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This study proposes voltage-dependent-synaptic plasticity (VDSP), a novel

brain-inspired unsupervised local learning rule for the online implementation

of Hebb’s plasticity mechanism on neuromorphic hardware. The proposed

VDSP learning rule updates the synaptic conductance on the spike of the

postsynaptic neuron only, which reduces by a factor of two the number of

updates with respect to standard spike timing dependent plasticity (STDP).

This update is dependent on the membrane potential of the presynaptic

neuron, which is readily available as part of neuron implementation and hence

does not require additional memory for storage. Moreover, the update is

also regularized on synaptic weight and prevents explosion or vanishing of

weights on repeated stimulation. Rigorous mathematical analysis is performed

to draw an equivalence between VDSP and STDP. To validate the system-level

performance of VDSP, we train a single-layer spiking neural network (SNN)

for the recognition of handwritten digits. We report 85.01 ± 0.76% (Mean ±

SD) accuracy for a network of 100 output neurons on the MNIST dataset.

The performance improves when scaling the network size (89.93 ± 0.41%

for 400 output neurons, 90.56 ± 0.27 for 500 neurons), which validates the

applicability of the proposed learning rule for spatial pattern recognition tasks.

Future work will consider more complicated tasks. Interestingly, the learning

rule better adapts than STDP to the frequency of input signal and does not

require hand-tuning of hyperparameters.
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Introduction

The amount of data generated in our modern society is
growing dramatically, and Artificial Intelligence (AI) appears as
a highly effective option to process this information. However,
AI still faces the major challenge of data labeling: machine
learning algorithms associated with supervised learning can
bring AI at human-level performance, but they require costly
manual labeling of the datasets. A highly desirable alternative
would be to deploy unsupervised learning strategies that do
not require data pre-processing. Neuromorphic engineering
and computing, which aims to replicate bio-realistic circuits
and algorithms through a spike-based representation of data,
relies heavily on such unsupervised learning strategies. Spike
timing dependent plasticity (STDP) is a popular unsupervised
learning rule used in this context, where the relative time
difference between the pre-and post-synaptic neuron spikes
defines synaptic plasticity (Brader et al., 2007; Masquelier and
Thorpe, 2007; Lee et al., 2018). STDP is a spiking version of
the traditional Hebbian learning concept (Hebb, 1949; Bliss
and Collingridge, 1993; Bi and Poo, 1998), where a synaptic
connection is modified depending only on the local activity
correlations between its presynaptic and postsynaptic neurons.

In addition to its intrinsic unsupervised characteristic, STDP
is also very attractive due to the locality of its synaptic learning.
Such a feature could dramatically reduce hardware constraints
of SNN by avoiding complex data exchange at the network
level. However, STDP retains a major challenge: it requires
precise spike times/traces to be stored in memory and fetched at
every update to the processor. In most implementations (Song
et al., 2000; Morrison et al., 2008), decaying spike traces are
used to compute synaptic weight update, adding extra state
variables to store and update. In digital neuromorphic systems
(Diehl and Cook, 2014; Yousefzadeh et al., 2017; Lammie
et al., 2018; Manoharan et al., 2020), implementing STDP
comes with an added cost of memory requirement for storing
spike times/traces for every neuron and energy expenditure
for fetching these variables during weight update. For analog
hardware implementation (Friedmann et al., 2016; Narasimman
et al., 2016; Grübl et al., 2020; Moriya et al., 2021), circuit area
and power are spent in storing spike traces on capacitors, thus
raising design challenges. In-memory computing approaches
have been strongly considered for STDP implementation to
mitigate memory bandwidth requirements. The utilization
of non-volatile memory-based synapses, or memristors, has
been primarily considered (Serrano-Gotarredona et al., 2013;
Querlioz et al., 2013; Ambrogio et al., 2016; Camuñas-Mesa
et al., 2020). The seminal idea is to convert the time distance
between pre- post-signals into a voltage applied across a
single resistive memory element. The key advantage is to
compute the STDP function directly on the memory device
and to store the resulting synaptic weight permanently. This
approach limits data movement and ensures the compactness

of the hardware design (single memristor crosspoints may
feature footprints below 100 nm). Further similar hardware
propositions for STDP implementation have been discussed in
the literature (Boybat et al., 2018; Guo et al., 2019). Nevertheless,
in all these approaches, time-to-voltage conversion requires
a complex pulse shape (pulse duration should be in the
order of STDP window and pulse amplitude should reflect
the shape of STDP function), thus requiring complex circuit
overhead and limiting the energy benefit of low power memory
devices.

Moreover, STDP has the constraint of a fixed time window.
As STDP is a function of the spike time difference between a
post and a presynaptic neurons, the time window is the region
in which the spike time difference must fall to update the
weight significantly. The region of the time windows must be
optimized to the temporal dynamics of spike-based signals to
achieve good performances with STDP. This latter point raises
additional issues at both the computational level (i.e., how to
choose the appropriate STDP time window) and hardware level
(i.e., how to design circuits with this level of flexibility). In
other words, the challenge for deploying unsupervised strategies
in neuromorphic SNN is two-sided: the concept of STDP
needs to be further developed to allow for robust learning
performances, and hardware implementations opportunities
need to be considered in the meantime to ensure large scale
neuromorphic system development.

In this work, we propose Voltage-Dependent Synaptic
Plasticity (VDSP), an alternative approach to STDP that
addresses these two limitations of STDP: VDSP does not
require a fixed scale of spike time difference to update the
weights significantly and can be easily integrated on in-
memory computing hardware by preserving local computing.
Our approach uses the membrane potential of a pre-synaptic
neuron instead of its spike timing to evaluate pre/post neurons
correlation. For a Leaky Integrate-and-Fire (LIF) neuron
(Abbott, 1999), membrane potential exhibits exponential decay
and captures essential information about the neuron’s spike
time; intuitively, a high membrane potential could be associated
with a neuron that is about to fire while low membrane
potential reflects a neuron that has recently fired. A post-
synaptic neuron spike event is used to trigger the weight update
based on the state of the pre-synaptic neuron. The rule leads
to a biologically coherent temporal difference. We validate the
applicability of this unsupervised learning mechanism to solve a
classic computer vision problem. We tested a network of spiking
neurons connected by such synapses to perform recognition
of handwritten digits and report similar performance to other
single-layer networks trained in unsupervised fashion with the
STDP learning rule. Remarkably, we show that the learning
rule is resilient to the temporal dynamics of the input signal
and eliminates the need to tune the hyperparameters for
input signals of different frequency range. This approach could
be implemented in neuromorphic hardware with little logic
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overhead, memory requirement and enable larger networks to
be deployed in constrained hardware implementations.

Past studies have investigated the role of membrane
potential in the plasticity of the mammalian cortex (Artola et al.,
1990). The in-vivo voltage dependence of synaptic plasticity
has been demonstrated in Jedlicka et al. (2015). In Clopath
et al. (2010), bidirectional connectivity formulation in the cortex
has been demonstrated as a resultant of voltage-dependent
Hebbian-like plasticity. In Diederich et al. (2018), a voltage-
based Hebbian learning rule was used to program memristive
synapses in a recurrent bidirectional network. A presynaptic
spike led to a weight update dependent on the membrane
potential of postsynaptic neurons. The membrane potential
was compared with a threshold voltage. If the membrane
potential exceeded this threshold, long-term potentiation (LTP)
was applied by applying a fixed voltage pulse on the memristor,
while, for low membrane potential, long-term depression (Ltd.)
took place. However, in their case, the weight update is
independent of the magnitude of the membrane potential,
and hence the effect of precise spike time difference cannot
be captured. Lastly, these past studies have never reported
handwritten digit recognition and benchmark against STDP
counterparts.

In the following sections, we first describe the spiking
neuron model and investigate the relation between spike time
and neuron membrane potential. Second, we describe the
proposed plasticity algorithm, its rationale, and its governing
equations. Third, the handwritten digit recognition task is
described with SNN topology, neuron parameters and learning
procedure. In the results section, we report the network’s
performance for handwritten digit recognition. Next, we
demonstrate the frequency normalization capabilities of VDSP
as opposed to STDP by trying widely different firing frequencies
for the input neurons in the handwritten digit recognition task
without adapting the parameters. Finally, the hyperparameter
tuning and scalability of the network are discussed.

Materials and methods

Neuron modeling

LIF neurons (Abbott, 1999) are simplified version of
biological neurons, hence easy to simulate in an SNN simulator.
This neuron model was used for the pre-synaptic neuron layers.
The governing equation is

τm
dv
dt
= − v+ I+ b (1)

where τm is the membrane leak time constant, v is the
membrane potential, which leaks to resting potential (vrest), I is
the injected current, and b is a bias. Whenever the membrane
potential exceeds a threshold potential (vth), the neuron emits

a spike. Then, it becomes insensitive to any input for the
refractory period (tref ) and the neuron potential is reset to
voltage (vreset).

An adaptation mechanism is added to the post neurons
to prevent instability due to excessive firing. In the resulting
adaptive leaky integrate-and-fire (ALIF) neuron, a second state
variable is added. This state variable n is increased by inc_n
whenever a spike occurs, and the value of n is subtracted from
the input current. This causes the neuron to reduce its firing rate
over time when submitted to strong input currents (La Camera
et al., 2004). The state variable n decays by τn :

τn
dn
dt
= − n (2)

Relation between spike time and
membrane potential

Hebbian-based STDP can be defined as the relation between
1w ∈ R, the change in the conductance of a weight, and 1t =
tpost − tpre, the time interval between a presynaptic spike at time
tpre and a postsynaptic spike at time tpost with 1t, tpre, tpost ∈

R+. This relation can be modeled as

1w ∝

 exp ( −1t
τ+STDP

), tpre < tpost

− exp ( 1t
τ−STDP

), otherwise.
(3)

with τSTDP being the time constants for potentiation (+) and
depression (-). This model is commonly computed during both
the pre and postsynaptic neuron spikes, e.g., with the two traces
model (Song et al., 2000). For VDSP, we seek to compute a
similar 1w, but as a function of only v

(
tpost

)
, the membrane

potential of a presynaptic neuron at the time of a postsynaptic
spike.

Fortunately, when the presynaptic LIF neuron is only fed by
a constant positive current I ∈ R+, the spiking dynamics can
be predicted. Solving the presynaptic LIF neuron’s differential
equation for the membrane potential with no bias (Equation 1
with b = 0) during subthreshold behavior yields

v (t) = I+c · exp
(
−

t
τm

)
, (4)

where c is the integration constant. Solving Equation 4 for tpre

and tpost allows us to define a new relation for tpost−tpre:

tpost−tpre = τmln

(
v
(
tpre
)
−I

v
(
tpost

)
−I

)
. (5)

with v
(
tpre
)

and v
(
tpost

)
equal to the membrane potential of

the presynaptic neuron at the moment of a presynaptic spike
and postsynaptic spike, respectively. Assuming I is sufficient to
make the presynaptic neuron spike in a finite amount of time,
i.e., I > vth, then v

(
tpre− ∈

)
= vth and v

(
tpre+ ∈

)
= vreset,
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with ∈ representing an infinitesimal number. Conceptually,
v
(
tpre− ∈

)
represents a spike that is about to happen and

v
(
tpre+ ∈

)
a spike that has happened in the recent past, when

there is no refractory period (tref = 0). Assuming ∈→ 0, we

obtain: 1t = τmln
(

vth−I
v(tpost)−I

)
if the presynaptic neuron is

about to spike or 1t = τmln
(

vreset−I
v(tpost)−I

)
if the presynaptic

neuron recently spiked. To select between one of these values,
we must obtain the smallest1t, as to form a pair of tpre and tpost

that are closest in time. These two equations can be combined
into:

|1t| = τm ·min


∣∣∣∣ln
(

vth−I
v
(
tpost

)
−I

) ∣∣∣∣, ∣∣∣∣ln
(

vreset−I
v
(
tpost

)
−I

)∣∣∣∣

(6)

By using 1t as a function of v
(
tpost

)
from equation 6, with

vth = 1, vreset = −1 and knowing vreset ≤ v
(
tpost

)
< vth, then

equation 1 can be rearranged to:

1w ∝



(
v
(
tpost

)
−I

−1−I

) τm
τ+STDP

, I−
√

I2−1> v
(
tpost

)
−

(
1−I

v
(
tpost

)
−I

) τm
τ−STDP

, otherwise.

(7)

This final result proves that, when the presynaptic neuron
is driven by constant current, Hebbian STDP can be precisely
modeled using only v

(
tpost

)
, the membrane potential of a

presynaptic neuron at the time of a postsynaptic spike. Note
that such generalization cannot be done in the case of Poisson-
like input signals. Figures 1A,B demonstrates experimentally
the relation between the membrane potential and |1t| from
equation 6. The condition I−

√
I2−1 > v

(
tpost

)
can be inferred

from Equation 6, to select the minimal parameter, since

min{a, b} =

{
a, a ≤ b
b, otherwise.

Moreover, as equation 6 shows, the neuron parameters,
namely the membrane reset and threshold potentials, are
implicitly used to calculate the potentiation and depression

windows. For example, the condition I −
√(

I2 − 1
)
> v

(
tpost

)
of Equation 7 can be simplified to v

(
tpost

)
< 0 if vreset =

I
vth−I

instead of −1. Both vth and vreset can be modified to tune the
balance between potentiation and depression. Supplementary
Figure 4 highlights the empirical effect of changing the value of
vth and vreset on the 1w = VDSP(1t) window between two
neurons with a fixed initial weight w = 0.5.

Proposed plasticity algorithm

The proposed implementation of synaptic plasticity depends
on the postsynaptic neuron spike time and the presynaptic
neuron’s membrane potential. This version of Hebbian plasticity

in which the weight is updated on either postsynaptic or
presynaptic spikes is also known as single spike synaptic
plasticity (Serrano-Gotarredona et al., 2013). In real world
applications, the presynaptic input current I is often not
known and not constant, which would be mandatory for
reproducing STDP perfectly as demonstrated in Equation 7. The
less information is known about the input current, the more
our plasticity rule converge into a probabilistic model. A low
membrane potential suggests that the presynaptic neuron has
fired recently, leading to synaptic potentiation (Figures 1C–E).
A high presynaptic membrane potential suggests that the pre-
synaptic neuron might fire shortly in the future and leads to
depression (Figures 1F–H). A different resting state potential
and reset potential is essential to discriminate inactive neurons
and neurons that spiked recently.

Hebbian plasticity mechanisms can be grouped into additive
or multiplicative types. In the additive versions of plasticity,
the magnitude of weight update is independent of the
current weight, but weight clipping must be implemented to
restrict the values of weight between bounds (Brader et al.,
2007). Although the weight is not present in weight change
computation equation directly, the present weight must be
fetched for applying clipping. In neurophysiology experiments
(Van Rossum et al., 2000), it is also demonstrated that the weight
update depends on the current synaptic weight in addition
to the temporal correlation of spikes and is responsible for
stable learning. The weight dependence is often referred to
as multiplicative Hebbian learning as opposed to its additive
counterpart and leads to stable learning and log-normal
distribution of firing rates which are coherent with biological
system recording (Teramae and Fukai, 2014).

VDSP relies on the multiplicative plasticity rule that
considers the present weight value for computing the weight
update magnitude. During potentiation, the weight update is
proportional to (Wmax-W), and during the depression phase,
the weight update magnitude is proportional to W, where
W is the current weight, and Wmax is the maximum weight.
Multiplicative weight dependence is a crucial feature of VDSP,
and no hardbound is needed as typically used with additive
plasticity rules. A detailed discussion is presented in the
discussion section and Supplementary Figure 2.

The functional dependence of weight update on the
membrane potential of the presynaptic neuron and the current
synaptic weight is presented in Figures 2A,B. The weight or
synaptic conductance varies between zero and one. The weight
update is modeled as

dw =

{
δ(t−tpost)(wmax−w)(e−Vpre−1)lr, Vpre< 0

−δ(t−tpost)w(eVpre−1)lr, Vpre> 0
(10)

where dW is the change in weight, Vpre is the membrane
potential of the presynaptic neuron, tpost is the time of
postsynaptic neuron spike event, W is the current weight of the
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FIGURE 1

Schematic representation of the VDSP learning rule implemented between a pre- and postsynaptic spiking neuron. In (A), the membrane
potential of a LIF neuron is shown evolving through time when fed with a constant current. In (B), the absolute time difference between the
post and presynaptic spikes is computed analytically as a function of the membrane potential from (A). It is trivial, once the spike time difference
is computed, to determine the STDP window as a function of membrane potential. (C,F) Show the spiking event of the presynaptic neuron
(vertical black line) along with its membrane potential (colored curve). (D,G) Show the spike event of the postsynaptic neuron. The weight
update (E,H) happens whenever the post-synaptic neuron fires. The update is dependent on the membrane potential of pre-synaptic neuron. If
the pre-synaptic neuron fired in the recent past (tpre < tpost), the membrane potential of the presynaptic neuron is lesser than zero, and we
observe potentiation of synaptic weight (C–E). Whereas if the pre-synaptic neuron is about to fire (tpost < tpre), the membrane potential of the
pre-synaptic neuron is greater than zero and we observe depression of synaptic weight (F–H).

FIGURE 2

(A) The weight update (dW) is plotted as a function of the membrane potential of pre-synaptic neuron, with the color code representing the
initial weight. (B) The dW is linearly dependent on (1-W) for potentiation and on (W) for depression. The learning rate is set to 0.001 in both (A,B).
(C–E) A pair of pre-synaptic neuron and post-synaptic neuron is simulated along with their synaptic weight evolution. The weight update
occurs at every post-synaptic neuron spike event and is negative if the pre-synaptic neuron membrane potential is greater than zero (shown in
red dotted lines). The weight update is positive (green dotted lines) if the pre-synaptic neuron voltage is lesser than zero.

synapse, Wmax is the maximum weight and is set to one, t is the
current time, and lr is the learning rate.

To illustrate the weight update in the SNN simulator,
a pair of neurons (Figures 2C,D) were connected
through a synapse (Figure 2E) implementing the

VDSP learning rule. The presynaptic and postsynaptic
neurons were forced to spike at specific times. To
potentiation and depression for tpost > tpre and
tpost < tpre are shown with green and red dotted lines,
respectively.
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MNIST classification network

To benchmark the learning efficiency of the proposed
learning rule for pattern recognition, we perform recognition
of handwritten digits. One advantage of this task is that the
weights of the trained networks can be interpreted to evaluate
the network’s learning. We use the modified national institute
of standards and technology database (MNIST) dataset (LeCun
et al., 1998) for training and evaluation, which is composed of
70,000 (60,000 for training and 10,000 for evaluation) 28×28
grayscale images. The SNNs were simulated using the Nengo
python simulation tool (Bekolay et al., 2014), which provide
numerical solutions to the differential equations of both LIF
and ALIF neurons. The timestep for simulation was set to 5 ms,
which is equal to the chosen refractory period for the neurons.

The input layer is composed of 784 (28×28) LIF neurons
(Figure 3). The pixel intensity is encoded with frequency coding,
where the spiking frequency of the neuron is proportional to the
pixel value. It is essential, when using VDSP, to use different vrest

and vreset values to discriminate inactive neurons and neurons
that spiked recently (Figures 2C,D). In our work, vrest is set to
zero volt, and vreset is set to -1 V.

The output layer is modeled as ALIF neurons connected
in a Winner Takes All (WTA) topology: on any output neuron
spike occurrence, the membrane potential of all other neurons is
clamped to zero for 10 ms. All the input neurons are connected
to all the output neurons through synapses implementing the
VDSP learning rule. The initial weights of these synapses were
initialized randomly, with a uniform distribution between the
minimum (0) and maximum (1) weight values. Each image
from the MNIST database was presented for 350 ms with no
wait time between images. The neuron parameters of input
and output neurons used in this study are summarized in
Table 1.

Once trained, the weights were fixed, and the network
was presented again with the samples from the training
set, and all the output neurons were assigned a class
based on activity during the presentation of digits of a
different class. The 10,000 images from the test set of the
MNIST database were presented to the trained network for
testing the network. Based on the class of neuron with
the highest number of spikes during sample presentation
time, the predicted class was assigned. The accuracy was
computed by comparing it with the true class. For larger
networks, the cumulative spikes of all the neurons for a
particular class were compared to evaluate the network’s
decision. The above could be easily realized in hardware
with simple connections to the output layer neurons. More
sophisticated machine learning classifiers like Support Vector
Machines (SVMs) or another layer of spiking neurons can
also be employed for readout to improve performance
(Querlioz et al., 2012).

Results and discussion

On training a network composed of 10 output neurons
for a single epoch, with 60,000 training images of the MNIST
database, we observe distinct receptive fields for all the ten
digits (Figure 3C). Note that the true labels are not used in the
training procedure with the VDSP learning rule, and hence the
learning is unsupervised. We report classification accuracy of
61.4± 0.78% (Mean± S.D.) based on results obtained from five
different initial conditions.

Presynaptic firing frequency
dependence of VDSP

As stated previously, the VDSP rule does not use the
presynaptic input current to compute 1w. Therefore, as the
presynaptic input current changes, e.g., in between the samples
of the MNIST dataset, the change in weight conductance,
1w, is affected. Figure 4A presents the relation between
the presynaptic firing frequency when the input current is
changed and the 1w = VDSP (1t) window between two
neurons with a fixed initial weight w=0.5. As the current
gets larger, the presynaptic firing frequency is increased, and
the window shortens. This has a normalizing effect on the
learning mechanism of VDSP when subjected to different
spiking frequency regimes.

In Figure 4B, we recreated a simplified version of the
MNIST classification task using the WTA presented in the
previous sections. Notably, there is no adaptation mechanism in
the output layer, and the duration of the images is dynamically
computed to have a maximum of ten spikes per pixel per
image. These changes were made to specifically show the
dependence of the input frequency on the accuracy, but they
also affect the maximum reached accuracy in the case of
VDSP. We ran the network with ten output neurons for one
epoch with both VDSP and STDP with constant parameters.
As expected, VDSP is much more resilient to the change in
spiking input frequency. This effect is beneficial since the same
learning rule can be used in hardware, and the learning can be
accelerated by simply scaling the input currents. We note that
neither the VDSP nor the STDP’s parameters are maximized
for absolute performance in this experiment, and we used the
same weight normalizing function as Diehl and Cook (2015) for
STDP.

Impact of network size and training
time on VDSP

To investigate the impact of the number of output neurons
and epochs on classification accuracy, the two-layer network
for MNIST classification is trained for up to five epochs and
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FIGURE 3

Representation of the SNN implementation used in this study to benchmark the VDSP learning rule with the MNIST classification task. (A) The
response of the LIF neuron used in this study is plotted for input current of magnitude 0 (black pixel), 0.4 (gray pixel), and 1 (white pixel) for a
duration of 100 ms. In (B), 28 × 28 grayscale image is rate encoded with the help of 784 input LIF neurons. Each sample is presented for 350
ms. The input neurons are fully connected to the ALIF output neurons connected in Winner Takes All (WTA) topology for lateral inhibition. (C)
The weight matrix for each of the 10 output neurons.

TABLE 1 Parameters of LIF input and ALIF output neurons
used in this study.

Property Input layer Output layer

Refractory period 5 ms 5 ms

Leak time constant 30 ms 30 ms

Reset voltage −1 V 0 V

Rest voltage 0 V 0 V

Threshold 1 V 1 V

Bias 0.5 0

Adaptation increment − 0.01

Adaptation leak time constant − 1 s

WTA time constant − 10 ms

In order to reproduce the results of this study, the same can be used in conjunction with
proposed equations of the VDSP rule with a learning rate equal to 5× 10−2 .

five hundred output neurons. The resulting accuracy for the
different number of epochs and number of output neurons is
shown in Figure 5. Note that network hyperparameters were
not re-optimized for these experiments (i.e., hyperparameters
were optimized for a 50 output neuron topology only). Key
performance numbers are tabulated in Table 2 and compared
to the state-of-the-art accuracy reported in the literature. We
observe equivalent or higher performance than the networks
trained with the pair-based STDP in software simulations (Diehl
and Cook, 2015) and hardware-aware simulations (Querlioz
et al., 2013; Boybat et al., 2018; Guo et al., 2019) for most
network sizes. This result validates the efficiency of the VDSP
learning rule for solving computer vision pattern recognition
tasks.

The performances of the network trained with VDSP are
well aligned with hardware aware software simulations (Table 2)

for simplified STDP and memristor simulation (Querlioz et al.,
2013), resistive memory-based synapse simulation (Guo et al.,
2019), PCM based synapse simulation (Boybat et al., 2018).
VDSP has lower accuracies with respect to Oh et al. (2019) in
their 50 and 200 neuron simulations, which can be explained by
the different number of learning epoch and encoding strategy of
the MNIST digits.

The comparable performance of VDSP with standard STDP
can be attributed to the fact that the membrane potential is a
good indicator of the history of input received by neurons and
not just the last spike. In addition, the weight update in VDSP
depends on the current weight, which regularizes the weight
update and prevents the explosion or dying of weights. As in
Supplementary Figure 1, we observe a bimodal distribution of
weights and clear receptive fields for a network of 50 output
neurons. When this weight dependence is removed and clipping
of weights between 0 and 1 is used, most weights become either
zero or one, and receptive fields are not clear with current
parameters (Supplementary Figure 2).

VDSP parameters optimization

Convergence of the VDSP learning was possible with
additional parameters optimization. Firstly, clear receptive fields
require to decrease the weight of inactive pixels corresponding
to the background. To penalize these background pixels, which
do not contribute to the firing of the output neuron, we
introduce a positive bias voltage in the input neurons of
the MNIST classification SNN. This bias leads to a positive
membrane potential of background neurons but does not induce
firing. Consequently, the weight values are depressed according
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A B

FIGURE 4

Presynaptic firing frequency dependence of VDSP and STDP. Subfigure (A) shows the effect of scaling the presynaptic neuron input current on
the VDSP update window for fixed weight w = 0.5 in a two neurons configuration. As the input current changes, the presynaptic neuron fires
at various frequencies indicated by the line color. Higher presynaptic spiking frequencies result in smaller time windows. The plateau between
1t ∈ [0, 2]ms is an artifact of the refractory period of 2 ms, where the membrane potential is kept at a reset value throughout. In (B), similar
scaling is applied to the values of the pixels being fed to the presynaptic neurons during the MNIST classification task using the WTA architecture.
Each point in (B) results from running the task 5 times with different random seeds using 10 output neurons, with standard deviation shown with
the light-colored area under the curve. No adaptation mechanism was used for (B) to provide an unbiased comparison between classical STDP
and VDSP in different spiking frequency regimes. No frequency-specific optimization was done during these experiments.

FIGURE 5

A spiking neural network with 784 input neurons and N output neurons was trained on the training set (60,000 images) of the MNIST dataset for
different numbers of epochs. The accuracy was computed on the test set (10,000) unseen images of the MNIST dataset. Networks with the
number of output neurons ranging from 10 to 500 were trained for the number of epochs ranging from 1 to 5. Each experiment was conducted
for five different initial conditions. The mean accuracy for five trials is plotted in the figure, with the error bar indicating the standard deviation.

to the VDSP plasticity rule. Depressing the background neuron
weight also balances the potentiation of foreground pixels
and keeps in check the total weights contribution of an
output neuron, thus preventing single neurons from always
“winning” the competition. To validate the above hypothesis, we
experimented training with zero bias voltage (Supplementary
Figure 3) and observed poor receptive fields.

The learning rate is a crucial parameter for regulating
the granularity of weight updates. To study the impact of
learning rate and the number of epochs on the performance,
we train networks with learning rates ranging from 10−5

to 1 for up to five epochs. The resulting performance for
five different runs is plotted for ten output neurons and
50 output neurons in Figure 6. For a single epoch, we

observe the optimal performance for ten output neurons at a
learning rate of 5×10−3. For 50 output neurons and a single
epoch, the optimal learning rate was 1×10−2. This result is
indicative of the fact that the optimal learning rate increases
for a greater number of neurons. Conventional STDP, on the
other hand, has a minimum of two configurable parameters:
learning rate and temporal sensitivity window for potentiation
and depression. These are to be optimized to the dynamics
of the input signal. VDSP has just one parameter and can
be optimized based on the number of output neurons and
training data size or the number of epochs, as discussed.
There are many additional hyperparameters in a spiking
neural network (SNN), such as time constant, thresholds,
bias, and gain of the neurons, which can affect network
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TABLE 2 State-of-the-art accuracy obtained with the STDP learning rule is tabulated for different numbers of epochs and output neurons.

This work Past studies

Neurons Epochs Accuracy (%) (µ ± σ ) Neurons Epochs Accuracy (%) References

10 1 61.4± 0.78 10 1 60 Querlioz et al., 2013

50 1 78.84± 1.28 50 1 76.8 Guo et al., 2019

50 3 81.3± 1.76 50 3 77.2 Boybat et al., 2018

50 1 78.55 Demin et al., 2021

50 3 81 Querlioz et al., 2013

50 - 83.03 Oh et al., 2019

100 3 84.74± 1.08 100 3 82.9 Diehl and Cook, 2015

100 1 89.15 Demin et al., 2021

200 17 91.63 Oh et al., 2019

300 3 89.08± 0.49 300 3 93.5 Querlioz et al., 2013

400 3 89.26± 0.54 400 3 87 Diehl and Cook, 2015

500 5 90.56± 0.27

The performance achieved by training SNN with the VDSP rule is tabulated for various network sizes (number of output neurons) and epochs. Each experiment was repeated with
five different initial conditions, and the accuracies are reported as (Mean ± S.D.). Compared with the hardware-independent approach of pair based STDP (Diehl and Cook, 2015), we
achieved 84.74± 1.08% for a network of 100 output neurons trained over three epochs. For a network of 400 output neurons trained over three epochs, we achieved 89.26± 0.54%.

performances. The neuron and simulation parameters tabulated
in Table 1 were optimized with grid search performed on a
network comprising 50 output neurons trained over a single
epoch.

Hardware choices for VDSP

In the past, voltage dependent plasticity rules proposed
triggering weight update on presynaptic neuron spike (Brader
et al., 2007; Diederich et al., 2018). Updating on presynaptic
neuron spike is also an intuitive choice considering the forward
directional computation graph for SNN. However, in the specific
case of the output layer of multi-layer feedforward networks
with WTA-based lateral inhibition, at most, one output neuron
spikes at a time, and the output spike frequency would be
significantly lower than the input spike frequency, reducing the
frequency of weight updates required. Moreover, in multi-layer
feedforward networks, activity in layers close to the output layer
corresponds to the recognition of higher-level features and is
a more attractive choice to synchronize the weight update. In
addition, in networks for classification tasks, a convergence of
layer size occurs from a large number of input neurons (for
achieving high spatial resolution in neuromorphic sensors like
DVS cameras, for instance) to a few neurons in the output
layer. In hardware, a lower weight update frequency would
imply lesser power consumption required in learning and a
reduction in the learning time, thus providing greater flexibility
with bandwidth available for inference.

The locality of the learning rule could be dependent on
the hardware architecture. In the specific case of in-memory
computing based neuromorphic hardware implementations,

the synapse is physically connected to both postsynaptic and
presynaptic neurons. State variables like the membrane potential
of these neighboring neurons are readily available to the
connecting synapse. Moreover, for memristive synapses, the
dependence of weight change on initial weight is an inherent
property of device switching. The proposed learning rule is
attractive for implementing local learning in such systems.

For lateral inhibition in the output layer, the membrane
potential of all the other output neurons is clamped to zero
for 10 ms upon firing of any output neurons. This choice is
inspired by the similar approach employed in Querlioz et al.
(2013), Oh et al. (2019), and Demin et al. (2021). One alternative
is using an equal number of inhibitory spiking neurons in the
output layer (Diehl and Cook, 2015). However, using an equal
number of inhibitory output neurons doubles the number of
neurons, leading to the consumption of a significant silicon
area when implemented on a neuromorphic chip. On the
other hand, clamping the membrane potential does not require
substantial circuit area and is a more viable option for hardware
implementations.

We also evaluated the impact of injected Gaussian
noise on neuron response for different input currents and
noise distributions (Supplementary Figure 5). Gaussian noise
centered around zero with different deviations was injected
into the input neurons. While the membrane potential is
substantially noisy in the case of mid-level noise injection, we
do not observe a significant drop in performance. This feature
makes VDSP an attractive choice of learning rule to be deployed
on noisy analog circuits and nanodevices with high variability.

We also tested the applicability of the method for a network
receiving random Poisson-sampled input spike patterns to drive
the input layer. To elucidate this, a network of 10 output
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FIGURE 6

Dependence of the performance on learning rate and number of epochs for different network sizes. In (A), a network with 10 output neurons
was trained on the MNIST dataset for different numbers of epochs and learning rates. Networks with learning rates ranging from 10−5 to 1 were
trained for the number of epochs ranging from 1 to 5. Each experiment was conducted for five different initial conditions. The mean accuracy
for five trials is plotted in the figure, with the error bar indicating the standard deviation. In (B), the experiments are repeated for 50 output
neurons. As depicted, the optimum learning rate for a single epoch and 10 neurons is 5×10−4. Whereas, for 50 output neurons, the optimum
learning rate for a single epoch is 10−3.

neurons was trained by feeding Poisson sampled spike trains
to the input neuron with the frequency being proportional
to the pixel value. The plots of membrane potential and
neuron spike for different input values are presented in
Supplementary Figures 6A–C. The network was trained for
one epoch and recognition accuracy of 58% was obtained
on the test set. The resulting weight plots are shown in
Supplementary Figure 6D. Stable learning is observed and
a small performance drop of 3% occurred as compared to
constant input current.

Conclusion and future scope

In this work, we presented a novel learning rule for
unsupervised learning in SNNs. VDSP is solving some of the
limitations of STDP for future deployment of unsupervised
learning in SNN. Firstly, as plasticity is derived from the
membrane potential of the pre-synaptic neuron, VDSP on
hardware would reduce memory requirement for storing
spike traces for STDP based learning. Hence, larger and
more complex networks can be deployed on neuromorphic
hardware. Secondly, we observe that the temporal window
adapts to the input spike frequencies. This property solves
the complexity of STDP implementation, which requires
STDP time window adjustment to the spiking frequency.
This intrinsic time window adjustment of VDSP could be
exploited to build hierarchical neural networks with adaptive
temporal receptive fields (Paredes-Vallés et al., 2018; Maes
et al., 2021). Thirdly, the frequency of weight update is
significantly lower than the STDP, as we do not perform
weight updates on both presynaptic and postsynaptic neuron
spike events. This decrease in weight updates frequency by a
factor of two is of direct interest for increasing the learning

speed of SNN simulation and operation. Furthermore, this
improvement is obtained without trading off classification
performances on the MNIST dataset, thus validating the
applicability of VDSP rule in pattern recognition. The impact of
hyperparameters (learning rate, network size, and the number
of epochs) is discussed in detail with the help of simulation
results.

In the future, we will investigate the implementation
of VDSP in neuromorphic hardware based on emerging
memories. Also, future work should consider investigating the
proposed learning rule for multi-layer feed-forward networks
and advanced network topologies like Convolutional Neural
Networks (CNNs) (Kheradpisheh et al., 2018; Lee et al., 2018)
and Recurrent Neural Networks (RNNs) (Gilson et al., 2010).
Finally, using this unsupervised learning rule in conjunction
with gradient-based supervised learning is an appealing aspect
to be explored in future works.
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