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Voltage-based inhibitory synaptic plasticity:

network regulation, diversity, and flexibility

Victor Pedrosa1,∗, Claudia Clopath1,∗

1Department of Bioengineering, Imperial College London
∗Corresponding authors: v.pedrosa@imperial.ac.uk, c.clopath@imperial.ac.uk

Abstract

Neural networks are highly heterogeneous while homeostatic mechanisms ensure that this heterogeneity is kept within a

physiologically safe range. One of such homeostatic mechanisms, inhibitory synaptic plasticity, has been observed across

different brain regions. Computationally, however, inhibitory synaptic plasticity models often lead to a strong suppression

of neuronal diversity. Here, we propose a model of inhibitory synaptic plasticity in which synaptic updates depend on

presynaptic spike arrival and postsynaptic membrane voltage. Our plasticity rule regulates the network activity by setting

a target value for the postsynaptic membrane potential over a long timescale. In a feedforward network, we show that

our voltage-dependent inhibitory synaptic plasticity (vISP) model regulates the excitatory/inhibitory ratio while allowing

for a broad range of postsynaptic firing rates and thus network diversity. In a feedforward network in which excitatory

and inhibitory neurons receive correlated input, our plasticity model allows for the development of co-tuned excitation

and inhibition, in agreement with recordings in rat auditory cortex. In recurrent networks, our model supports memory

formation and retrieval while allowing for the development of heterogeneous neuronal activity. Finally, we implement our

vISP rule in a model of the hippocampal CA1 region whose pyramidal cell excitability differs across cells. This model

accounts for the experimentally observed variability in pyramidal cell features such as the number of place fields, the fields

sizes, and the portion of the environment covered by each cell. Importantly, our model supports a combination of sparse

and dense coding in the hippocampus. Therefore, our voltage-dependent inhibitory plasticity model accounts for network

homeostasis while allowing for diverse neuronal dynamics observed across brain regions.

Keywords: synaptic plasticity, inhibitory plasticity, spike-timing-dependent plasticity, voltage-based plasticity.
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Introduction

Neuronal diversity has been observed across different brain

regions1–4. In the rat hippocampus, this diversity is thought

to be crucial to allow for the encoding of a behaviourally rel-

evant range of environment sizes1. In the cortex, excitatory

and inhibitory neuron firing rates are distributed across a

wide range of possible values, with most neurons exhibiting

a low firing rate and a few neurons firing at a very high

firing rate3. This diversity in neuronal activity can emerge

from heterogeneously connected excitatory and inhibitory

neurons5;6.

Cortical neurons receive balanced excitatory and inhibitory

inputs7–10. This balance between excitation and inhibi-

tion is thought to be important for network stability and

signal processing11–16. Additionally, some cortical neu-

rons have been shown to receive co-tuned excitatory and

inhibitory inputs in a stimulus-specific manner7;9;8;17. The

mechanisms that support and promote this balanced state

in biological conditions, however, are still under intense

debate. Inhibitory synaptic plasticity has been proposed as a

potential candidate to fulfill this role15;18–20. By modulating

inhibitory connections, the network can recover to a bal-

anced state even in face of continuously-changing excitatory

connections15;21;22. Any mechanism that modulates the bal-

ance between excitation and inhibition, however, should be

able to support the neuronal diversity observed in biological

neural networks.

A commonly used inhibitory synaptic plasticity model mod-

ulates inhibitory connections depending on the timing of

pre- and postsynaptic spikes15. This spike-based inhibitory

synaptic plasticity (sISP) rule regulates the balance between

excitatory and inhibitory inputs while imposing a target

firing rate for the postsynaptic neuron15. When combined

with correlated excitatory and inhibitory inputs, this plas-

ticity model produces co-tuned excitatory and inhibitory

receptive fields15;22. Because of the restrictions that this

model imposes onto postsynaptic firing rates, however, once

the balanced state is achieved, responses to stimuli can only

be perceived transiently15. The timescales at which these

responses can be observed are determined by the timescales

at which inhibitory synapses are updated. Moreover, in a

recurrent network, the average firing rate of all excitatory

cells converge to the same value, independently of their

feedforward inputs.

Excitatory synaptic plasticity has been vastly explored and

several plasticity models have been proposed, including

spike-timing-dependent plasticity (STDP)23 and voltage-

based models24;25. In contrast, inhibitory synaptic plasticity

models have only recently started being investigated and the

range of proposed plasticity models and applications is still

limited26;15;19;27. Recent experimental data has suggested

that the rules governing the change in inhibitory connections

might depend on concurrent excitatory inputs10. Theoret-

ical studies have shown that co-dependent excitatory and

inhibitory synaptic plasticity rules can regulate network ac-

tivity without setting a target firing rate for postsynaptic

excitatory cells28. Moreover, accumulating evidence indi-

cates that inhibitory plasticity rules are interneuron-type

specific29–31, a characteristic that has been suggested to be

important for controlling place field formation and consoli-

dation in CA1 pyramidal cells29. Additionally, it has been

reported experimentally that inhibitory synaptic plasticity

in hippocampal CA1 interneuron synapses could only be

induced by presynaptic theta burst stimulation if the postsy-

naptic membrane voltage was clamped at a hyperpolarized

potential29. Under spike-timing-dependent protocols, in-

hibitory synaptic changes could not be observed using single

postsynaptic spikes. Instead, inhibitory plasticity required

postsynaptic bursts29.

We propose a voltage-based inhibitory synaptic plasticity

(vISP) model in which the updates in inhibitory synaptic

weights depend on the postsynaptic membrane voltage and

presynaptic spikes. According to our plasticity model, in-

hibitory synaptic weights are updated to regulate the postsy-

naptic membrane voltage over a long timescale. We next ex-

plore the effects of this plasticity model using a feedforward

network of excitatory and inhibitory inputs. We show that

our model can modulate pyramidal cell activity by imposing

a natural maximum firing rate. Contrary to previous models

of sISP, however, our model does not impose a unique target

postsynaptic firing rate. We then implement our model in

a recurrent network and show that network heterogeneity

can be observed in the neuronal activity. Finally, we intro-

duce vISP in a model of the CA1 hippocampal region. Our

model reproduces several experimental observations such as

the co-tuning between excitation and inhibition in auditory

cortex, the wide distribution of firing rates in hippocampal

pyramidal cells, and the diverse range of place cell features.
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Therefore, our voltage-based model regulates network ac-

tivity while allowing for a diversity in pyramidal cell firing

rates.

Results

Voltage-based inhibitory synaptic plasticity model

In-vitro experiments suggest that inhibitory synaptic plas-

ticity may depend on postsynaptic depolarization29. More-

over, current models of inhibitory plasticity impose strong

homeostatic constraints in simulated neural networks19. We

propose an inhibitory plasticity model in which the change

in synaptic connections from inhibitory neurons onto pyra-

midal cells depends on the postsynaptic membrane voltage.

In our voltage-based inhibitory synaptic plasticity model

(vISP), the update in inhibitory weights aims to maintain

the average postsynaptic membrane voltage at a target value

over a long timescale (figure 1A, see methods). Addition-

ally, to ensure a minimum level of neuronal activity, in-

hibitory presynaptic spikes lead to synaptic weight depres-

sion (iLTD).

Voltage-dependent inhibitory synaptic plasticity

regulates postsynaptic activity without setting a target

firing rate

We first investigate whether our inhibitory plasticity model

can regulate pyramidal cell firing rate. We simulate a feed-

forward network composed of excitatory and inhibitory

neurons projecting onto one postsynaptic neuron (figure

1B). The input neurons fire, on average, with the same firing

rate and the synaptic weights from excitatory input neurons

are all fixed at the same value. The weights for inhibitory

synapses are initialized at a small value and are updated fol-

lowing the vISP model. We then perform these simulations

for several levels of excitatory input firing rate. Indepen-

dently of the initial conditions, the vISP model regulates the

inhibitory connections such that the ratio between excitatory

and inhibitory currents onto the postsynaptic cell (E/I ratio)

converges to the same level (figure 1C). Interestingly, our

inhibitory plasticity rule sets a natural maximum firing rate

for the postsynaptic neuron (figure 1C-D). Importantly, this

model does not restrict the postsynaptic activity to a narrow

range. Instead, the postsynaptic firing rate can assume any

value from zero to the maximum firing rate imposed by the

inhibitory plasticity rule (figure 1D). Therefore, the vISP

model regulates pyramidal cell activity by setting a target E/I

ratio and a maximum firing rate without over-constricting

the postsynaptic activity.

To compare the effects of our model with previous models,

we perform the same simulations replacing our inhibitory

plasticity model with a spike-based inhibitory plasticity

rule15. Under this rule, near-coincident pre- and postsy-

naptic spikes lead to synaptic potentiation whereas each

presynaptic spike leads to synaptic depression (see meth-

ods). This synaptic plasticity rule has been shown to set a

target firing rate for the postsynaptic neuron15. Indeed, in

our simulations, the sISP model sets a target value for both

the E/I ratio and the postsynaptic firing rate (figure 1C-D).

This difference from the vISP rule is observed even though

the evolution of the average inhibitory synaptic weight does

not differ, qualitatively, from the one observed in our model.

Therefore, the sISP model regulates pyramidal cell activ-

ity by constraining the postsynaptic firing rate to a narrow

range around the target firing rate.

vISP and correlated E-I inputs lead to co-tuned

excitatory and inhibitory receptive fields

We next investigate the effect of the vISP model on in-

hibitory receptive field formation. In particular, we wonder

whether this inhibitory plasticity model can account for the

co-tuning of excitatory and inhibitory currents observed in

cortical neurons7;9;17;8;14. To address that, we simulate a

feedforward network of excitatory and inhibitory neurons

projecting onto one postsynaptic neuron. Those two pop-

ulations of neurons are organized in pairs such that each

pair of excitatory and inhibitory neurons fire with the same

time-varying firing rate (figure 2A). This is equivalent to

simulating pairs of excitatory and inhibitory neurons re-

ceiving similar inputs. The excitatory synaptic weights are

initialized such that the excitatory receptive field is Gaus-

sian shaped with a peak at input neuron 10. Those synaptic

weights are kept fixed throughout the simulations. The in-

hibitory synaptic weights are initialized at a low value and

evolve following the vISP model. Similarly to the case

with homogeneous excitatory connections, the change in

inhibitory connections regulates the E/I ratio, forcing it

towards a target value close to 1 (figure 2C) and the post-

synaptic firing rate stabilizes at a low level (figure 2D).

Interestingly, although the vISP model allows for a wide

range of postsynaptic firing rates, the average inhibitory

currents converge to the same values of their corresponding

excitatory counterparts (figure 2B and 2E). Therefore, the

vISP model supports the emergence of a co-tuning between
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Figure 1: Voltage-dependent inhibitory synaptic plasticity regulates postsynaptic activity without setting a target firing rate.

(A) Model diagram and variables. Our voltage-dependent inhibitory synaptic plasticity model (vISP) depends on a presynaptic trace,

x̄pre, and a low pass-filtered version of the postsynaptic membrane voltage, ũ. Presynaptic spikes lead to two independent processes:

iLTD at the time of the spike, and either iLTD or iLTP during a short interval determined by the presynaptic trace x̄pre. The polarity of

this second term (i.e. iLTD or iLTP) depends on the value of ũ relative to a target value θV . (B) Feedforward network diagram. We

simulate a feedforward network composed of a set of excitatory (red) and inhibitory (blue) neurons projecting onto one postsynaptic

excitatory cell (grey). The firing rates of input neurons vary over time but are kept, on average, at one specific value for excitatory

neurons and at an independent value for inhibitory neurons. (C) Comparison between voltage-dependent inhibitory synaptic plasticity

(vISP, left) and spike-based inhibitory synaptic plasticity (sISP, right). Top: E/I ratio (ratio between excitatory and inhibitory currents) as

a function of time; middle: postsynaptic firing rate as a function of time; bottom: average inhibitory synaptic weight as a function of

time. Each color corresponds to a simulation with one value of excitatory input firing rate. (D) Postsynaptic firing rate as a function of

the mean firing rate of excitatory input neurons. The voltage-dependent inhibitory synaptic plasticity regulates postsynaptic firing rate by

setting a maximum but not a target value. The spike-based inhibitory synaptic plasticity, however, imposes a unique target firing rate on

the postsynaptic neuron regardless of the intensity of excitatory inputs.

excitation and inhibition.

The co-tuning between excitatory and inhibitory receptive

fields has also been observed using a spike-timing depen-

dent inhibitory plasticity rule15 or its rate-based version22.

To test this under the same conditions as the ones used with

the vISP model, we perform the same simulations as before

while replacing the voltage-dependent inhibitory plasticity

rule with a spike-based model. As expected, the inhibitory

synaptic inputs converge to the same levels as their corre-

sponding excitatory input (supp. figure 1). In summary, both

voltage- and spike-based inhibitory plasticity rule account

for the development of co-tuned excitatory and inhibitory

receptive fields when excitatory and inhibitory inputs are

correlated.

Inhibitory connections adapt to changes in excitatory

input while allowing for diversity in pyramidal cell

firing rate

As excitatory synaptic weights are constantly changing32–39,

neural circuits should be able to adapt to these changes. In

particular, sensory stimulation paired with the activation of

neuromodulatory circuits has been shown to induce changes

in excitatory receptive fields9;40. This change is then fol-

lowed by an adaptation of inhibitory receptive fields in order

to restore the co-tuning between excitation and inhibition

observed in auditory cortex9;40. Importantly, the firing rate

following the restoration of balance does not necessarily cor-

respond to the level before induction of plasticity40. To test

whether a network governed by the vISP model can adapt to

changes in excitatory synaptic weights, we simulate a feed-
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forward network analogous to the one we simulated before

but with an excitatory receptive field centered around in-

put 7 (figure 2F). The activities of excitatory and inhibitory

neurons associated to the same input index are correlated in

time. The excitatory synaptic weights are kept fixed while

the inhibitory synaptic weights evolve following the vISP

model. Similarly to what we observed in the previous case,

the inhibitory receptive field converges to match the exci-

tatory inputs (figure 2G). Consequently, the postsynaptic

firing rate decays to an almost-silent stage (figure 2H). After

450 s, the excitatory synaptic weights are shifted instantly

such that the peak of the excitatory receptive field becomes

centered around input 15 and its amplitude is twice the origi-

nal amplitude (figure 2F). This simulates the natural change

in excitatory tuning observed in auditory cortex following

neuromodulatory stimulation9;40. The excitatory synaptic

weights are then kept constant for another 450 s while the

inhibitory synaptic weights are allowed to change. The

inhibitory receptive field adapts to the changes in excita-

tory inputs moves towards the new excitatory receptive field

(figure 2G). Remarkably, the postsynaptic firing rate does

not return to the same level. Instead, it decays to a higher

level when compared to the first 450 seconds of simulation

(figure 2H). Meanwhile, the ratio between excitatory and

inhibitory currents and the correlation between excitatory

and inhibitory receptive fields return to baseline level (figure

2H). Contrastingly, although the sISP model supports the

co-tuning between excitation and inhibition, it constrains

the postsynaptic firing rate to a narrow range around a target

value (suppl fig 2F-H). Therefore, the vISP model provides

a mechanism with which a network can adapt to changes

in excitatory inputs and still allow for diversity in neuronal

activity.

Memory formation and retrieval is supported by vISP

Our voltage-based-inhibitory synaptic plasticity does not

set a target firing rate in a feedforward network. To test

whether this can be extended to a recurrent network and

its functional consequences, we simulate a randomly con-

nected network of excitatory and inhibitory neurons. All

the excitatory connections are kept fixed throughout the

simulations whereas inhibitory connections onto excitatory

cells follow our vISP model (figure 3A). We then select a

subset of the excitatory cells and increase the connections

amongst them to simulate memory formation by instantly

multiplying synaptic weights by 3. After network stabiliza-

tion, we test memory retrieval by stimulating half of the

neuronal assembly and recording the activity of the other

half of the assembly.

Since all the neurons are randomly connected and receive

random inputs, the network activity is homogeneous during

the first stage of the simulation (figure 3B and suppl figure

2A). The inhibitory synaptic connections then increase and

bring the activity of the entire network to a low level (figure

3B and suppl figure 2A). Once the connections between

pairs of neurons in the assembly are increased, the exci-

tatory and inhibitory currents received by a neuron in the

assembly increase (figure 3C). The increase in excitatory

current is higher, leading to an increase in the firing rate

of neurons in the memory assembly (figure 3B,E). The in-

hibitory connections then undergo plasticity, lowering the

firing rate of the memory assembly (figure 3B,E). Notably,

the firing rate of the assembly does not return to the same

level of the rest of the network (figure 3B, E, and F and

suppl figure 2A) and the firing rates of the neurons in the

excitatory network are widely distributed (figure 3D). In

contrast, when the same simulations are performed using a

spike-based inhibitory synaptic plasticity model, the activ-

ity of the neuronal assembly is indistinguishable from the

activity of the rest of the network at the steady-state (suppl

figure 3). Although vISP does not force the firing rate of the

memory assembly to return to baseline level, the average

ratio between excitatory and inhibitory currents converges

to a unique level (suppl figure 2C). Therefore, our vISP

model regulates the activity of memory assemblies but does

not force it to fade completely to baseline level.

We next investigate whether we can retrieve the memory

using external stimulation. We increase the external input

to half of the neurons forming the memory assembly and

record the activity of the remaining neurons within the as-

sembly. Similarly to what is observed with a sISP model

(suppl figure 3A-B), the partial memory stimulation leads

to an increase in the activity of the remaining neurons in the

assembly (figure 3B,E). This increase is also accompanied

by a decrease in the activity of the excitatory neurons out-

side of the memory assembly (figure 3B,E). This decrease,

however, may depend on the level of lateral inhibition in

the network. In summary, vISP supports memory formation

and retrieval via pattern completion. Moreover, neurons

that are part of a memory assembly (i.e. neurons that are

strongly connected) show a higher firing rate even after
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Figure 2: vISP and correlated E-I inputs lead to co-tuned excitatory and inhibitory receptive fields. (A) Network diagram. We

simulate a feedforward network composed of a set of excitatory (red) and inhibitory (blue) neurons projecting onto one postsynaptic

excitatory cell (grey). Each excitatory neuron is associated with an inhibitory counterpart such that they follow the same time-varying

firing rate (grey shading). The firing rates of different pairs of input neurons vary over time but are kept, on average, at the same level.

Inhibitory connections follow our voltage-based inhibitory synaptic plasticity (vISP) model. (B) Evolution of inhibitory receptive

field. Synaptic weights for each inhibitory (blue) and excitatory (red) input neuron. The different shades of blue represent snapshots

of the inhibitory weights at different times throughout the simulation. (C) Ratio between excitatory and inhibitory currents onto the

postsynaptic cell as a function of time. The curve is smoothed using a rolling average over 100 ms. (D) Postsynaptic firing rate as a

function of time. (E) Correlation between excitatory and inhibitory receptive fields as a function of time. (F-H) In these simulations, the

excitatory receptive fields (synaptic weights) are kept constant for half of the simulation (first 450 s). The synaptic weights are then

abruptly modified such that the strongest synaptic weight is moved from input 7 to input 15 and the overall synaptic weight amplitude is

twice as strong. The excitatory synaptic weights are then kept constant for the second half of the simulation (last 450 s). (F) Network

diagram for the first (top) and second (bottom) half of the simulation. (G) Evolution of inhibitory synaptic weights following a sudden

change in excitatory receptive field. Synaptic weights for each inhibitory (blue) and excitatory (red) input neuron for the first (top) and

second (bottom) half of the simulation. The different shades of blue represent snapshots of the inhibitory weights at different times

throughout the simulation. (H) Postsynaptic firing rate (top), E/I ratio (middle), and E-I correlation (bottom). Following the sudden

change in excitatory synaptic weights, the postsynaptic firing rate transiently increases and slowly returns to a lower level. Importantly,

the final postsynaptic firing rate is higher than in the first half of the simulation. E-I correlation is measured as the correlation between

excitatory and inhibitory receptive fields (synaptic weights) as a function of the input. E/I ratio and E-I correlation converge converge to

the same level, regardless of the amplitude of excitatory inputs.

network stabilization. vISP supports diversity in a heterogeneous recurrent

network

To extend our investigation into the functional consequences

of our vISP model in recurrent networks, we next simulate
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Figure 3: Memory formation and retrieval is supported by vISP. (A) Network diagram and simulation protocol. We simulate a

recurrent network of excitatory and inhibitory neurons. All the neurons are randomly connected and receive inputs from a set of input

neurons randomly connected to the neural network. Excitatory connections are static whereas inhibitory connections onto excitatory cells

are plastic and follow our voltage-dependent inhibitory synaptic plasticity rule. The network is first simulated and reaches a stable state

(left). A subset of excitatory neurons are then selected and the existing connections amongst these neurons are strengthened, multiplied

by 3 (middle, memory formation). Finally, after the network reaches a new stable state, half of the neurons selected in the previous

stage are stimulated by an extra set of input neurons (right, memory retrieval). Inhibitory connections are plastic throughout the entire

simulation. (B) Inhibitory (blue) and excitatory (red) spikes for one example simulation. The memory formation stage starts at 100

seconds and the extra input (memory retrieval) is applied at 200 seconds for 5 seconds. Purple: memory assembly whose neurons are

strongly connected amongst themselves after t = 100 s. Green: half of the neurons in the memory assembly that does not receive an

extra external input at t = 200 s. Yellow: an alternative set of cells of the same size as the memory assembly. The grey bar indicates the

interval over which the average firing rates are measured in D and F. (C) Inhibitory (blue), excitatory (red), and net (black) currents

received by a random neuron within the second half of the memory assembly (green bar in B). Please note that we use the convention

that inhibitory currents assume positive values. (D) Distribution of firing rates measured between 150 and 190 seconds (grey bar in B)

across all excitatory neurons. (E) Firing rate for the second half of the neurons in the memory assembly (green bar in B) and background

activity for the neurons outside of the memory assembly. (F) Comparison between the average firing rate of the memory assembly

(purple bar in B) and an alternative set of cells (yellow bar in B). The average firing rate is measured from 150 to 190 seconds. The firing

rates are significantly different even after network stabilization (p < 10−4, Kruskal-Wallis H-test, n = 200 neurons).

a heterogeneously connected neural network. In these simu-

lations, each excitatory neuron has a propensity of forming

connections with other excitatory neurons whereas all the

other synaptic connections are randomly assigned (figure

4A-B). Once assigned, all the excitatory connections are

kept constant throughout the entire simulation whereas in-

hibitory synapses follow our vISP model. During the first

stages of the simulation, the highly connected neurons fire

at a much higher firing rate when compared to the overall

network activity (figure 4C,F). The changes in inhibitory

synaptic weights due to vISP then push these neurons to a

lower firing rate (figure 4F). Different to what is observed in

simulations using a sISP model (suppl figure 4E), however,

the final firing rates are broadly distributed, ranging from

zero to above 10 Hz (figure 4D). The more the propensity

of a neuron being connected to other neurons, the higher its
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firing rate (figure 4E). Therefore, although the vISP model

regulates the overall network activity, it supports a diversity

in neuronal firing rates.

To analyze this diversity in more detail, we consider two

subgroups of the network of excitatory neurons. The first

group (group 1) is composed of neurons with a low propen-

sity of forming connections with other neurons (figure 4C,

purple bar). The second group (group 2) is composed of

neurons with a high propensity of forming connections (fig-

ure 4C, green bar). After the simulation reaches a steady

state, we measure the average firing rates of the neurons in

each of these groups. The final firing rates of neurons in

group 1 are significantly lower than the firing rates of the

neurons in group 2 (figure 4G) whereas the average ratio

between excitatory and inhibitory currents converge to the

same level for both groups (figure 4H). If the inhibitory

connections follow, instead, a sISP model, the firing rates of

both groups converge to the same value (suppl figure 4C-D).

Therefore, highly connected neurons are more active than

weakly connected neurons if inhibitory connections follow

a voltage-dependent inhibitory synaptic plasticity model. In

summary, network diversity is preserved in a heterogeneous

network following our vISP model.

Heterogeneous excitability and vISP account for CA1

place field diversity

Heterogeneous neural networks have been observed across

several brain regions3;1;2. One region in which this het-

erogeneity is particularly striking is the hippocampal CA1

sub-region. When an animal explores an environment, a

subset of pyramidal cells remains silent while another sub-

set becomes place cells. Moreover, amongst the place cells,

neurons can show a plethora of behaviours in terms of over-

all firing rate, number of place fields, proportion of the

environment covered by each cell, and the sizes of place

fields2;41. This variability in behaviour has been associated

with differences in intrinsic neuronal properties in rats42.

Here, we investigate whether our vISP model supports the

development of heterogeneous place fields while enforcing

network homeostasis.

First, we simulate a network of CA1 pyramidal cells receiv-

ing lateral inhibition (figure 5A). Given that the connection

probability between CA1 pyramidal cells is extremely low,

we assume that there are no direct connections between exci-

tatory CA1 cells. Connections from excitatory to inhibitory

neurons and vice-versa are assigned randomly and their am-

plitudes are drawn from a log-normal distribution. While

all the excitatory connections are kept fixed, inhibitory con-

nections follow our vISP model. CA1 pyramidal cells also

receive feedforward input from CA3 pyramidal cells, whose

activity is spatially tuned. Each CA3 cell has a unique place

field and the place fields of all the input neurons span the

entire linear track (see methods). Finally, to model neu-

ronal diversity, we assume that each excitatory neuron has

a specific neuronal excitability. To that end, we assign to

each CA1 pyramidal cell a fixed spiking threshold drawn

from a uniform distribution. This excitability is kept con-

stant throughout the simulations but varies from neuron to

neuron (figure 5A).

Similarly to what we observed in our previous simulations,

inhibitory connections undergo plasticity, leading to a modu-

lation of the overall network activity (figure 5B). Following

stabilization, CA1 pyramidal cells develop reliable place

fields that span the entire environment (figure 5C). Each

cell, however, can have multiple place fields and the ampli-

tudes of these fields can vary drastically from field to field

(figure 5D). Interestingly, the average neuronal firing rate

across the entire linear track can take a wide range of values

(figure 5E), in agreement with experimental observations1;2.

A small proportion of cells are completely silent while the

animal traverses the track whereas other cells can have an

average firing rate of up to almost 12 Hz (figure 5E). Im-

portantly, this wide distribution of firing rates reflects into a

wide range of place fields per cell (figure 5F), field sizes (fig-

ure 5G), and the neuron’s coverage of the track (figure 5H),

in agreement with experiments2;41. Contrarily, a heteroge-

neous CA1 network in which inhibitory synapses follow a

sISP model exhibit a narrow range of overall neuronal fir-

ing rates (suppl figure 5E). Consequently, the heterogeneity

of this neural network is not manifested in the number of

place fields per cell (suppl figure 5F) or how much of the

track is covered by each cell (suppl figure 5H). Therefore,

our voltage-dependent inhibitory synaptic plasticity model,

combined with heterogeneous intrinsic CA1 pyramidal cell

excitability, accounts for the experimentally-observed vari-

ety of place fields.
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Figure 4: vISP supports diversity in a heterogeneous recurrent network. (A) Network diagram. Excitatory neurons are heteroge-

neously connected to other excitatory neurons and randomly connected to inhibitory neurons. Inhibitory neurons are also randomly

connected to other inhibitory neurons and to excitatory neurons. All the excitatory connections are kept fixed whereas inhibitory

connections onto excitatory cells are plastic and follow our voltage-dependent inhibitory synaptic plasticity rule. (B) Excitatory synaptic

connectivity matrix. All the connections have the same strength, but the neurons are not uniformly connected. Neurons are sorted by their

propensity of forming connections with other neurons. (C) Inhibitory (blue) and excitatory (red) spikes. Purple: set of 200 neurons with

low propensity of forming connections with other neurons in the network. Green: set of 200 neurons with high propensity of forming

connections with other neurons in the network. The grey bar indicates the interval over which the average firing rates are measured in D,

E and G. (D) Distribution of firing rates measured from 150 and 220 seconds (grey bar in C) across all excitatory neurons. (E) Firing

rates shown in D for each neuron. Neurons are sorted by their propensity of forming connections with other neurons. (F) Firing rate for

a set of highly connected neurons (green bar in C) and background activity measured across all the other neurons. (G) Comparison

between the average firing rate of a set of weakly connected neurons (group 1, purple bar in C) and a set of highly connected neurons

(group 2, green bar in C). The average firing rate is measured from 150 to 220 seconds. The firing rates are significantly different even

after network stabilization (p < 10−4, Kruskal-Wallis H-test, n = 200 neurons). (H) Average ratio between excitatory and inhibitory

currents for a set of highly connected (green) and weakly connected (purple) neurons. The averages are measured across the 200 neurons

in each group.

vISP and heterogeneous excitability predict CA1

neuron propensity to develop place fields while

supporting remapping

The most important characteristic of our vISP model is not

only to allow for network diversity but, arguably, to allow

for adaptation following network changes. To explore this

aspect of our model, we simulate a hippocampal network

while an animal changes from environment A to environ-

ment B (figure 6A). The simulated network is identical to

the network simulated in the previous section. To simu-

late the environment change, we redraw the feedforward

connections from CA3 to CA1 pyramidal cells from the

same distribution as in environment A (figure 6A). This

leads to a reshuffle of CA1 place fields (figure 6B) even

though individual place fields and firing rate distributions

are very similar to the ones measured in environment A

(figure 6C-D).
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Figure 5: Heterogeneous excitability and vISP account for CA1 place field diversity. (A) Network diagram. CA1 pyramidal cells

(red) receive inputs from CA3 excitatory cells (grey) and are recurrently connected via inhibition (blue). Each excitatory cell is assigned

a level of excitability such that their spiking thresholds are drawn from a uniform distribution. CA3 place fields are uniformly distributed

and spam the entire linear track. Connections from CA3 to CA1 pyramidal neurons and from pyramidal neurons to interneurons are

random and fixed. The inhibitory connections onto CA1 pyramidal cells are initialised randomly and follow our voltage-dependent

inhibitory plasticity rule. (B) CA1 pyramidal cell spikes for the entire simulation. The animal travels across the entire linear track in 10 s

and is placed back at the initial position instantly. (C) CA1 pyramidal cell activity as a function of the animal position. Neurons were

sorted by the position of their maximum firing rate. The activity is an average over the final 5 laps of simulation. CA1 place fields span

over the entire linear track. (D) Example place fields for 3 CA1 pyramidal cells (each color represents one cell). Each cell can have

multiple place fields across the track and their amplitudes can vary significantly. (E) Distribution of average firing rates across CA1

pyramidal cells. Firing rates were measured over the final 5 laps of simulation. The vISP model allows for a wide range of neuronal

activities. (F) Distribution of number of fields. (G) Distribution of field size compared to the total track. (H) Distribution of the total

coverage of each neuron compared to the total track. The vISP model combined with heterogeneous CA1 pyramidal cell excitability

accounts for place cell diversity.

We next investigate whether the change in environment (i.e.

the change in CA3 to CA1 connections) leads to a change

in the cells encoding the track. To that end, we compare

the average activity of each cell in environment A with its

activity in environment B (figure 6E). Most cells are active

in both environments and their activities in environment

B are correlated with their activities in the first environ-

ment, in agreement with experiments1. A small number of

cells (13% of the CA1 pyramidal cells), however, are active

in only one of the environments (figure 6E). This set of
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cells, albeit small in our simulations, could provide a mech-

anism for quick environment identification. In contrast, in

a hippocampal network in which inhibitory synapses are

governed by sISP, pyramidal cells are either active or silent

in both environments (figure 6E). This network, therefore,

might lack a mechanism for easy environment or context

detection, limiting its consistency with experimental obser-

vations. Thus, our inhibitory plasticity model and neuronal

excitability can account for the diversity in the propensity

of neurons in developing place cells while allowing for CA1

pyramidal cell remapping.

Discussion

We propose a voltage-based inhibitory synaptic plasticity

model as a mechanism to regulate network activity. Our

model imposes a target value for a low-passed-filtered ver-

sion of the postsynaptic membrane potential. This allows

for short-term fluctuations while imposing a long-term reg-

ulation of the neuron’s membrane potential. We analyse the

effect of our inhibitory plasticity model on a feedforward

network composed of excitatory and inhibitory neurons pro-

jecting onto one single neuron. Our vISP model regulates

the postsynaptic activity by imposing a natural maximum

firing rate and a unique target value for the ratio between

excitatory and inhibitory inputs. Surprisingly, the vISP

model does not over-restrict the postsynaptic firing rate. In-

stead, the postsynaptic neuron firing rate is only bounded

by a maximum firing rate but can assume any value be-

tween zero and this maximum bound. This result contrasts

with previous results observed under spike-based inhibitory

synaptic plasticity rules15;21;19;18. When applied to a feed-

forward network with correlated inhibitory and excitatory

inputs, our vISP model leads to co-tuned excitatory and in-

hibitory receptive fields, as observed in auditory cortex9;40.

Additionally, this co-tuning could be combined with a flexi-

bility in the postsynaptic firing rate following changes in the

excitatory receptive field. This feature might be essential

when excitatory receptive fields change both tuning and

amplitude, as observed in auditory cortex neurons following

noradrenergic release40

In recurrent neural networks, inhibitory synaptic plasticity

has been shown to be a good candidate to regulate net-

work activity while supporting the existence of multiple

cell assemblies15. When the connections between clus-

ters of neurons—the cell assembly—are strengthened to

store a memory, the sISP model leads to the potentiation of

inhibitory connection onto the cell assembly. This strength-

ening of inhibitory connections ultimately pushes the cell

assembly activity back to baseline level15. At this stage, the

memory is stored in the synaptic weights but the activity

of the cell assembly is indistinguishable from the activity

of the rest of the network. Contrarily, if inhibitory con-

nections follow our vISP model, the activity of the cell

assembly does not return to baseline level. The activity

of the memory assembly can, therefore, be differentiated

from the activity of the other neurons in the network. For

both plasticity models, partial stimulation of the memory

assembly leads to pattern completion and the reactivation of

the remaining neurons in the assembly. Notably, the level

of activity in the assembly is a direct consequence of the

amount of excitatory drive received by those neurons. The

activity of these neurons might be indistinguishable from

the activity of other neurons if all neurons are part of the

same number of memory assemblies. Furthermore, if ex-

citatory synaptic weights are restricted by normalization,

the total excitatory current received by neurons within the

memory assembly may be at the same level as the rest of

the network. In that case, our vISP model would bring the

activity of the memory assembly back to baseline level.

Network heterogeneity can also be promoted by hetero-

geneities in the structure of the network. We tested whether

structural heterogeneity would be expressed in the neuronal

activity across the network. Our vISP model resulted in a

modulation of the overall network activity while maintain-

ing the heterogeneity in the activity of the network. This

diversity in network activity is in contrast with the obser-

vations from previous spike-timing dependent inhibitory

synaptic plasticity models15. These models lead to a ho-

mogeneous neural network in which the underlying hetero-

geneity in the structure of the network is not exhibited in

the network activity. Although this homogeneity could be

remedied by assigning different targets to each neuron, the

network would still not be flexible to adapt to, for example,

different contexts. If target firing rates are fixed, spike-

timing dependent models do not account for long-term rate-

based encoding. This rigidity conflicts with experimental

observations such as the changes in firing rate observed

during perceptual learning43;44 or attention-dependent neu-

ronal activity45;46. Although the firing rates are widely
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Figure 6: vISP and heterogeneous excitability predict CA1 neuron propensity to develop place fields while supporting remap-

ping. (A) Network diagram and simulation protocol. The network is simulated as in figure 5. After half of the simulation time, the

connections from CA3 to CA1 pyramidal cells are instantly re-drawn from the same distribution as before to simulate an environment

change. The network is then simulated as in the first half of the simulation. All the other parameters are kept constant throughout the

entire simulation, including the excitability of CA1 pyramidal cells. (B) CA1 pyramidal cell activity as a function of the animal position

for the first half (environment A) and the second half (environment B) of the simulation. Neurons were sorted by the position of their

peak in either environment A (left and middle panels) or environment B (right panel). The activity shown is an average over the final 5

laps of simulation in each environment. (C) Example place fields for 3 CA1 pyramidal cells in environment B (each color represents one

cell). Similarly to before the environment change, each cell can have multiple place fields across the track and their amplitudes can vary

significantly. (D) Distribution of average firing rates across CA1 pyramidal cells in environment B. Firing rates were measured over the

final 5 laps of simulation. (E) Firing rate in environment A versus firing rate in environment B for all the CA1 pyramidal cells. The

overlap represents the proportion of cells that are either active or silent in both environments (i.e. the proportion of cells that do not

change their status as silent or place cells). Therefore, 13% of the pyramidal cells are only active in one of the environments. Inset: firing

rate within the range between zero and 1.5 Hz. Red dots in the inset show the neurons that are active in only one of the environments.

Neurons with an average firing rates below 0.3 Hz were considered silent.
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distributed when inhibitory connections follow our vISP

model, the average ratio between excitatory and inhibitory

currents converge to a unique level. Therefore, a voltage-

dependent inhibitory synaptic plasticity rule does not set a

target firing rate, but our simulations suggest that it might

set a target E-I ratio.

A particularly interesting brain region in which to explore

the consequences of neuronal diversity is the hippocampal

CA1 sub-region. Pyramidal cells in this region have been

reported to exhibit great variability from neuron to neuron

in several features such as number of place fields, field sizes,

and the proportion of the environment covered by the neu-

ron2. Intracellular data suggests that neuronal excitability

can account for the diversity in neuronal propensity of de-

veloping place fields and this propensity can determine the

main behavioural features of these neurons2. Remarkably,

CA1 pyramidal cells can be quickly and stably turned from

silent to place cells47, inconsistently with a model that sets

a unique target firing rate for each neuron, such as the sISP

model. Moreover, inhibitory plasticity has been observed

in the hippocampal network29;48–50. The wide range of

neuronal features, however, is incompatible with a spike-

based inhibitory synaptic plasticity model with a unique

target firing rate. In our simulations, we observed that the

combination of a heterogeneous distribution of pyramidal

cell excitability with our vISP model can reproduce the ex-

perimentally observed variability in behavioural features.

More importantly, our model supports changes in the net-

work such as remapping caused by a change in environment.

This diversity of features has been proposed as an impor-

tant mechanism to ensure a combination of sparse coding —

provided by the neurons with a low number of place fields —

and a dense coding — provided by the neurons with a high

number of place fields1;2. Furthermore, our vISP model

supports the existence of a subset of cells that are active

in one environment while silent in another. This might be

essential for an efficient and easy context identification.

The model we propose aims to control the postsynaptic

membrane voltage over a long timescale. Although there is

experimental evidence that inhibitory plasticity depends on

the postsynaptic membrane voltage, the exact form of this

dependence has yet to be investigated. Further experiments

would be necessary to constrain our model and further sim-

ulations could lead to more experimental predictions. The

core conclusions from our simulations, however, depend

solely on the fact that our inhibitory plasticity model does

not depend only on spike timing.

The wider range of possible postsynaptic firing rates gives

support for a more flexible network. While the E/I ratio

and the maximum firing rates are forced onto the network,

the different levels of postsynaptic firing rate allow for a

more stable rate-based code. Since spike-based inhibitory

plasticity models impose a fixed target firing rate, differ-

ences in firing rate can only be encoded in transient network

dynamics. Following our vISP model, the network can con-

verge to different states depending on the feedforward inputs.

The neuronal response to sensory stimulation, for example,

would abruptly increase at the stimulus onset but would

decay to different levels depending on the amplitude of the

stimulus. Therefore, the vISP model supports long-term,

rate-based encoding. More importantly, our voltage-based

model supports quick changes in rate-based codes caused,

for example, by changes in context. Although a spike-based

model could be combined with diversity in firing rates by

assigning different target firing rates to each neuron, the en-

tire network would still be constrained in terms of possible

steady states. When changing environments, for example,

hippocampal CA1 cells would fire, on average, at similar

levels in both environments, regardless of the input received

from Schaffer Collaterals or Entorhinal cortex connections.

Whereas our model imposes a natural maximum level of

neuronal activity, it does not impose a minimum level. Con-

sequently, pyramidal neurons are allowed to remain com-

pletely silent over long periods of time. Although it might

be behaviorally relevant for some neurons to be silent1;2,

biological circuits might have homeostatic mechanisms to

ensure a minimum level of activity across the network. Re-

cently, a local inhibitory synaptic plasticity rule has been

proposed to control network-level activity51. Importantly,

this input-dependent inhibitory synaptic plasticity (IDIP)

does not impose a postsynaptic target firing rate and it may

be combined with our voltage-dependent inhibitory plas-

ticity model. Interestingly, this IDIP model can also be

expressed as an intrinsic inhibitory plasticity model. A com-

bination of an intrinsic plasticity model — following the

IDIP model — and a voltage-dependent inhibitory synaptic

plasticity model could regulate single neuron firing rate,

allow for network diversity and adaptation, and modulate

network-wide activity.
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The interaction between excitatory and inhibitory synaptic

plasticity has been shown to lead to complex dynamics22.

Under the right conditions, this interaction leads to the

development of receptive fields and co-tuning between ex-

citation and inhibition22. Importantly, the details of the

excitatory plasticity rule—more specifically, the choice of

synaptic normalization—determine whether or not receptive

fields are developed22. In all of our simulations, excitatory

synaptic connections were fixed. It would be interesting

to test whether the interaction between excitatory synaptic

plasticity and our vISP model could lead to a more robust

receptive field development. Since our inhibitory plasticity

model supports different levels of postsynaptic firing rate,

small differences in excitatory input would lead to small

differences in firing rate that would not be compensated

by a change in inhibitory synaptic weights. Therefore, this

difference in excitatory synaptic weight would lead to a pos-

itive feedback loop and thus to the development of receptive

fields.

The dynamics of the membrane voltage vary drastically

depending on the location within the neuron. At the soma,

action potentials follow a stereotypical shape spanning over

a few of milliseconds52. At dendrites, however, NMDA

spikes can last for dozens of milliseconds52. Therefore, our

voltage-based inhibitory plasticity rule might have different

effects depending on the targeting site of the inhibitory

synapse. Since different types of interneurons generally

target different layers of pyramidal cells, our vISP model

could possibly explain the different learning rules observed

for different types of interneurons29–31. Further simulations

using physiologically detailed neurons would be required

to confirm these stipulations.

Our voltage-based inhibitory plasticity model provides a

mechanism to regulate network activity while supporting

network diversity and flexibility. Our model imposes a nat-

ural maximum neuronal firing rate without setting a unique

target value. More importantly, our inhibitory plasticity

model allows for dynamic adaptation, an essential feature

to account for context-dependent network states. There-

fore, we provide a model that can be used to extend current

computational approaches to simulate neural networks per-

forming biologically-relevant tasks.

Methods

Neuron model

In our simulations, excitatory neurons are modelled by an

adaptive exponential integrate-and-fire (AdEx) model53. As

such, the neuronal membrane voltage u follows

C
du

dt
=−gL (u−EL)+gL∆T exp

(

u−VT

∆T

)

−wad +zap+I ,

where C is the membrane capacitance, gL is the leak con-

ductance, EL is the resting potential, ∆T is the slope factor,

VT is the threshold potential, and I is the total input current.

The adaptation current wad is described by

τad

dwad

dt
= a(u−EL)−wad ,

where τad is the adaptation time constant and a is a param-

eter. The depolarizing spike afterpotential zap is set to Iap

after a spike and decays exponentially with time constant τz

otherwise. The neuron spikes when its membrane voltage

reaches a spiking threshold Vth. At this point, the membrane

voltage is reset to Vreset and wad is increased by an amount

b. After spiking, the neuron’s membrane voltage is kept at

Vreset for a refractory time τre f .

Additionally, we implement a conductance-based model for

synaptic connections. Therefore, the total input current is

described by

I = gE
(

V E
−u

)

+gI
(

V I
−u

)

+ Iext ,

where gE is the excitatory synaptic conductance, gI is the

inhibitory synaptic conductance, V E is the excitatory re-

versal potential, V I is the inhibitory reversal potential, and

Iext is the external current. When the neuron receives an

action potential from presynaptic neuron j, the postsynaptic

conductance is increased by an amount ∆gE
j = ḡEwE

j , for ex-

citatory synapses, and ∆gI
j = ḡIwI

j, for inhibitory synapses.

Both ḡE and ḡI are parameters. The postsynaptic conduc-

tance decays otherwise with time constant τE , for excitatory

synapses, and τI , for inhibitory synapses. The excitatory

synaptic weights wE
j are fixed throughout the simulations

and the inhibitory synaptic weights wI
j are updated follow-

ing an inhibitory synaptic plasticity rule (see below).

This neuron model has been previously used in voltage-

dependent excitatory plasticity models24 and has been
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shown to be important when used to fit experimental data54.

All the parameters for the neuron model were adapted from

previous studies24;53 and are given in table 1.

Inhibitory neurons were modelled by a leaky integrate-and-

fire (LIF) model. In this model, the membrane voltage u

follows

CI

du

dt
=−gL (u−EL)+ I ,

where CI is the inhibitory membrane capacitance.

Synaptic plasticity model (vISP)

We propose a voltage-dependent inhibitory synaptic plas-

ticity rule (vISP). Our synaptic plasticity model acts as a

homeostatic mechanism to regulate the average postsynaptic

membrane voltage. The weight of the synaptic connection

from presynaptic inhibitory neuron j follows

dwI
j

dt
= ηI (ũ−θV ) x̄ j −αS j ,

where ηI is the inhibitory plasticity learning rate, θV is

a target membrane voltage, α is a parameter, and S j =

∑δ (t − t
f
j ) is the presynaptic spike train—where t

f
j are

the presynaptic spiking times. The presynaptic trace x̄ j is

increased by 1 whenever there is a presynaptic spike and

decays exponentially otherwise with time constant τtrace.

The variable ũ is an exponential low-pass-filtered version of

the postsynaptic membrane potential

τs

dũ

dt
=−(ũ−u) ,

where τs is a slow time constant.

Synaptic plasticity model (sISP)

To compare the effect of our voltage-based inhibitory plas-

ticity model with previous models, we run some of the sim-

ulations under the same conditions but replacing the plastic-

ity rule with an spike-timing-dependent inhibitory synaptic

plasticity model (sISP)15. Under this model, the weight of

the synaptic connection from presynaptic inhibitory neuron

j to postsynaptic neuron i is updated such that

wI
i j −→ wi j +ηsISP

(

xsISP
i −αsISP

)

,

for every presynaptic spike, and

wI
i j −→ wi j +ηsISPxsISP

j ,

for every postsynaptic spike, where ηsISP is the sISP learn-

ing rate, αsISP is the depression factor, and xsISP is the

synaptic trace which is increased by 1 whenever the neu-

ron spikes and decays exponentially otherwise with time

constant τsISP.

Recurrent networks

We simulate a network of NE excitatory and NI inhibitory

neurons receiving inputs from Npre excitatory neurons. The

neurons in the recurrent network are simulated as AdEx

and LIF neurons as described above. Input neurons are

modelled as Poisson neurons with a constant firing rate λpre.

These neurons are connected to neurons in the recurrent

network — both excitatory and inhibitory neurons — with

probability ppre. Within the recurrent network, neurons

are connected with probability pEE (E-E connections), pEI

(I to E connections), pIE (e to I connections), and pII (I-I

connections).

Figure 3 - randomly connected network

Initial excitatory to excitatory synaptic weights are drawn

from a log-normal distribution with parameters µ = 0 and

σ = 0.5 (mean and standard deviation of the associated nor-

mal distribution, respectively). Initial inhibitory synaptic

weights onto excitatory cells are drawn from a log-normal

distribution with parameters µ = 0 and σ = 1. Excitatory to

inhibitory synaptic weights are set to 3 whilst inhibitory to

inhibitory synaptic weights are set to 30. The simulation is

split into three main stages. During the first stage (random

network), the network is simulated for 100 seconds. At the

end of this stage, a subset of 200 neurons were selected

and the connections amongst these neurons were multiplied

by 3. During the second stage of the simulation (memory

formation), the network was simulated for a further 100

seconds. During the third stage (memory retrieval), half

of the neurons in the memory assembly formed in the pre-

vious stage were overstimulated. This extra stimulation

is implemented by simulating an additional 0.4Npre input

neurons with a firing rate 10 times higher than the other

input neurons. These neurons are then transiently connected

to the selected neurons within the memory assembly. This

third stage is simulated for 12.5 seconds. We then simulate

the network without this extra input for another 12.5 sec-

onds. Inhibitory plasticity is active throughout the entire

simulation.
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Figure 4 - heterogeneously connected network

In these simulations, excitatory neurons in the recurrent

network were heterogeneously connected. The probabil-

ity that neuron i was connected to neuron j was given by

pi j = pmax
EE (i+ j)2/(2NE)

2, where pmax
EE is the maximum

probability of connection between two neurons. Due to this

connection probability, the first neurons in the network are

sparsely connected to the rest of the network whereas the

last neurons are densely connected (figure 4B). All the exci-

tatory synaptic weights were then set to 3. The remaining

weights were defined as in figure 3.

Hippocampal network

To simulate the CA1 hippocampal network, we simulated

a network of excitatory neurons connected to inhibitory

neurons. Excitatory neurons are not connected to other exci-

tatory neurons whereas the other connections (E-I, I-E, and

I-I) are simulated in the same way as in the recurrent net-

work simulations. All neurons in the CA1 network receive

inputs from Poisson neurons representing CA3 pyramidal

cells. The firing rates of these CA3 cells are modulated by

the position of the animal along a linear track following

a Gaussian shape with amplitude λE and width σCA3 = 1.

The total length of the track is L = 100 and the CA3 place

fields are evenly distributed along the track. CA3 neurons

are then randomly connected to CA1 neurons with the same

probability as in figure 3 and 4. For each CA1 pyramidal

cell, we set its threshold potential VT to a value drawn from

a uniform distribution from -50 mV to -20 mV. This value

is then kept fixed throughout the entire simulation. When

simulating environment changes, we redraw both the con-

nections and the synaptic weights from the CA3 to the CA1

network. We use the same probability distributions in both

environments A and B.

Parameters and simulations

All data and software supporting the findings of this study

are available on ModelDB. The parameters for all the simu-

lations can be found in tables 1-2.
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Table 1: Parameters summary 1. Neuron model, feedforward network, and synapse model.

Neuron Model

Name Value Description

EL -70 mV Resting potential

gL 10 nS Leak conductance

∆T 4 mV Slope factor

VT -50 mV Threshold potential

τad 150 ms Adaptation time constant

a 2 nS Subthreshold adaptation

b 80 pA Spike-triggered adaptation

Vth -20 mV Spiking threshold

Vreset -50 mV Reset membrane potential

τre f 5 ms Refractory time

C 280 pF Membrane capacitance

CI 100 pF Inhibitory membrane capacitance

Iap 120 pA Amplitude of afterpotential current

τz 40 ms Time constant of afterpotential current

Feedforward network parameters

Name Value Description

NE 20 Number of excitatory input neurons

NI 20 Number of inhibitory input neurons

Synapse Model

Name Value Description

τE 5 ms Decay constant for excitatory conductance

τI 10 ms Decay constant for inhibitory conductance

ḡE 1 nS Maximum excitatory conductance amplitude

ḡI 1 nS Maximum inhibitory conductance amplitude

V E 0 mV Excitatory reversal potential

V I -80 mV Inhibitory reversal potential
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Table 2: Parameters summary 2. Plasticity models and recurrent network.

Plasticity model (vISP)

Name Value Description

ηI 1×10−3 ms−1mV−1 Inhibitory plasticity learning rate

θV -65 mV Target membrane voltage

α 2×10−4 Depression parameter

τtrace 5 ms Decay time constant for presynaptic trace

τs 200 ms Slow decaying time constant

Plasticity model (sISP)

Name Value Description

ηsISP 0.3 Inhibitory plasticity learning rate (sISP model)

αsISP 0.08 Presynaptic offset

τsISP 20 ms Decay constant for synaptic trace

Recurrent network parameters

Name Value Description

Npre 1000 Number of excitatory input neurons

NE 1000 Number of excitatory neurons in the recurrent network

NI 250 Number of inhibitory neurons in the recurrent network

λpre 5 Hz Firing rate of input neurons

ppre 0.2 Probability of connections from input neuron

pEE 0.4 (Fig3); 0.0 (Fig5-6) Probability of E-E connections (except Fig 4)

pmax
EE 0.9 (Fig4) Maximum probability of E to E connections for figure 4

pEI 0.2 Probability of I to E connections

pIE 0.2 Probability of E to I connections

pII 0.2 Probability of I-I connections

wE
pre 4 synaptic weights from input to excitatory neurons

wI
pre 1 synaptic weights from input to inhibitory neurons
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