earlier spike-

based models (where action potentials are treated as momentary 

events) cannot deal with voltage clamp experiment and any other 

form of plasticity depending on the dendritic structure. Note that 

the model of Senn et al. (2001) can be interpreted either as a phe-

nomenological model like ours (i.e., formal mathematical quantities 

that are upregulated and downregulated during spike events) or as 

a first step toward a biophysical model (where the formal variables 

are identified with the up- or downregulation of NMDA receptors 

and second messengers; Senn et al., 2001). Some classical biophysical 

models depend on (i) the voltage (Abarbanel et al., 2002; Brader 

et al., 2007), (ii) the calcium/calmodulin-dependent protein kinase 

II (CaMKII) phosphorylation and bistability (Lisman, 1985, 1989; 

Lisman and Zhabotinsky, 2001; Miller et al., 2005; Graupner and 

Brunel, 2007), (iii) the calcium concentration (Abarbanel et al., 2002; 

Karmarkar and Buonomano, 2002; Karmarkar et al., 2002; Shouval 

et al., 2002; Rubin et al., 2005), glutamate binding, AMPA recep-

tors (Saudargiene et al., 2003), NMDA receptors (Senn et al., 2001) 

etc. Maybe the closest in spirit to our model is the Shouval model 

(Shouval et al., 2002) that also covers the frequency dependency and 

voltage-clamp experiments. However, this model predicts depres-

sion for pre-post pairs at medium to long lags for which only some 

evidence exists (Nishiyama et al., 2000; Wittenberg and Wang, 2006). 

Moreover, it was never compared to dendritic synaptic plasticity.

Most of the models described above show their power only quali-

tatively. In order to compare plasticity models quantitatively, it would 

be important to have common benchmarks, possibly with some raw 

experimental data online, and design a score measure. Such a synaptic 

plasticity challenge could be constructed in analogy to the competi-

tion “Quantitative Single-Neuron Modeling” (Gerstner and Naud, 

2009) proposed by the International Neuroinformatics Coordinating 

Facility (INCF). The first step is to use as benchmarks the already 

published data. However, the perfect type of data would be a con-

sistent set of experiments (same synapse type, same preparation, 

many repetitions) that describes each synaptic plasticity feature, i.e., 

frequency, spike timing, complex spike patterns, voltage control (ide-

ally at the synapse location), and intracellular stimulation of  several 
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