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Abstract

 Despite the high energy density of lithium-rich layered-oxide electrodes,

their real-world implementation in batteries is hindered by the substantial

voltage decay on cycling. This voltage decay is widely accepted to mainly

originate from progressive structural rearrangements involving irreversible

transition  metal  migration.  As  prevention  of  this  spontaneous  cation

migration has proven difficult, a paradigm shift toward management of its

reversibility is needed. Herein, we demonstrate that the reversibility of the

cation  migration  of  lithium-rich  nickel  manganese  oxides  can  be

remarkably improved by altering the oxygen stacking sequences in the

layered structure and thereby dramatically reducing the voltage decay.

The  preeminent  intra-cycle  reversibility  of  the  cation  migration  is

experimentally visualized and first-principles calculations reveal that an

O2-type structure restricts the movements of transition metals within the

Li  layer,  which  effectively  streamlines  the  returning  migration  path  of

transition metals. Furthermore, we propose that the enhanced reversibility

mitigates the asymmetry of the anionic redox in conventional lithium-rich

electrodes,  promoting  the  high-potential  anionic  reduction,  thereby

reducing  the  subsequent  voltage  hysteresis.  Our  findings  demonstrate

that  regulating  the  reversibility  of  the  cation  migration  is  a  practical

strategy to reduce voltage decay and hysteresis in lithium-rich layered

materials. 
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With the advent of electrified transportation, there is a pressing demand

for improvements of rechargeable lithium-ion batteries.1  In particular, the

energy-density  ceiling  placed  on  the  cathode  materials  has  been  a

primary  factor  precluding  the  full-scale  deployment  of  green  energy

technologies.2 Among  cathode  materials  foreseen  to  transcend  such

limitations, lithium-rich layered oxides hold the greatest promise because

of their high reversible capacity (exceeding 250 mAh g−1) and high-voltage

anionic redox chemistry.3,4 Nonetheless, the  inevitable voltage decay, or

gradual decrease in the average discharge voltage during cycling, and the

resulting  inevitable  energy  decay remains  one some of  the  most

pernicious problems jeopardizing their real-world application, while some

technical hurdles such as lower crystallographic/tap densities than current

lithium-stoichiometric  layered  oxides  (lithium  nickel-cobalt-aluminum

oxides  and  lithium  nickel-manganese-cobalt  oxides)  still  need  to  be

addressed.4-6 Moreover,  the  voltage  decay  is  pronounced  in  3d metal-

based  layered  lithium-rich  oxides  of  practical  interest,  such  as

Li[LixNiyMn(1−x−y)]O2 (denoted  as  LLNMOs)  and  Li[LixNiyMnzCo1−x−y−z]O2

(denoted as LLNMCOs).4,7,8  With this backdrop, formidable research efforts

have been focused on  unraveling  the  origin  of  the  voltage decay and

suppressing it based on established understandings. 

 A clear consensus has been reached that the voltage decay is primarily

rooted  in  progressive  structural  transformation  of  lithium-rich  layered

oxides.6,7,9-11 Cation migration from the transition metal (TM) layer to the Li

layer to form TMLi–VTM anti-site defect pairs during the charging of lithium-
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rich  layered  3d metal  oxides has  been  identified  experimentally  and

confirmed using various analytical tools.9,11,12 The limited reversibility of

intra-cycle TM migration results in the cumulative formation of a spinel-

like disordered phase12-14,  and  this  growth of  the low-voltage spinel-like

phase  has  commonly  been  associated  with  voltage  decay.  14-16 More

specifically, a comprehensive investigation of the Li2Ru1−xMxO3 (M = Mn, Ti,

Sn) system6  and  LLNMCOs11,17 demonstrated that upon extended cycling,

more TM ions were trapped in the Li layer with exacerbated voltage fade.

Of  paramount  importance  in  understanding  the  fundamentals  of  the

voltage decay is that its essential determinant is not the  TM migration

itself but the resulting confinement of TM ions in the Li layer. At the low Li

stoichiometries of most lithium-rich layered oxides, TM migration to the Li

layer  is  thermodynamically  favorable  and  is  thus  an  inseparable

unavoidable phenomenon  during  the  charge  process.18-20  Therefore,

although various effective approaches, including surface coating,12  cation

doping,21  additives to electrolyte,22  and composition tuning,7,23 have been

used to mitigate the TM migration, its ultimate prevention during  long-

term cycling has not yet been achieved. 

Considering both the underlying origin  of  the voltage decay and the

inevitability of TM migration, a substantive key lies in improving the intra-

cycle reversibility of TM migration. In lithium layered oxides, what limits

the reversible return of TM ions is thought to be the intralayer movements

of  TM ions  within  the  Li  layer,  which  is  generally  initiated  by  the  TM

migration from the initial tetrahedral site to neighboring octahedral sites
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in Li layer. For example, in conventional O3-type layered oxides, TM ions

once migrated to  the  intermediary  tetrahedral  site  of  the Li  layer  can

readily and permanently move to adjacent octahedral Li sites because of

the thermodynamic preference for octahedral sites, as indicated by the

yellow arrow in Fig. 1a.24 Therefore, the quest for reversible TM migration

necessitates the implementation of thermodynamic or kinetic roadblocks

that prevent intralayer movements of TM ions. In terms of thermodynamic

approaches, recent reports on sodium layered oxides have suggested that

the use of distinct oxygen lattices with the P3- 25,26 or P2- 27  structure can

prevent  the  TM  occupation  of  guest-ion  sites  benefiting  from the  size

mismatch between the TM ion and the large prismatic site. In a similar

vein,  a qualitative hypothesis  has been proposed in studies  on lithium

layered  oxides  that  by  employing  an  O2-type  layered  structure  with

ABCBA  oxygen  stacking28 (see  Fig.  1b),  some  Li  sites  can  be

thermodynamically  destabilized  against  TM  migration.29,30  The  local

environments of Li sites in the O2 and O3 structures substantially differ:

LiO6  octahedra share faces with TMO6 octahedra in the former, whereas

they share only edges with TMO6 octahedra in the latter. Thus, in the O2

structure, TM migration from the intermediate sites to adjacent Li sites is

expected to be unfavorable because of the large electrostatic repulsion

between  face-shared  cations.  This  blockade  of  face-shared  sites  can

facilitate  the  return  of  TM  ions  during  the  discharge  process  by

streamlining the return path, as illustrated in Fig. 1b. However, despite

these implications, no direct approach has been reported to observe or

6



achieve reversible TM migration by utilizing an alternative oxygen lattice

for lithium-rich layered oxides. 

In  this  work,  we  first  demonstrate  that  reversible  intra-cycle  TM

migration can be achieved by modifying the oxygen lattice of lithium-rich

layered oxides. To achieve this aim, we apply the O2 structure to cobalt-

free  LLNMOs  with  archetypal  TM  composition  to  obtain  the  O2-phase

Lix(Li0.2Ni0.2Mn0.6)O2  (x  ≈ 0.83), whose preliminary electrochemical activity

was very recently reported.31 We demonstrate that O2-LLNMOs inherently

allow  reversible  intra-cycle  TM  migration,  thus  delivering  outstanding

voltage retention over extended cycling and far outperforming their O3-

phase  counterparts  and  other  lithium-rich  layered  3d metal  oxides.

Structural  characterization  using  scanning  transmission  electron

microscopy  (STEM),  X-ray  Diffraction  (XRD),  Raman  spectroscopy,  and

high-resolution TEM (HR-TEM) analyses reveal that the suppressed voltage

decay  arises  from the  retention  of  the  pristine  layered  structure  with

highly reversible TM migration over extended cycling. In addition, with the

aid of first-principles calculations, it is shown that high energy penalties

associated  with  the  TM  occupation  of  Li  sites  of  O2-LLNMOs  prevent

movements of TM ions in Li layer, facilitating the return of TM ions to the

original  sites.  We further  confirm that  the improved reversibility  of  TM

migration also benefits mitigating the asymmetry of  the anionic redox,

which has been suspected to stem from the presence of TM ions in the Li

layer  during  discharging  and  afflict  the  cells  by  inducing  voltage

hysteresis.10,32,33 Our findings indicate that tailoring the migration path of
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TM ions provides a viable strategy to address the issues of voltage decay

and hysteresis, which may help rejuvenate the research field of lithium-

rich layered oxides. 

Electrochemistry of O2-LLNMOs

O2-LLNMOs were synthesized by applying ion-exchange method to as-

synthesized  P2-phase  sodium  layered  oxides.  Details  on  the  crystal

structure and chemical compositions, Lix(Li0.2Ni0.2Mn0.6)O2 (x  ≈ 0.83), are

provided in Supplementary Discussion 1.  Fig. 2a presents the first and

second  charge–discharge  curves  of  O2-LLNMOs  cycled  in  the  voltage

range of 2.0–4.8 V at 5 mA g−1. A capacity of 235 mA g−1 was delivered for

the first charge process of the O2-LLNMOs. Unlike the first cycle of the O3-

Li(Li0.2Ni0.2Mn0.6)O2, which was synthesized for a more precise comparison,

the O2-LLNMOs delivered a markedly reduced irreversible capacity of 13.5

mAh g−1, in comparisons with the first irreversible capacity of 74.3 mAh

g−1 for  O3-type  counterparts  (Supplementary  Fig.  3),  implying  highly

reversible  first-cycle  redox  behavior.  Scanning  transmission  X-ray

microscopy (STXM) analysis, which enables bulk-sensitive characterization

of the redox centers34,35, identified that the oxidation states of Ni and Mn in

pristine  O2-Lix(Li0.2Ni0.2Mn0.6)O2 were  close  to  +2  and  +4,  respectively

(Supplementary Fig. 4).36,37 Upon initial charging, cationic Ni2+/Ni4+ redox

occurs in the low-voltage region, whereas the oxidation of the oxygen non-

bonding states accounts for the charge compensation of the high-voltage
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plateau region. Further in-depth characterization of the redox mechanism

and meticulous comparison of the O2 and O3 phases will be elaborated

later. 

 For the initial two cycles (Fig. 2a), it is notable that the voltage profile of

the second discharge was almost identical to that of the first discharge

except for a small decrease in the capacity. To further clarify the long-term

voltage retention of the O2-LLNMOs, cycling for additional 40 cycles was

performed.  Fig. 2b presents the discharge profile of the O2-LLNMOs for

the first and every 10 cycles until 40 cycles. Negligible voltage decay was

observed in the discharge of the O2-LLNMOs during the 40 cycles. The

average discharge voltages were well preserved and close to 3.5 V (see

inset  in  Fig.  2b):  3.53,  3.53,  and  3.48  V  for  the  1st,  20th,  and  40th

discharge process,  respectively.  This  outstanding voltage retention  and

the high redox voltage of O2-LLNMOs are in stark contrast with that of the

O3  phase,  which  revealed  severe  voltage  fades  in  the  same

electrochemical cycling (Supplementary Fig. 5), in accordance with many

previous  reports.7,12,14,38 Comparison  of  the  dQ  dV−1 profiles  tells  clear

suppression of the voltage decay in the O2-LLNMOs compared with that in

the O3-LLNMOs (Fig. 2c). In the low-voltage region, a drastic down-shift of

voltage was observed for  the O3-LLNMOs upon cycling,  and the major

electrochemical activity was observed near 3.0 V (vs. Li/Li+) even after 10

cycles. In contrast, this change was absent and the redox peaks remained

constant in the O2-LLNMOs, with the primary redox activity maintained

between 3.5 and 4.0 V (vs. Li/Li+). The cycle stability of the O2-LLNMOs in
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Fig. 2d was comparable to that of the O3-LLNMOs, indicating that the

retention of the practical energy density of the O2-LLNMOs  (≈ 82.5 %,

599.6 Wh kg-1  after 40 cycles) was superior to that of the O3-LLNMOs (≈

71.8 %, 550 Wh kg-1  after 40 cycles) because of the suppressed voltage

decay. 

Reversible cation migration in O2-LLNMOs

To understand the origin of the remarkable voltage retention of the O2-

LLNMOs from the perspective of structural transitions, we carefully probed

the  configuration  of  the  TM  ions  using  spherical-aberration-corrected

scanning  transmission  electron  microscopy  (Cs-STEM).  Fig.  3a  and  b

present  high-angle  annular  dark-field  (HAADF)  images  of  samples  in

charged and discharged states, respectively. HAADF images were obtained

using Z-contrast imaging, and thus, the predominant signals in the images

belong to heavy transition metals.27,39 In the HAADF-STEM image of the

pristine O2-LLNMOs (Supplementary Fig. 6), alternating TM layers and Li

layers are clearly visible with no signal of TM ions detected in the Li layer,

confirming the absence of TMLi–VTM anti-site defects in the pristine state. In

addition,  the  dumbbell-like  spots  in  TM layers  indicate  the  Li+Mn4+
6 or

(Li+xNi2+
1−x)Mn4+

6 honeycomb ordering in the pristine O2-LLNMOs, which is

a  typical  signature  of  lithium-rich  layered  materials  (Supplementary

Discussion 2).7,50 In contrast, the HAADF image for the charged samples

(~4.8 V vs. Li/Li+) provided in Fig. 3a reveals the noticeable presence of
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TM ions in the Li layer. The signal profile along the vertical direction in the

box in  Fig. 3a shows the evolution of new peaks at the center of two

adjacent TM layers, as denoted by the arrows. These peaks suggest that a

substantial amount of TM ions occupy vacant Li sites during the charge

process. Selected area electron diffraction (SAED) patterns along the [11́0 ]

axis  also  confirm the  same  TM behavior  over  a  much  broader  region

(150× magnified), with new diffraction spots as highlighted in the yellow

boxes  in  Fig.  3c.  To  assign  these  spots,  we  simulated  SAED patterns

assuming the disordered O2 structure in which 25% of TM ions occupy

octahedral sites or tetrahedral sites in the Li layer (Supplementary Fig. 7).

The  consistency  between  the  experimental  and  simulated  patterns

indicates that massive TM migration occurred during the charge process,

which  is  consistent  with  the  TM  migration  behavior  observed  for  the

charge process of O3-LLNMOs.11,33 Surprisingly, in the STEM image of the

fully  discharged O2-LLNMOs,  no  signal  of  TM ions  in  the  Li  layer  was

detected (Fig. 3b). Contrast to the charged state, the peaks between the

TM layers completely disappeared in the HAADF signal profile, indicating

the complete return of TM ions to the TM layer upon discharge. The SAED

pattern  of  the  discharged  samples  no  longer  contained  characteristic

spots of TMLi defects (the yellow boxes in Fig. 3c,) as observed in Fig. 3d.

The STEM analyses unequivocally confirm that interlayer TM migration is

highly  reversible  during  the  successive  charge  and  discharge  of  O2-

LLNMOs. This phenomenon has not been observed in other lithium-rich

layered oxides that contain a considerable amount of 3d TMs such as Mn
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and Ni.11,33

We performed first-principles calculations to elucidate the energetics of

the TM migrations that enable this reversible behavior in O2-LLNMOs. Fig.

3e presents schematic illustrations of the interlayer migration paths of TM

ions  in  the  O2  and  O3  structures,  respectively  (see  Supplementary

Discussion 3 for details). In the case of O3 structure, TM ions can migrate

to  the  nearest  neighboring  tetrahedral  site  in  the  Li  layer  and

subsequently to the octahedral Li site during the charge process. On the

other  hand,  in  the  O2  structure,  TM  ions  can  either  migrate  to  the

neighboring  tetrahedral  intermediate  site  (path  A)  or  octahedral

intermediate site (path B), followed by subsequent migration to the final

octahedral (path A) and tetrahedral sites (path B), respectively. For these

potential  migration  paths  for  O3 and O2  structures,  we  comparatively

calculated the relative site energies of  the intermediate and final sites

considering all the possible TM configurations. Fig. 3f presents the energy

landscapes of selected cases in which migration to the intermediate site

was the most thermodynamically feasible (see Supplementary Tables 3–5

for the energetics of other cases). When TM ions move in the O3 structure,

the lowest relative site energy of the intermediate site is estimated to be

−0.19 eV, and that of the adjacent Li octahedral site (“Edgeocta”) is −0.06

eV. It indicates that once TM ion moves to the intermediate site, further

migration  to  the  adjacent  octahedral  Li  site  is  quite  feasible.  It  would

inevitably complicate the return of the TM ions to the initial site. TM ions

may be led astray by further interactions with Li ions or other TM ions in
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the Li layer, making the return of TM ions to the original TM site nearly

impossible. However, for TM ions in the O2 phase, the relative site energy

at the final Li site is substantially higher (0.520.27 and 0.91 eV for path A

(“Faceocta”)  and  path  B  (“Facetetra”),  respectively)  destabilizing  TM

occupancy, whereas the TM in intermediate sites may remain stable in the

de-lithiated states.  These results  suggest  that  TM migrations  to  the  Li

layer occur in the charged states, as observed in Fig. 3a, but that further

intra-layer  migration  in  the  Li  layer  is  significantly  inhibited in  the  O2

structure.  The  intra-layer  migration  along  paths  A  and  B  in  the  O2

structure  requires  a  thermodynamic  penalty  of  approximately  0.660.91

and 1.19 eV, respectively.  And,  while these values are obtained for the

cases in which a moving TM ion share a face with Mn in the TM layer, the

site  energies  at  face-sharing sites  are all  positive  in  the O2 structure,

regardless  of  the  type  of  cations  that  faces  the  moving  TM  ion  (see

Supplementary Discussion 3). This result is  reasonable considering that

the final Li sites in the O2 phase share a face with cations in the TM layer,

as shown in  Fig. 1b.  Because TM ions in O2-LLNMOs are predicted to

remain  in  the  original  or  intermediate  sites  during  charging,  they  can

readily return to the original sites upon re-lithiation, as demonstrated in

Fig. 3b.  

To  further  verify  the  reversible  cation  migration  in  O2-LLNMOs  over

extended cycling, powder XRD analysis of the pristine and 10-, 20-, and

40-cycled electrodes was conducted (Fig. 4a and Supplementary Table 6).

The XRD pattern of  the pristine state contains well-defined honeycomb
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superstructure  peaks  at  2θ =  20.8°,  24.2°,  29.1°,  and  33.3°,  which

correspond to (1/3 1/3 0), (1/3 1/3 1), (1/3 1/3 2), and (1/3 1/3 3) planes,

respectively.30 Each superstructure peak is well preserved even after 40

cycles, which indicates that the honeycomb orderings in the discharged

samples  were not  destroyed by any permanent  TM migrations,  further

supporting the reversibility of TM migration upon extended cycling. This

behavior  contrasts with that of  the O3 phase, which typically  loses in-

plane cation ordering in the TM layers as the amount of TM/Li disordering

increases with prolonged cycling.6,11,33 

Raman  spectroscopy  analysis  was  also  conducted  to  determine  the

changes in the bonding character during cycling. Fig. 4b presents Raman

spectra of the pristine and cycled O2-LLNMOs in the 300–700 cm−1 range

whose  peaks  are  attributed  to  the  various  vibration  modes  of  TM–O

bonding in lithium layered oxides.13,36 The first two peaks at 595 and 473

cm−1 are  signatures  of  symmetric  stretching  (A1g)  and  symmetrical

deformation (Eg) of TM–O, respectively, in the layered structure, whereas

the peak at 420 cm−1 arises from the LiMn6 honeycomb ordering, which is

exclusively observed in lithium-rich layered oxides. Notably, all of these

Raman peaks were observed for both samples and were preserved even

after 40 cycles. This finding clearly contrasts with the case for O3-LLNMOs.

Previous studies have shown that the Raman peak at 595 cm−1 completely

shifted to 572 cm−1 only after 5 cycles because of the substantial layered-

to-spinel  phase  transformation  of  O3-LLNMOs.13,36 According  to  these

previous  reports,  the  peak  at  627  cm−1  can  be  attributed  to  the
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symmetrical stretching of TM–O in the spinel domain, and the peak at 572

cm−1 results  from  the  shift  of  the  peak  at  595  cm−1 in  a  new  TM

coordinating environment.13 Although we also detected peaks at 627 and

572 cm−1
 after 40 cycles, their intensities were much smaller than those in

previous reports on O3-LLNMOs.7,13 In principle, the spinel phase formation

in  the  O2  phase  is  inaccessible  via  room-temperature  electrochemical

cycling  because  the  oxygen  lattices  are  essentially  incompatible,  and

phase  transition  requires  major  breakage  of  the  strong  metal–oxygen

bonds.29,40 Therefore, the evolution of these new peaks is likely to originate

from the O3 phase impurity  present  in  the sample during the pre-ion-

exchange step. 

HR-TEM analysis  also  supports  the long-term structure preservation of

O2-LLNMOs.  As  observed  in  Supplementary  Fig.  10  and  Fig.  4c,  the

characteristic hexagonal P63mc spot patterns were consistently observed

both for the pristine and 40-cycled O2-LLNMOs. There were no signatures

of any secondary phases, including a spinel-like phase or the traces of TM/

Li  disordering,  in  the  patterns  of  the  40-cycled  electrodes.  More

specifically,  compared with the simulated pattern of  the disordered O2

structure (Supplementary Fig. 11), characteristic spots such as 1́ 1́0, 01́3́,

and  103́ pertaining to the disordered phase did not appear in the SAED

pattern or its signal profile (Fig. 4c). This result differs from that for O3-

LLNMOs,  in  which  the  spots  of  the  spinel-like  and  disordered  phase

evolved only after 5 cycles.7 The comparisons of structural evolution in the

O2  and  O3  phases  using  complementary  XRD,  Raman,  and  HR-TEM
15



analyses clearly demonstrate that the global and local structures of the

O2-LLNMOs are well  maintained over extended cycling,  benefiting from

the preeminent reversibility of TM migration unlike conventional LLNMOs,

which lose the structural integrity in a few cycles. 

High-potential O redox behavior preserved in O2-

LLNMOs

Notably,  recent  studies  on  lithium-rich  layered  oxides  have

demonstrated the intrinsic coupling between the anionic redox and cation

migration.33,34 According  to  mechanistic  investigation  of  LLNMCOs,  TM

migration to the Li layer decreases the redox potential of oxygen by >1 V,

thereby leading to asymmetry of the anionic redox between charge and

discharge.33 This  asymmetrical  behavior  of  the anionic  redox has been

alleged to play a detrimental role in triggering voltage hysteresis, which

exacerbates  the  voltage  retention  along  with  voltage  decay

phenomenon.10,32,41,42 However,  considering  the  reversibility  of  TM

migration in O2-LLNMOs, a distinct anionic chemistry in contrast to the

conventional mechanism is expected for O2-LLNMOs. To corroborate this

hypothesis, we closely examined the evolution of redox couples during the

charge and discharge of O2-LLNMOs. Fig. 5a shows the change in the O K-

edge  and  Ni,  Mn  L3-edge  absorbance  spectra  determined  from  STXM

analysis during the first cycle of O2-LLNMOs. The five six points in Fig. 5a

correspond to the (1) pristine, (2) 4.5-V charged, (3) 4.8-V charged,  (4)
16



3.8-V discharged, (45) 3.4-V discharged, and (56) 2.0-V discharged states,

and  the  differences  in  the  absorbance  between  two  consecutive

designated points are shown below. The results indicate that the charge

process is compensated by the redox of Ni2+/Ni4+ at relatively low voltage

(3.3–4.5 V) and subsequently by O2−/On− (n< 2) redox at high voltage (4.5–

4.8 V), as previously discussed. When charging from 3.3 to 4.5 V (‘1’  →

‘2’),  a  peak  appears  at  856  eV  in  the  Ni  L3-edge  spectra  with  the

simultaneous emergence of a low-energy peak around 529 eV in the O K-

edge  spectra,  signifying  the  depopulation  of  the  hybridized  Ni3d–O2p

antibonding state.33,43 From 4.5 to 4.8 V (‘2’ → ‘3’), the peak at 531.50 eV

evolves in the O K-edge spectra, which is indicative of oxygen redox states

at high potentials.33 This oxygen redox is further evidenced by mapping of

resonant  inelastic  X-ray  scattering  (mRIXS)  analysis  (Fig.  5b

Supplementary  Discussion  4).  Comparing  with  conventional  X-ray

photoelectron  spectroscopy  and  X-ray  absorption  spectroscopyWe note

that, the  O-K mRIXS has recently been demonstrated as a tool-of-choice

for  detecting  the  lattice  oxygen  redox  states a  powerful  capability  on

isolating the oxidized oxygen feature from the TM-O hybridization feature,

thus  has  been  regarded  as  the  most  reliable  spectroscopic  tool  to

fingerprint  the  oxygen  redox in  both  Li-  and  Na-ion  battery

electrodes.33,34,  44,45 In mRIXS imagesparticular, the emergence of a distinct

feature at 531.0 eV excitation energy and 523.7 eV emission energy (red

circles in  Fig. 5b) indicates the presence of oxidized lattice oxygens in

battery electrodes.33 The results show that While thsuchis oxidized oxygen
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redox feature is absent in mRIXS images of ‘1’ anduntil ‘2’, butit becomes

distinct  in  the  image  of  ‘3’,  demonstrating  oxygen  oxidation  at  high

potentials (‘2’ → ‘3’) again. No characteristic peaks are observed in the Mn

L3-edge STXM spectra throughout the entire charging regime, confirming

the redox-inactive properties of Mn4+. Ni and Mn K-edge X-ray absorption

near edge spectroscopy (XANES) analyses (Supplementary Fig. 1312) also

revealed  a  consistent  redox  mechanism  during  the  charging  process.

Overall, the charging of O2-LLNMOs accompanies the sequence of redox

couples, which is the same as that for their O3-type counterparts.36,37 This

accordance is reasonable considering that the tendency of TM migration

during the charging is similar in both compounds. 

 In the subsequent discharge process, we found that the anionic (O2−/On−

(n< 2)) redox occurs quite reversibly at a the high redox voltage region for

O2-LLNMOs. As can be seen from mRIXS images in Fig. 5b, for during the

initial  discharge region  (‘3’,’4’,  and  ‘5’),  the  oxidized  oxygen  feature

dropped its intensity significantly from ‘3’ to ‘4’, and gradually blurred as

the  cells  discharged  and  completely  disappeared  at  ‘5’ state.  It  This

indicates that majority of the a continuous oxygen reduction takes place

at high potentials (‘3’  → ‘5’4’) and is completed by ‘5’. during discharge

and tThe  absence of  oxygen redox activity is thus completely absent at

low  potentials  (‘5’  →  ‘6’).  Consistently, in  STXM  spectrum  for  the

equivalent discharge region (‘3’  → ‘5’),  In the voltage range of the initial

discharge (‘3’ → ‘4’), the O K-edge peak at 531.50 eV disappears, clearly

indicating the reduction of O2p states at high-voltage region. Moreover, the
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signature of TM3d–O2p reduction was presented with the disappearance of

the peak at 856 eV at the Ni L3-edge as well as that at 529 eV at the O K-

edge, indicating the simultaneous cationic  (Ni4+ to Ni2+)  reduction.  This

observation is in contrast to the typical anionic redox behavior observed in

the O3-LLNMOs, which was recently demonstrated with the major anionic

redox activities at low potential region after the cation redox reaction.33

And, this asymmetric anionic redox reaction for the charge (high potential

charging) and the discharge (low potential discharging) was accounted for

the voltage hysteresis of LLNMOs. In the O2-LLNMOs, on the other hand,

the oxygen redox activity was solely observed at the high-voltage region

without  the  signature  in  the  low-voltage  region  (‘45’  → ‘56’),  which  is

mainly  compensated  by  partial  manganese  reduction  (Supplementary

Discussion 54). For O3-type LLNMCOs (Li1.17Ni0.21Co0.08Mn0.54O2), Gent et al.

demonstrated  that  the  lowered  discharge  potential  of  anionic  redox

originates from the significant coordination loss of oxygen in the TM layer,

whose  originally  coordinated  TM  ions  move  to  the  Li  layer.33 Such

coordination loss of oxygen inevitably shifts the O2p states to the higher

level in the electronic structure, and thus decreases the voltage of oxygen

redox. However, according to our STEM and theoretical observations, TM

ions in  the Li  layer readily  return to the TM layer upon re-lithiation of

charged  O2-LLNMOs,  which  would  rapidly  restore  the  coordination

environment  of  oxygen.  This  behavior  is  dissimilar  to  that  for  O3-type

compounds, wherein a substantial amount of TM ions remains in the Li

layer.  This  finding  implies  that  the  anomalously  symmetrical  redox
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properties of O2-LLNMOs must result from the facile return of migrated TM

ions upon discharge.  Mitigation of  the asymmetry of  the anionic redox

may be beneficial to the long-term cyclability as it decreases the voltage

hysteresis, although there have been few attempts aimed at improvement

of the redox symmetry. 

 In  order  to  further  support  the  O redox  at  high  potential  discharge,

several  electrochemical  tests  were  additionally  performed.  Fig.  5b

presents two model dQ dV−1 experiments, in which the anionic redox is

separated from TM–O redox by cycling two cells; (i) below 4.35 V without

triggering of the O redox (black dotted line) and (ii) with O redox triggered

(colored solid line). Excluding the cation redox activity (yellow region), the

additional electrochemical activity achieved after the O redox triggered

(blue  region)  is  solely  exhibited  at  the  high  potentials  without  any

additional  activities  in  the  yellow  region.  The  invariance  of  the  cation

redox region even after the O redox triggered is in line with the STXM

data, supporting the anionic reduction at high redox potentials. In Fig. 5c,

we also investigated the change in the discharge profiles of O2-LLNMOs as

a  function  of  the  current  density,  considering  that  that  anionic  redox

exhibits  much  more  sluggish  kinetics  than  cation  redox,  thus  the

variations  of  the  anionic  and  cationic  redox  regimes  are  readily

distinguishable.32,46 Upon  increasing  the  current  density,  the  discharge

capacity of the high-voltage region (above 3.4 V) steadily and drastically

decreases from 136 mAh g−1 at 5 mA g−1 to 74 mAh g−1 at 200 mA g−1 (see

Fig. 5d). However, the capacity of the redox region below 3.4 V is well
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maintained  with  only  minor  changes  of  less  than 6  mAh g−1 until  the

current density reaches 100 mA g−1.  The observation that the capacity

fade at high rates mainly arises in the high-voltage region supports the

sluggish anionic redox occurring in the high voltage range on discharge.

Notably,  it  contrasts  with  that  of  O3-LLNMOs  in  which  the  substantial

capacity drops are observed in both regions (above 3.4 V and below 3.4

V), which is attributed to anionic redox activity spread into the low-voltage

region (Supplementary Fig. 1413). 

Conclusion

In summary, we proposed a new strategy to improve the reversibility of

TM migration by employing an O2-type structural framework wherein the

cation migration path is effectively modified because of the unique site

preferences. The intra-cycle reversible behavior of TM ions was visualized

through  STEM  measurements,  and  complementary  XRD,  Raman

spectroscopy,  and  HR-TEM analyses  confirmed  the  preservation  of  the

pristine  structure  over  long-term  cycling.  Owing  to  this  excellent

reversibility, O2-LLNMOs exhibit remarkable reduction in voltage fade and

redox asymmetry compared with their O3-phase counterparts. Theoretical

calculations  consistently  presented that  the  intra-layer  TM migration is

thermodynamically  prevented  because  of  the  large  repulsion  between

face-sharing cations in O2-LLNMOs, facilitating the reverse migration. This

work provides robust guidance that will  help steer strategies to resolve
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the  issues  of  voltage  decay  and  hysteresis,  with  the  implications  that

tailoring the site preference of TM ions may be an effective approach to

modulate  the  reversibility  of  structural  rearrangements  during

electrochemical cycling. 

This  work  provides  robust  guidance  that  will  help  steer  strategies  to

resolve the issues of voltage decay and hysteresis in a range of lithium-

rich layered oxides. In a broader context, tailoring site preference to drive

reversible  cation  migration  is  also  applicable  to  other  fields  where

irreversible  cation  migration  is  critical  to  performance  degradation  of

materials,  such as  conventional  layered  cathodes47,48,  electrocatalysis49,

and  photovoltaics.50 Important  directions  for  further  study  include

exploring  large  chemical  spaces  within  the  O2  structural  framework

through  the  sensitive  control  of  cation  and  anion  composition.  For

example, recent studies have revealed for O3-LLNMOs and O3-LLNMCOs

that migration tendencies of TM ions can be dependent on their metal

composition.7,23 Therefore,  the  combination  of  O2  structural  framework

and optimized lithium-rich chemistry will  ensure the greatest structural

reversibility and energy retention. Another remaining task for lithium-rich

layered  oxides  is  narrowing  the  gap  between  academic  solutions  and

industrial  needs  with  the  improvement  of  engineering  and  synthetic

process.  Notably,  alternative synthetic routes to produce O2 phase are

needed to circumvent the cost and lithium loss issues associated with the

ion-exchange method that was employed in this study.
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Methods

Synthesis. To synthesize P2-Na5/6(Li0.2Ni0.2Mn0.6)O2, stoichiometric amounts

of LiCH3COO∙2H2O (99%, Sigma-Aldrich), NaCH3COO∙3H2O (99%, Sigma-

Aldrich), Ni(CH3COO)2∙4H2O (98%, Sigma-Aldrich), and Mn(CH3COO)2∙4H2O

(99%,  Sigma-Aldrich)  were  dissolved  in  distilled  water  containing

appropriate  amounts  of  resorcinol  (99%,  Sigma-Aldrich)  and

formaldehyde.  To  mediate  the  volatility  of  lithium and sodium at  high

temperature, 5% excess of lithium and sodium sources were compensated

by Li2CO3 (99.99%, Sigma-Aldrich) and Na2CO3 (99%, Sigma-Aldrich). The

mixture was heated with continuous stirring at 70 °C for 2 h and then at

90 °C overnight without stirring. Finally, the P2 phase was obtained by

additional  heat treatment at 500 °C for 5 h and 900 °C for 10 h with

intermediate grinding. In the following ion-exchange step, the resultant

P2-phase powders were added to 10 times excess amount of 5 M LiBr

(99%, Sigma-Aldrich) solution in hexanol and then heated at 120 °C for 24

h to obtain O2-phase material. After ion exchange, the product was rinsed

with ethanol and distilled water several times. The entire ion-exchange

process was repeated once more to complete the substitution of sodium

with lithium.

Electrochemistry.  The  electrodes  were  fabricated  using  the  following

steps. A slurry of 80 wt% active materials, 10 wt% carbon black (Super P),

and 10 wt% polyvinylidene fluoride dissolved in  N-methyl-2-pyrrolidone
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(NMP; 99.5%, Sigma-Aldrich) was cast onto aluminum foil. The resultant

mixture was dried in a 70 °C vacuum oven overnight to allow the NMP to

evaporate.  Coin  cells  (CR2032,  Hohsen)  were  assembled  using  the

electrodes,  a  lithium  counter  electrode,  a  separator  (GF/F  filter,

Whatman), and a 1 M solution of LiPF6 in a mixture of ethyl carbonate and

dimethyl  carbonate  (EC/DMC,  1:1  v/v)  in  an  Ar-filled  glove  box.  The

galvanostatic  charge/discharge  process  was  performed  in  the  voltage

range  of  2.0–4.8  V  at  room temperature  using  a  potentio-galvanostat

(WBCS 3000, WonA Tech).

XRD. as-prepared samples were characterized using XRD (D8 ADVANCE,

Bruker,  Bremen,  Germany)  with  Cu-Kα radiation  (λ=1.54178  Å)  at  a

scanning  speed  of  0.167°  min−1 in  the  2θ range  of  10°–70°.  High-

resolution powder diffraction (HRPD) was performed at beamline 9B at the

Pohang Light Sources (PLS) in the Pohang Accelerator Laboratory (PAL),

Republic of Korea. The data were collected over the 2θ range of 10°–133°

with a step size of 0.01°, step time of 4 s, and wavelength of λ=1.5226 Å.

Rietveld refinement of the XRD patterns was performed using the FullProf

program.

Raman  spectroscopy. Raman  spectra  of  the  pristine  and  40-cycled

electrodes  were  recorded  using  a  Raman  spectrometer  (LabRAM  HV

Evolution, HORIBA, Japan) with an Ar laser as the excitation light source (λ

=532 nm).  The scattered light of  the Raman signal was collected in a

backscattering geometry using a 50× microscope objective lens. The data

were measured using an acquisition time of 20 s and 10 accumulations.
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The spectra were deconvoluted using the XPS Peak program.

XANES.  XANES  spectra  of  the  harvested  electrodes  were  obtained  at

beamline 7D at the PLS using a double-crystal monochromator containing

two sets  of  Si(111)  crystals.  All  the  measurements  were  performed at

room temperature, and the Ni and Mn K-edge spectra were collected in

total electron yield mode. To accurately calibrate the energy scale and any

drift  of  the monochromator position,  metal  foils  were placed in a third

chamber as a reference. All of the spectra were normalized and compared

using the Athena program.

STXM.  STXM  analysis  was  performed  at  beamline  10A  at  the  PLS  to

obtain the O K-edge and Ni and Mn L3-edge spectra. Primary particles were

drop-cast  onto  carbon-coated  Cu TEM grids  for  the  measurements.  By

keeping  the  focal  position  at  the  same  particle,  the  two-dimensional

transmitted photon intensity was recorded in pixel form at a fixed energy.

To  obtain  image  stacks,  the  same  measurements  were  repeated  over

different X-ray energy ranges. The image stacks were acquired in 0.2 eV

steps  with  a  2  ms  dwell  time  and  were  aligned  using  the  aXis  2000

software package.

SEM.  Field-emission  scanning  electron  microscopy  (FE-SEM;  SU-70,

Hitachi, Japan) analysis was used to examine the surface morphological

changes  during  the  ion-exchange  process.  To  compensate  for  the  low

conductivity of both materials, the active materials were coated with Pt

nanoparticles three times.
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HR-TEM. The  electrodes  harvested  in  the  pristine  state  and  after  40

cycles  were  sonicated  into  particles  in  ethanol  and  transferred  onto

carbon-coated Cu grids to obtain HR-TEM images and SAED patterns using

field-emission transmission electron microscopy (FE-TEM; JEOL, JEM-2100F,

Japan).

Cs-STEM. Cross-sectional TEM specimens of the as-prepared and cycled

electrode slurry films were prepared using focused ion beam (FIB) milling

(FEI,  Helios  650).  The  prepared  specimens  were  used  for  high-angle

annular dark-field imaging under 80 keV using aberration-corrected STEM

(Cs-STEM; JEOL, JEM-ARM200F, Japan) with a point-to-point resolution of

0.08 nm.

First-principles  calculations. The  first-principles  calculations  in  this

work  were  conducted  based  on  spin-polarized  DFT  calculations,  as

implemented in the  Vienna  ab initio simulation package (VASP).51  All the

DFT energies were estimated within the GGA + U parameterization using

the  Perdew–Burke–Ernzerhof  (PBE)  functional.52 Effective  Hubbard-U

parameters of 3.9 and 6.0 were applied to the 3d electrons of Mn and Ni

atoms, respectively, in accordance with the values reported in previous

works.53,54 A plane-wave basis set was utilized with an energy cutoff of 520

eV and a 3 × 3 × 2 gamma-point-centered k-point mesh. For all the cases

Unless otherwise stated, the lattice parameters and atomic positions were

fully relaxed until the interatomic forces were smaller than 0.02 eV Å−1.

Detailed information regarding the model construction and TM migration

analysis is provided in Supplementary Discussion 3. 
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mRIXS mRIXS experiments  were performed in the iRIXS endstation at

BL8.0.1  of  the  Advanced  Light  Source  at  Lawrence  Berkeley  National

Laboratory.55 The emission energy resolution is about 0.25 eV through a

VLS-spectrograph. The excitation energy resolution is about 0.3 eV. Data

were  collected  with  0.2  eV  steps  upon  excitation  energies  across  the

whole Oxygen K absorption edge.
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Fig.  1. Comparison of  crystal  structures  and cation migration  paths.

Schematic illustrations of crystal structures of a, O3-type and b, O2-type lithium

layered oxides. The figures below show the TM migration paths on a magnified

scale. Although TM ions in the O3 structure can readily occupy Li sites that share

only edges with neighboring cations, the TM ions in the O2 structure are subject

to  strong  repulsion  when  they  occupy  Li  sites  face-sharing  with  neighboring

cations.
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Fig. 2. Suppression of voltage decay in O2-LLNMOs. a, First and second

charge–discharge curves of O2-LLNMOs cycled in the voltage range of 2.0–4.8 V

at a current density of 5 mA g−1. b, Normalized discharge curves of O2-LLNMOs

for  40 cycles.  The data were collected every 10 cycles.  The inset shows the

change in the average voltage over 40 cycles. c, Comparison of voltage decay in

dQ dV−1 curves of O2- and O3-LLNMOs. The arrow in the profile of O3-LLNMOs

highlights the drastic shift  toward low voltage with cycling.  d, Comparison of

discharge capacity and energy density retention in O2- and O3-LLNMOs.
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Fig.  3. Highly  reversible  cation migration in O2-LLNMOs. HAADF-STEM

images along the [11́0] zone axis for a, 4.8-V charged and b, 2.0-V discharged

O2-LLNMOs.  The  graphs  below  are  the  HAADF  signal  profiles  of  the  regions

enclosed by the dotted lines in the STEM images. The arrows in the signal profile

of the charged sample indicate the evolution of TMLi defects. SAED patterns of c,

4.8-V charged and  d, 2.0-V discharged O2-LLNMOs along the  [11́0] direction.

The extra spots in the areas enclosed by the yellow dotted boxes in c represent

significant cation migration into the Li layers. In c, spots marked with red circles

correspond to (i)  002́ (ordered structure and cation-disordered structure),  (ii)

110 (cation-disordered structure), and (iii) the overlap of 110 (ordered structure)

and 220 (cation-disordered structure), respectively. Other spots are indexed in

Supplementary Fig. 7. e, TM migration paths from initial to intermediate and final

Li sites. f, Relative site energies of intermediate and final sites calculated along

the migration path of TM ions. 
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Fig. 4. Mitigation of structural evolution in O2-LLNMOs for 40 cycles. a,

Ex situ XRD patterns of pristine and 10-,  20-,  and 40-cycled O2-LLNMOs.  The

magnified view clearly shows honeycomb superstructure peaks (grey shaded). A

magnified view of the region between 19° and 35° is presented in the inset. b,

Comparison of  Raman spectra for  pristine and 40-cycled samples.  The newly

emerging blue peaks at 627 and 572 cm−1 after 40 cycles correspond to the

layered-to-spinel  transitions.  c, SAED pattern  of  O2-LLNMOs along the  [33́1]

zone axis after 40 cycles (top, Or: ordered). SAED signal profiles for yellow and

blue lines in SAED pattern (bottom, Dis:  disordered).  The arrows indicate the
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expected positions of additional spots of disordered O2-LLNMOs.

Figure  5. Anomalous  anionic  redox  behavior  in  O2-LLNMOs. a, STXM

differential  absorbance spectra  of  O K-edge and Ni,  Mn L3-edges  for  the first

charge and discharge cycle. Each spectrum shows the difference between two

adjacent  designated points in the electrochemical curve.  b, O K-edge mRIXS of

O2-LLNMOs for the first cycle obtained at each point of a. Distinct oxygen redox

features are indicated by red circles. b,c, dQ dV−1 curve of O2-LLNMOs measured

at a current density of 5 mA g−1.  c,d, Electrochemical curves of O2-LLNMOs for

current densities ranging from 5 to 200 mA g−1.  d,e, Variation of  discharge

capacity as a function of current density estimated for the two classified voltage

ranges, 2.0–3.4 V and 3.4–4.8 V.
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