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Voltage Collapse 
in Power Systems 

Circuit and system techniques for analyzing 
voltage collapse are moving toward 

practicabapklication- and none too soon 

by Ian Dobson, H , ~ s  Glavitsch, Chen-Ching Liu, Yasuo Tamura, and Khoi L'LI 

s power systems 
become more 
complex and 
more heavilq 
loaded, voltage 
col lapse be- 
comes an in- 

serious A problem. Voltage c r e a s i n g l y  collapse- with 

its associate power blackout- has already 
occurred in real-world electric power sys- 
tems. Fortunately, practical analytical tools 
will soon be making their ways from re- 
searchers to system designers and operators. 

A power system is an electrical network 
containing components such as generators. 
transmission lines, loads, and voltage con- 
trollers (Fig. 1). Practical networks are large, 
ranging from hundreds to thousands of 
nodes and branches. Since the basic practi- 
cal functions of a power system are the 
production and distribution of electrical 
power, generators are essential components. 
Under normal operating conditions, a gener- 
ator is essentially a constant-voltage source. 
But in a transient condition, the excitation 
and rotor dynamics can produce undesirable 
oscillations of the system frequency and 
voltage magnitude. 

As for the components of the system, a 
transmission line can be modeled by a series 
RL branch with shunt capacitors. The con- 
trol system is critical, and has benefitted 

from recent technological advances. The 
turns-ratios of some transformers, for ex- 
ample, are automatically adjusted by on- 
load tap-changers (OLTCs) to maintain the 
voltage levels near the load. But although 
control mechanisms have increased in num- 
ber and sophistication, the networks them- 
selves are very complex and can behave in 
ways that are difficult to predict. 

Load devices themselves vary greatly, 
from resistive lighting devices to dynamic 
components such as large induction motors. 
And power systems can be interconnected to 
allow exchange of electrical power between 
different utility systems. A large, nonlinear, 
interconnected power network can exhibit 
very complex dynamic phenomena when 
the system is disturbed from a steady-state 
operating condition. 

To complicate things even more, power 
systems are becoming more heavily loaded 
as the demand for electric powerrises, while 
economic and environmental concerns limit 
the construction of new transmission and 
generation capacity. Under these stressful 
operating conditions, we are encountering a 
new instability problem called voltage col- 
lapse, which has led to blackouts in electric 
utilities around the world [ 1,2,3]. 

How Voltages Collapse 
In the initial stage of a voltage collapse, 
voltage magnitudes at substations fall 
gradually. There may be temporary voltage 
recovery due to control actions, but the vol- 
tages soon fall to very low levels nonetheless 
(Fig. 2). Protective devices in the power 
system may observe the abnormal condi- 
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1. A simple power system with all of its essential components: generator, transmission line, 
voltage controller (OLTC), and load. 
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2. An example of voltage collapse in a 400-kV 
power system [ I ] .  

modeling of the generator’s voltage control 
and load dynamics may be simplified or 
ignored, even in numerical simulations. 
These are precisely the considerations that 
must be incorporated in a realistic yet trac- 
table model for analytical studies of voltage 
collapse. 

The second issue is the development of 
voltage-collapse analytical methods. We 
now understood that voltage collapse is a 
dynamic problem, some aspects of which 
can be captured by steady-state models. A 
network’s power-flow equations, for exam- 
ple, are derived from the steady-state Kir- 
chhoff‘s laws for the network. In simple 
terms, voltage collapse is caused by the loss 
of such a steady-state solution. Voltage col- 
lapse can thus be related to the changing 
number of solutions for the power-flow 
equations, due to slow changes in system 
parameters. To fully analyze voltage col- 
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3. uynamics ana mi- h is a in ica e e irection 
of motion. 

tions and trigger the opening of circuit 
breakers to de-energize part or all of the 
system. (Three of the substation voltage cur- 
ves in the figure suddenly jump at about 12 
minutes due to switching actions in the 
power system.) 

Voltage collapse has become a serious 
problem, and is now an active research sub- 
ject attracting investigators from the field of 
power engineering, as well as from circuits 
and systems. The focus is presently on two 
issues, of which the first is modeling. 

Traditional power-system stability 
analysis is primarily concemed with rotor- 
and frequency-oscillation problem. Hence, 

lapse for small- and largeidisturbance cases, 
we must consider the essential dynamic 
mechanisms. 

Losing equilibrium 
Large-scale electric power systems are typi- 
cal of nonlinear systems that are normally 
operated at  s table  equilibrium. As 
parameters vary, such a system can undergo 
a qualitative change in which the system’s 
stable operating point disappears. One con- 
sequence of an electric power system losing 
equilibrium is a decrease in system voltage 
leading to a voltage collapse [ 11. 

Let’s look at a prototypical example to 

introduce the essential ideas. Consider a 
nonlinear system with a single state variable, 
x, and a slowly varying parameter, h. The 
dynamics when h = -2 are shown by the 
corresponding vertical line in Fig. 3. 

There are two equilibria, i.e., steady state 
solutions, labeled xs and xu. The dynamics 
at other points are indicated by the arrows. 
The variable xs is a stable equilibrium, since 
the dynamics tend to return x to xs if the 
system statexis perturbed away fromx,. The 
variable xu, on the other hand, is an unstable 
equilibrium. In normal system operation, the 
system state x is at or near the stable equi- 
librium. 

As h varies slowly, the positions of the 
equilibria x, and xu vary slowly (see the 
different positions of the equilibria for A= 
-l), and the system state will “track” xs be- 
cause x, is stable. Thus, for normal opera- 
tion, it is reasonable to assume that the 
system state is always at the stable equilib- 
rium x,, and that a steady-state model can 
therefore be u$ed for analysis. 

For negative values of h, the system al- 
ways maintains one stable and one unstable 
equilibrium point, but if h reaches zero, xs 
andxu meet to form a single equilibrium, x*. 
There is no equilibrium for positive values 
of h. This qualitative change in the number 
of equilibria is called bifurcation. The criti- 
cal h values at which bifurcation occurs are 
called the bifurcation set. In this system the 
bifurcation set is the single point, h = 0. 

The steady-state model of x tracking xs is 
not applicable when h reaches its critical 
value because x* is unstable. The slightest 
perturbation decreasing the state will cause 
x to decrease dynamically. At h = 1, the x 
value drops monotonically and the loss of 
stability leads to a dynamic collapse. In sum- 
mary, while his  negative, the system can be 
operated at the stable equilibrium x,, but 
when h becomes zero the system becomes 
unstable and it “collapses.” 

Few engineering applications of bifurca- 
tions are one-dimensional but, fortunately, 
higher-dimensional bifurcations contain the 
one-dimensional case. For the power system 
of Fig. 1, the system state vector- V = (V,6) 
specifies the voltage phasor magnitude V, 
and angle 6. (In this example, the parameter 
h varies slowly enough so that the secon- 
dary-side voltage VL always stays at a con- 
stant level thanks to the tap-changing 
transformer in Fig. 1. In such a case, only the 
primary-side voltage V is of interest. When 
a large disturbance, i.e., a sudden change in 
h occurs, it takes time for the transformer to 
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restore the voltage VL. The evolution of the 
system during this dynamical process is dis- 
cussed in the section on dynamic 
mechanisms.) 

The system parameter h can be chosen 
to measure the amount of system loading so 
that the load real and reactive powers are hP 
and hQ. The static variation of the equilibria 
in this case is a curve in the three dimensions 
V, 6, and h (Fig. 4). One curve shows the V 
component of the equilibria as a function of 
h; the other curve shows the 6 component as 
a function of h. The dynamics of the system 
are such that the upper branch of the Vcurve 
corresponds to stable equilibria x,, and the 
lower branch corresponds to unstable equi- 
libria xu. (Since 6 increases as V decreases, 
the upper branch of the 6 curve corresponds 
to unstable equilibria and the lower branch 
corresponds to stable equilibria.) The bifur- 

The focus is on 
two issues, 
of which the 
first is modeling 

cation occurs at the loading h = h* , where 
the equilibria x, and xu coalesce to form the 
unstable equilibrium XI = (V., 6*). 

The loss of stability can also be viewed 
in the state space (V, 6) (Fig. 5).  The dy- 
namics are indicated by the arrows. Before 

4. Bifurcation diagram for the example power system. V and 6 are the magnitude, and 
phase-shift angle, respectively, of the load voltage W. 

t 

before bifurcation at bifurcation 

5. State space dynamics before and at bifurcation. 
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the bifurcation, h < h* and the system is 
operated at the stable equilibrium xS. The 
nearby equilibrium xu is unstable. (The sys- 
tem trajectories aroundx, converge to x,, but 
those in the neighborhood of xu generally 
diverge from xu.) 

When h increases to h*, x, and xu 
coalesce to form x*. Since the system state x 
was tracking xs, x finds itself initially at x*. 
An examination of the dynamics near x* 
shows thatx* is unstable along the trajectory 
direction labeled W. The system dynamics 
make trajectories tend to this direction rapid- 
ly, and the movement in this direction ex- 
plains why voltages can dynamically 
decline during voltage collapse. 

The example of Fig. 5 shows a prototypi- 
cal bifurcation with a single varying 
parameter for a system with two states (V,6). 
The next step is to choose two parameters 
for the loading of the example power system 
to better illustrate the effect of multiple, 
independently varying parameters. This 
may be done by setting h as the vector of 
load powers (P.Q). A given load pattern is 
then represented by a point h = (P,Q) (Fig. 
6). 

For normal operation, h lies in the shaded 
area, and there is a stable equilibrium xs in 
state space corresponding to h at which the 
system is operated. The curve in Fig. 6 is 
called the bifurcation set, and it is the set of 
critical loadings h* = (P*,Q*) at which the 
system has a bifurcation. There is no equi- 
librium for load patterns outside the bifurca- 
tion set. 

Generalization from a system with two 
states and two loading parameters to an ar- 
bitrary power system with many states and 
loading parameters is  conceptually 
straightforward, so the simple qualitative 
picture of voltage collapse outlined above is 
preserved in settings with more dimensions. 
The analytic and computational difficulties, 
however, are greatly increased and still chal- 
lenge the ingenuity of people in the field. 

The aforementioned theory of voltage 
collapse applies to any power system mod- 
eled by differential equations with slowly 
moving parameters, and it can be justified 
with generic bifurcation theory. A power 
system may be operated to avoid bifurcation 
and voltage collapse by monitoring the dis- 
tance of the present loading h to the bifurca- 
tion set, and using available control 
mechanisms to increase the distance if it 
becomes too small. Controls may be thought 
of as modifying the bifurcation set. Much 
current research concerns defining and com- 
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6. Two-dimensional load power parameter space. The parameter is h = (P,Q). 

before bifurcation: L < 1 at bifurcation: L = 1 

(4 (b) 

7. Voltage phasors before and at bifurcation. Comparing the sending and receiving voltages 
of the power system provides a measure of how close the operating equilibrium is from the 
point of bifurcation. The variables are defined by Fig. 1. 

8. Partition of state space based on each mechanism. 

puting various measures of the “distance” to 
bifurcation and developing appropriate con- 
trol actions. 

Detecting Voltage Collapse 
Several algorithms have been developed to 
detect how close a system is to voltage col- 
lapse. All of these algorithms assess the 
distance between the present loading and the 
bifurcation set in the space of load demands. 
Figure 6 is a two-dimensional example. 

Two typical indices of this distance are 
the L index and the voltage instability 

proximity index (VIPI), which we examine 
initially for the simple system of Fig. 1. The 
L index involves the sending and receiving 
voltages of the power system. Comparing 
these two voltages provides an indication of 
how far the operating equilibrium xs is from 
the point of bifurcation x* (Fig. 7). For any 
load demand, there are at most two different 
steady-state voltage solutions for the system 
of Fig. 1. The voltage solution correspond- 
ing to stable operation xs is denoted by V, 
and the solution corresponding to unstable 
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operation xu by v. The index L is defined as 

voltage drop IE-Vl L =  
voltage received - IVl 

or k l l  - WI. Geometry suggests that L < 
1 for the stable voltage solution V. Bifurca- 
tion occurs when V and v coincide (Fig. 7b). 
L = 1 at the bifurcation, and the closer L is 
to 1, the closer the system is to voltage 
collapse. 

The concept underlying the VIPI can 
also be explained by reference to Fig. 7a. 
The dashed line that bisects E corresponds 
to the bifurcation set of Fig. 6. The average 
(V + v)/2 is a voltage phasor having its tip 
on the bisecting line. It therefore corre- 
sponds to the load powers (P,Q) on the 
bifurcation set. If the present load demand is 
indicated by point a in Fig. 6, for example, 
which yields the voltage solutions v and V 
of Fig. 7a, then point b is the point on the 
bifurcation set that corresponds to (V + v)/2. 
The index VIPI(a) is a measure of the dis- 
tance between a and b. But b is not neces- 
sarily the point on the bifurcation set that is 
closest to a. 

In a multi-node power network, there 
may be more than two voltage solutions for 
each given load pattern. Each voltage solu- 
tion is a collection of nodal voltages. 

The L index can be defined for each load 
node by retaining the load and replacing the 
rest of the power network by its Thevenin 
equivalent, so that the simple system of Fig. 
1 can be applied. This is done for each load 
node i, and the overall index is defined as L 
= max Li (the largest of the Li’s), where Li is 
the index for each load node, i .  The in- 
dividual node indices tend to form clusters 
as the system loading changes, which can 
provide a good indication of which nodes 
will collapse together. Experiments show 
that L = max Lz < 0.2 is a good criterion for 
safe operation. When the threshold of 0.2 is 
exceeded, the index increases rapidly with 
small increases in loading. To sum up, the 
L-index method requires only the normal 
voltage solution, but many individual in- 
dices must be computed. 

The VIPI method requires an additional 
voltage solution that corresponds to the 
point b on the bifurcation set. Finding such 
a solution for a large-scale network is dif- 
ficult because it is necessary to solve for and 
select from many roots of a set of nonlinear 
algebraic equations. Fortunately, there is a 
method for tracking the solutions. The 
average of the two voltage solutions, i.e., the 
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stable one and its closest counterpart, is 
taken just as in the case of the simple system. 
The loading supported by the averaged volt- 
age is then computed and used to obtain the 
index. Apparently, the closer the VIP1 index 
is to 0, the closer the load demand is to the 
bifurcation set. 

Dynamic Mechanisms 
We will now reconstruct a voltage-collapse 
scenario based on the interaction among 
dynamic mechanisms. These mechanisms 
are related to the essential components of a 
power network: generator, voltage con- 
troller, and load. Perhaps the best way to 
explain their interaction is to use the simple 
system of Fig. 1 again. In this circuit, the 
voltage controller is a tap-changing trans- 
former whose turns ratio is 1 :n. As operating 
conditions vary, such as a change in load, the 
load voltage, VL, deviates from its nominal 
value and the automatic adjustment of n 
attempts to bring the voltage back to normal. 

The system behavior is completely 
characterized by the two quantities, n and 
VL, so it is sufficient to study the dynamics 
in the n-VL plane. We’ll begin by studying 
the influence of each individual mechanism 
on the movement in the ~ - V L  plane and then 
use the combined effect to explain how a 

The focus is on 
two issues, 
of which the 
first is modeling 

voltage collapse can arise. The n - VL plane 
is partitioned based on the influence of each 
mechanism (Fig. 8): 

Tap-changing: The region above Curve 
I corresponds to n 1 - that is, reducing the 
transformer turns ratio when the voltage 
across the load is higher than the desired 
value V,- and the region below Curve I to 
n t. 

Load dynamics: The leaf-like region 
enclosed by Curve I1 is associated with volt- 
age recovery. We’ll call this region the leaf, 
with VL 1‘ inside the leaf and VL 1 outside. 
The leaf is not stationary; in fact, it is de- 
pendent on the system conditions. The leaf 

t /- 

A r:, - 

LEAF 

+- 
--- c 

* LEAF 
shrinks B 

9. A scenario of voltage collapse. 
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is particularly dependent on the generator 
voltage, E; it shrinks as E decreases. Physi- 
cally, this means that the lower the generator 
voltage, the harder it is to maintain the load 
voltage at a desired level. 

The intersections of Curve I and Curve 
I1 correspond to situation in which the dy- 
namics of tap-changing and load have both 
subsided; that is, equilibrium conditions. 
These equilibria are related to the xs (stable) 
and xu (unstable) previously discussed. 

Generator limits: Normal operation of 
the generator is associated with the region 
above the curve marked “normal.” That is, 
when the system state is above this curve, 
the generator is operating at its nominal volt- 
age without violating any constraints. But 
when the state crosses the boundary curve at 
least one of the generator’s limits, stator or 
rotor current, is reached. As a result, the 
generator will be operating at a reduced volt- 
age. 

With this background, we can now pro- 
vide an explanation of a voltage-collapse 
scenario. Assume that a system has been 
operating in a steady state, point A, when a 
disturbance such as the sudden switching of 
a transmission line occurs (Fig. 9a). As a 
result of this disturbance, a new leaf forms. 
Since the operating point A is now outside 
the leaf, we have VL 1, the system moves 
down in the plane, and the low voltage in- 
itiates tap-changing operation- the state 
jumps from one vertical segment to the next. 
At point B, the system state enters the leaf, 
and we have VL t. If the system state does 
not cross the normal limit curve, it would 
trace a path such as the dotted one branching 
from point B. In this case, the system would 
settle at a new equilibrium. If, on the other 
hand, the system state crosses the limit curve 
at a point such as C, the generator voltage E 
decreases. The reduction in E causes the leaf 
to shrink, and it may continue to shrink until 
the trajectory moves outside the leaf (Fig. 
9b). Upon leaving the leaf ,at point D, the 
system state continually heads for the direc- 
tion of V L  1: voltage collapse. 

Conceptually, the interaction among 
mechanisms is related to bifurcation. Ear- 
lier, we considered a bifurcation resulting 
from slow changes in system parameters. 
The analysis of mechanisms in the present 
example permits the consideration of large 
disturbances such as line switching. Such 
disturbances cause the equilibria xs and xu to 
move toward each other because of the 
shrinkage of the leaf. This implies that the 
stability region also changes (Fig. 10). (Any 
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10. A shrinking stabiliiy region. 

1 1. Locking the tap-changer while the system in the leaf allows the voltage to recover. 

trajectory starting inside the stability region 
eventually converges to the stable equi- 
librium.) When the system state reaches 
point pi, the leaf is Li, and the stability 
region is %I. By the time the state arrives at 
p2, the leaf has shrunk to& and the stability 
region to 3 2 .  Observe that pi is inside the 
stability region 31, but p2 is outside %2. The 
two equilibria eventually collide (bifurca- 
tion) and vanish, along with the whole 
stability region. 

When the system state is inside the leaf, 
the voltage increase indicates that the system 
is moving toward normal operation of the 
generator (Fig. 9a). However, the movement 

to the right from the continuing action of the 
tap-changer prevents the generator from 
recovering. This can be prevented by ldck- 
ing or disabling the tap-changer so that the 
generator voltage, E, improves and the leaf 
consequently expands (Fig. 11). The system 
continues moving vertically upward (n 
fixed) and approaches the boundary of the 
leaf where a new steady-state condition is 
obtained. The final value for the load volt- 
age, however, may be lower than the desired 
value. 

Analysis of the dynamic interaction for a 
large-scale power-network model indicates 
the existence of a region in the state space 

that corresponds to a monotonic fall of nodal 
voltages; that is, a voltage-collapse region. 
When tap-changers attempt to correct a low- 
voltage profile, the generators are moved 
closer to their limit@). If the limit is reached, 
the stability region begins to shrink and the 
voltage-collapse region expands. Voltage 
collapse takes place when the system state 
falls into an expanding collapse region. A 
special case of this theory is when bifurca- 
tion occurs and leads to loss of equilibrium. 
Then, the whole state-space becomes the 
collapse region. 
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