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Abstract
Inductive noise forces microprocessor designers to sacri-

fice performance in order to ensure correct and reliable op-
eration of their designs. The possibility of wide fluctuations
in supply voltage means that timing margins throughout
the processor must be set pessimistically to protect against
worst-case droops and surges. While sensor-based reactive
schemes have been proposed to deal with voltage noise, in-
herent sensor delays limit their effectiveness. Instead, this
paper describes a voltage emergency predictor that learns
the signatures of voltage emergencies (the combinations of
control flow and microarchitectural events leading up to
them) and uses these signatures to prevent recurrence of the
corresponding emergencies. In simulations of a represen-
tative superscalar microprocessor in which fluctuations be-
yond 4% of nominal voltage are treated as emergencies (an
aggressive configuration), these signatures can pinpoint the
likelihood of an emergency some 16 cycles ahead of time
with 90% accuracy. This lead time allows machines to oper-
ate with much tighter voltage margins (4% instead of 13%)
and up to 13.5% higher performance, which closely ap-
proaches the 14.2% performance improvement possible with
an ideal oracle-based predictor.

1. Introduction
The power ceiling in modern microprocessors presents a

major challenge to continued performance scaling. Power-

reduction techniques such as clock gating, when aggres-

sively applied to constrain power consumption, can lead

to large current swings in the microprocessor. When cou-

pled with the non-zero impedance characteristics of power-

delivery subsystem, these current swings can cause the volt-

age to fluctuate beyond safe operating margins. Such events,

called voltage emergencies, have traditionally been dealt

with by allocating sufficiently large timing margins. Un-

fortunately, on-chip voltage fluctuations and the margins

they require are getting worse. A recent paper analyz-

ing emergency-prone activity of the POWER6 microproces-

sor [12] shows that required timing margins translate to op-

erating voltage margins of nearly 20% of the nominal supply

voltage (∼200mV for a nominal voltage of 1.1V). Such con-

servative operating voltage margins ensure robust operation

of the system, but can severely degrade performance due

to the lower operating frequencies. To reduce the gap be-

tween nominal and worst-case operating voltages, this paper

proposes a voltage emergency predictor that identifies when

emergencies are imminent and prevents their occurrence.

A voltage emergency predictor anticipates voltage emer-

gencies using voltage emergency signatures and throttles

machine execution to prevent them. An emergency signa-

ture is an interleaved sequence of control-flow events and

microarchitectural events leading up to an emergency. A

voltage emergency signature is captured when an emergency

first occurs by taking a snapshot of relevant event history and

storing it in the predictor. A built-in checkpoint-recovery

mechanism then rolls the machine back to a known correct

state and resumes execution. Subsequent occurrences of the

same emergency signature cause the predictor to throttle ex-

ecution and prevent the impending emergency. By doing so,

the predictor enables aggressive timing margins in the pro-

cessor to maximize performance.

The signature-based predictor outperforms previously

proposed architecture-centric techniques [6, 13, 22, 23] that

rely on voltage sensors to detect and react to emergencies

via throttling. In these prior schemes, emergencies are de-

tected by using a voltage sensor to monitor the supply volt-

age for specific soft threshold crossings, which indicate volt-

age margin violations are possible. Whenever the supply

voltage falls below this threshold, the machine throttles ex-

ecution in pursuit of emergency prevention. Unfortunately,

these schemes cannot always guarantee correctness without

incurring large performance penalties. Aggressively setting

the soft threshold close to the operating margin limits time

available to throttle and successfully prevent an emergency.

Alternatively, setting the threshold too conservatively leads

to unnecessary throttling that degrades performance. Not ev-

ery conservative soft threshold crossing eventually crosses

the lower operating voltage margin. Our predictor instead

recognizes and tracks patterns of emergency-prone activity

to proactively throttle execution well before an emergency

can occur. Our results show high prediction accuracy is pos-

sible, which translates to performance enhancements by re-

ducing otherwise conservative margins.

An additional benefit is that our voltage emergency pre-

dictor does not require fine tuning based on specifics of the

microarchitecture nor the power delivery subsystem, as is

the case with reactive sensor-based schemes. The current
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Figure 1: Sensor-based throttling. (a) A feedback loop is intended to detect and prevent emergencies. (b) Aggressive soft thresholds allow too little time to

prevent emergencies. (c) Conservative soft thresholds trigger unnecessary throttling.

and voltage activity of a microprocessor are products of

machine utilization that are specific to the workload’s dy-

namic demands. Capturing that activity in the form of volt-

age emergency signatures allows the predictor to dynami-

cally adapt to the emergency-prone behavior patterns result-

ing from the processor’s interactions with the power delivery

subsystem without having to be preconfigured to reflect the

characteristics of either.

Some researchers have also proposed to use checkpoint-

recovery alone to handle voltage emergencies. However,

the coarse-grained checkpointing intervals of traditional

checkpoint-recovery schemes (between 100 and 1000 cy-

cles) translate to unacceptable performance penalties. Gupta

et al. [9] have proposed a low-overhead implicit checkpoint-

ing scheme to handle voltage emergencies by buffering com-

mits until it is confirmed that no voltage emergencies have

occurred while the buffered sequence was in flight. While

shown to be effective, implicit checkpointing is specialized

and requires modifications to traditional microarchitectural

structures. Since coarse-grained checkpoint-recovery is al-

ready available in existing production systems [1, 26] to

serve multiple purposes [15, 16, 19, 25, 27, 29], we also rely

on it as a fail-safe mechanism during predictor training.

In summary, the contributions of this paper are:

• Voltage emergency prediction. Recognizing that ac-

tivity leading to voltage emergencies is a consequence

of program control flow and microarchitectural events,

we show that voltage emergencies are predictable with

over 90% accuracy by exploiting program behavior and

locality.

• Signature-based voltage emergency reduction. A

voltage emergency predictor relies on traditional

checkpoint-recovery to capture voltage emergency sig-

natures and prevents emergencies via throttling. Its per-

formance comes to within 5% of an oracle-based throt-

tling scheme.

• Efficient predictor implementation. A Bloom filter-

based voltage emergency predictor implementation is

shown to achieve 11.1% improvement in performance,

approaching the 14.2% possible with an oracle-based

throttling scheme.

The remainder of the paper is organized as follows: Sec-

tion 2 reviews the limitations of sensor-based schemes for

handling voltage emergencies. Section 3 then shows how

program control flow and microarchitectural events can be

used to predict voltage emergencies. Section 4 describes the

experimental framework we use to evaluate predictor accu-

racy in Section 5. Finally, Section 6 compares the perfor-

mance of the predictor to other schemes and describes im-

plementation tradeoffs.

2. Limits of Sensor-Based Approaches
Given the direct impact of voltage on circuit delay, intermit-

tent voltage droops, past a lower operating margin, can slow

down logic delay paths and lead to timing violations. Volt-

age spikes that exceed an upper margin can cause long-term

reliability issues. Hence, modern designs impose conserva-

tive operating voltage margins to avoid these voltage emer-

gencies and guarantee correct operation in the microproces-

sor. However, large margins translate to inefficient energy

consumption and lower performance. This section reviews

sensor-based techniques that react to and mitigate on-chip

voltage emergencies.

A typical sensor-based proposal uses a tight feedback

loop like that shown in Figure 1(a). The loop includes a sen-

sor that tries to detect impending emergencies and a throt-

tling actuator that tries to avoid them. The sensor relies on a

soft current or voltage threshold as a “canary”. Crossing that

threshold means that voltage is approaching its lower mar-

gin, so the actuator turns on throttling until the crisis is past.

Proposed throttling schemes range from frequency throt-

tling, to pipeline freezing/firing, to issue ramping, and alter-

ing the number of accessible memory ports [6, 13, 22, 23].

The behavior of the feedback loop is determined by two

parameters, the setting of the soft threshold level and the

delays around the feedback loop. Unfortunately, choosing

those parameters to accommodate reduced operating mar-

gins is thwarted by correctness failures and/or performance

penalties.

Correctness failures. Figure 1(b) illustrates the use of a

soft threshold to throttle execution and prevent an emer-

gency. The graph shows voltage waveforms with and

without sensor-based throttling (Throttled Execution and
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Figure 2: Implications of feedback loop delay and soft threshold settings

on correctness and performance. (a) A large percentage of emergencies

are not detected with sufficient time to prevent them due to feedback loop

delays. (b) Even assuming a 0-cycle feedback loop delay, the number of soft

threshold crossings that do not violate the minimum operating margin (i.e.,

benign crossings) is so large that performance suffers due to unnecessary

throttling.

Uncorrected Execution, respectively). The solid horizontal

line marked Aggressive Soft Threshold indicates the thresh-

old at which a voltage sensor starts to take action to pre-

vent an emergency. Setting the soft threshold aggressively

(i.e., close to the lower operating margin) requires a very

fast reaction by the sensor and actuation system. Failure to

respond quickly enough results in a voltage emergency. In

Figure 1(b), the voltage starts to recover under throttling, but

not in time to avoid crossing the lower operating margin.

Figure 2(a) shows the sensitivity of sensor-based mech-

anisms to feedback loop delays by plotting the number of

emergencies that go unsuppressed in our benchmark suite as

a function of sensor-loop delay times. Here we assume the

soft threshold to be 3% below the nominal voltage and the

lower operating margin to be 4% below nominal. Feedback

loop delays ranging between 0 and 5 cycles would require a

nearly perfect sensor. Yet even a 2-cycle delay causes 50%

of all soft threshold crossings to violate the simulated mi-

croprocessor’s minimum operating margin specification. In

other words, fail-safe execution is not possible at this mar-

gin using sensor-based schemes, as they cannot operate in a

timely manner.

Performance penalties. To accommodate slow sensor re-

sponse times and ensure that throttling effectively pre-

vents emergencies, sensor-based schemes can use conser-

vative soft thresholds. Lifting the soft threshold away

from the lower operating margin, as illustrated by the

Conservative Soft Threshold in Figure 1(c), gives the throt-

tling system more time to prevent an emergency. But as the

Uncorrected Execution waveform in Figure 1(c) shows, even

in the absence of throttling, a soft threshold crossing may

not be followed by an emergency. Throttling execution in

such cases decreases performance without any compensat-

ing benefit. The more conservative the soft threshold set-

ting, the greater the performance penalty. Figure 2(b) shows

that this penalty can be quite large. Assuming an ideal sen-

sor with no feedback loop delay (i.e., 0-cycle sensor delay),

the percentage of benign soft threshold crossings is between

77% and 58% for soft thresholds ranging from 2% to 3%.

So even if it were possible to design a feedback loop with no

delay, the large performance penalties would deter architects

from reducing operating margins.

Resonant versus isolated pulse emergencies. A sensor-

based scheme proposed by Powell and Vijaykumar [22] re-

duces sensitivity to feedback loop delay by focusing on

voltage emergencies that are the result of resonating pat-

terns. While resonance-induced emergencies are dominant

for some packages, recent work by Gupta et al. [9] illustrates

that non-resonant (pulse) events are also a major source of

emergencies across a range of packages. James et al. [12]

have observed isolated (non-resonant) pulses in a POWER6

chip implementation. And Kim et al. show that resonant

emergencies are likely to become less important than iso-

lated pulses in future chip multi-processors with on-chip

voltage regulators, as package inductance effects are decou-

pled from the power grid via on-chip regulators [14]. There-

fore, to realize the benefits in improved energy efficiency or

performance that reduced margins can enable, new solutions

are needed that cope with both resonant and non-resonant

voltage emergencies in future systems.

3. Prediction-Based Throttling
An effective emergency avoidance mechanism must meet

two criteria: First, it must anticipate an emergency accu-

rately to prevent performance degradation due to unneces-

sary throttling. Second, it must initiate the emergency avoid-

ance mechanism with enough lead time to throttle and suc-

cessfully prevent the emergency from occurring. A major

goal of this work is to show that it is possible to predict volt-

age emergencies with high accuracy and sufficient lead time

to throttle and prevent emergencies.

3.1. Overview
A voltage emergency predictor is a structure that learns re-

curring voltage emergency activity during runtime and pre-

vents subsequent occurrences of said emergencies via exe-

cution throttling. Figure 3(a) presents a block diagram of

the proposed scheme. The predictor monitors control flow

and microachitectural events and keeps track of the volt-
age emergency signatures that cause voltage emergencies,

identified by the checkpoint-recovery block. The predictor

also actuates throttling to avoid future emergencies, but does

not suffer limitations associated with sensor delays or soft

thresholds. Unlike sensor-based schemes, our prediction-

based approach allows the microprocessor to operate with

margins much tighter than otherwise possible.

A voltage emergency signature comprises an interleaved

sequence of program control flow and microarchitectural

events that give rise to an emergency. Voltage emergency

signatures are dynamic and, as such, must be discovered

at runtime. Initially, no emergency signatures are known.

As the program executes, emergencies are detected as mar-

gin violations occur. Since an emergency can potentially

corrupt machine state, a checkpoint-recovery mechanism is
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Figure 3: Overview of voltage emergency prediction. (a) The predictor replaces the soft threshold sensor. It relies on code and microarchitectural event

activity instead of current and voltage activity to decide when to throttle. It is trained using a fail-safe checkpoint-recovery mechanism. (b) Voltage waveforms

illustrate how the predictor throttles execution with sufficient lead time to prevent emergencies instead of relying on soft thresholds.

in place to recover and resume execution. While invoking

the recovery mechanism, the predictor captures the signa-

ture of the emergency. Over time, the predictor collects a

history of emergency-prone activity and uses this history to

successfully prevent future emergencies via throttling. Sec-

tion 3.2 presents detailed insights into emergency signa-

tures and our reasoning for assuming a fail-safe checkpoint-

recovery mechanism.

A voltage emergency predictor does not require a soft

threshold. Instead, it monitors sequences of program paths

and architectural events, and initiates throttling whenever

an emergency-causing pattern is detected. For clarity and

a brief overview, Figure 3(b) illustrates how a predictor-

based scheme outperforms a sensor-based throttling scheme.

As soon as the predictor observes a voltage emergency sig-

nature, it starts to throttle execution with sufficient lead

time to prevent an emergency from occurring. In con-

trast, sensor-based throttling, corresponding to waveform

Throttled Execution (Sensor) from Figure 1(b), fails to avoid

the emergency with aggressive soft threshold settings. Con-

servative soft thresholds incur large performance penalties.

3.2. Voltage Emergency Prediction
In the following subsection, we explore the working princi-

ples underlying voltage emergency prediction using a spe-

cific, but real-life, scenario from benchmark 403.gcc. Build-

ing upon the insights we gain from this example, we demon-

strate how to capture a voltage emergency signature, which

is the enabling mechanism behind a voltage emergency pre-

dictor. We then discuss factors that influence the quality of

an emergency signature, such as the type and amount of in-

formation recorded.

3.2.1 Exploiting Voltage Emergency Activity Patterns
Programs are highly repetitive. Repeating code patterns

give rise to repeating patterns of memory access and data

flow through the processor. Gupta et al. show repeating

sequences of processor activity have the potential to cause

voltage emergencies [8]. They elaborate that microarchitec-

tural events such as cache misses and pipeline flushes stall

the pipeline. As a consequence, machine activity temporar-

ily reduces. Upon recovering/restarting, there is a rush of

activity that causes the current to spike and the voltage to

drop sharply; a voltage emergency occurs when the voltage

exceeds the lower operating margin. However, it is not well

understood when such microarchitectural events are benign

versus harmful. In other words, there is no guarantee that

a branch misprediction or any recurring event will always

cause an emergency. In this section, we show it is possible

to predict the likelihood of an emergency more accurately by

taking into account the context leading up to the emergency.

A microarchitectural event acting in complete isolation

only sometimes causes an emergency by itself. To help illus-

trate when an event causes an emergency, Figure 4(a) shows

pipeline activity over 880 cycles for benchmark 403.gcc
while it is executing the nested loop illustrated in Fig-

ure 4(b). Figure 4(a) illustrates pipeline flushing due to

branch mispredictions using a vertical bar in the Flush sub-

graph. The number next to each vertical bar in the Flush
graph corresponds to the basic block number in Figure 4(b)

containing the mispredicted branch. Other relevant pipeline

activities across different parts of our simulated micropro-

cessor ranging from cache access, to functional unit usage,

to the rate at which instructions are being dispatched, issued

and committed are also shown for the same time frame. The

resulting current draw and voltage activity are also shown.

Lastly, Figure 4(a) shows three distinct phases A, B and C
(see top of figure) and each phase terminates at an emer-

gency (see bottom of figure).

Context. Microarchitectural events perturb machine activ-

ity significantly, but by themselves are not responsible for

voltage emergencies. Pipeline flush Event 2 in Figure 4(a)

is an ideal candidate for illustrating this point. Event 2 in

Phase A causes a voltage droop a few cycles before Event

5 (also in Phase A), but it does not cause an emergency.

The same event, however, always causes an emergency in

Phase B (at the end of B). Understanding the processor ac-

tivity leading up to these events explains this inconsistent be-

havior. The Issue, as well as other rates prior to Event 2 are

different between Phase A and Phase B, so the perturbation

effects of Event 2 are different between the phases. By com-

parison, pipeline flush Event 5 always occurs just prior to an
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Figure 4: (a) Voltage emergencies are associated with recurring activity (phases A, B and C) over 880 cycles. The numbers next to the vertical bars in the

Flush graph correspond to the basic block number in (b) containing the mispredicted branch. (b) An emergency prone nested-loop in function init regs
of benchmark 403.gcc. init regs’s activity snapshot is shown in (a).

emergency in both Phase A and Phase C. Nevertheless, our

argument that activity prior to an event matters holds true.

The voltage just prior to Event 5 in Phase A is rising ver-

sus falling in Phase C. The latter occurs because the voltage

is already in flux due to the perturbation brought about by

Event 2 in Phase B. For this reason, any scheme attempting

to characterize and exploit recurring patterns must take into

account the execution context preceding an emergency.

Microarchitectural events and program control flow in-
terleaving. Voltage emergencies are uniquely identifiable

by tracking control flow instructions and microarchitectural

events in order of occurrence. Rapid fluctuations in a pro-

gram’s control and data flow and in its level of parallel uti-

lization of processor resources lead to changes in current

flow that induce large voltage swings. For instance, the dis-

tinct current and voltage activity between phases A, B and

C are the result of different control flow paths exercised

by the program combined with the voltage droops induced

by pipeline flush Events 2 and 5. During the early part of

Phase A, the program is executing basic blocks 2 → 3 → 5
(from Figure 4(b)) in a steady-state manner. The stable and

repetitive Issue rate pattern during the early part of Phase A
in Figure 4(a) confirms this. Slightly past the midpoint

of Phase A, the program switches control flow from basic

blocks 2 → 3 → 5 to basic blocks 2 → 5. This switch trig-

gers a pipeline flush to recover from speculatively executing

incorrect code along Edge 2 → 3 to executing correct code

along Edge 2→5. The activity on the recovery path follow-

ing the pipeline flush causes the voltage to droop slightly

but not enough to violate the operating margin (shown using

Lower Operating Margin). After a few cycles, a mispredic-

tion on basic block 5’s control instruction eventually leads

to a voltage emergency. So the emergency in Phase A is be-

cause of the activity including, as well as following, basic

blocks 2→3→5 combined with pipeline flush Events 2 and

5. In contrast, the emergency in Phase B arises from execut-

ing basic blocks 2→3→4→5 followed by the single flush

Event 2. Consequently, tracking control flow sequence along

with pipeline flush events in order of occurrence yields two

unique activity patterns representing Phase A and Phase B.

Recurrence and stability. Voltage emergencies, like pro-

gram phases, are repetitive over a program’s lifetime, which

make them predictable. Consider the three phases illus-

trated in Figure 4(a). The phases are recurring because ex-

ecution sequence flows through phases A → B → C and

back to Phase A. A subsequent occurrence of the same

phase leads to yet another emergency. For instance, Event

2 always causes an emergency as execution flows through

phases B→C, but not through phases A→B. Thus, a pattern

of voltage emergency occurrence emerges. Identifying and

exploiting such recurring activity is the basis for predicting

voltage emergencies in terms of program behavior, as well

as microarchitectural behavior.

3.2.2 Capturing Voltage Emergency Signatures
In this section, we describe the hardware necessary to cap-

ture program control flow and microarchitectural event in-

terleaving.



Emergency detection. Capturing a voltage emergency

signature, with our scheme, requires an emergency to occur

at least once. So we require a mechanism to monitor op-

erating margin violations. We rely on a voltage sensor. Our

scheme is not time-sensitive to sensor delay because the pre-

dictor does not react to sensing a soft threshold crossing to

throttle. The sensor is used to signal that an emergency has

occurred and the system ought to take appropriate actions.

Checkpoint-recovery. Processor state is potentially cor-

rupted as emergencies occur, since voltage emergencies in-

duce timing faults. So we rely on a fail-safe checkpoint-

recovery mechanism to recover from emergencies. The fail-

safe mechanism initiates a recovery whenever the sensor de-

tects an emergency, and in that process also captures a volt-

age emergency signature. Checkpoints can be taken at vary-

ing intervals (e.g., 10-1000 cycles). We assume a 100-cycle

rollback penalty.

Coarse-grained checkpoint-recovery is already shipping

in today’s production systems [1, 26], and researchers are

proposing a broad range of novel applications that use tradi-

tional checkpoint-recovery [15,16,19,25,27,29]. With ever-

increasing applications of this fail-safe mechanism, we be-

lieve checkpoint-recovery will become part of future main-

stream processors. However, checkpoint-recovery alone as

a solution for handling voltage emergencies is unacceptable

due to performance penalties (as shown in Section 6.1).

Event history register. The predictor relies on a shift reg-

ister to capture the interleaved sequence of control flow in-

structions and architectural events that give rise to an emer-

gency. A signature is a snapshot of the event history regis-

ter. The interleaving of events in the event history register

is important for capturing the dynamic current and voltage

activity resulting from program interactions with the under-

lying microarchitecture (as described in Section 3.2.1). The

purpose of tracking the instruction stream is to capture the

dynamic path of a program. Consequently, control flow in-

structions are ideal candidates for tracking a program’s dy-

namic execution path.

Event history tracking is a well-studied topic in the area

of branch prediction. Our contribution is unique in that we

can identify the information flow that precisely captures ac-

tivity prone to voltage emergencies.

Figure 5 illustrates example snapshots of the emergen-

cies shown in Figure 4(a) across phases A, B and C. The

updates into a 4-entry wide event history register are shown

over time. At the point of the emergency in Phase B, the

history register contains the following (from oldest to most

recent): two control flow instruction addresses (illustrated

as BR) and an event encoding for the pipeline flush (illus-

trated as 2), followed by another branch. It is important to

never clear the event history register after capturing a snap-

shot to maintain a rolling window of contextual information.

For example, the oldest BR in Signature C overlaps with the

most recent entry in Signature B.

Since voltage emergencies contribute to timing faults,

all predictor logic and checkpoint-recovery hardware must

BR BR 2 BR BR 5 BR BR BR BR 2 5BR... ...

CBA

2 BR BR 5Signature A

BR BR 2 BR

BR BR 5 BR

Signature B

Signature C

Em
er

ge
nc

y

BRBR BR

Figure 5: Overview of voltage emergency signatures. Taking snapshots

of a 4-entry event history register for emergencies illustrated in Figure 4(a)

across phases A, B and C.

be carefully designed with sufficiently conservative timing

margins. As these structures are not timing critical, there

are no performance implications. Any state corruption in

the predictor logic only leads to incorrect predictions, and

will therefore only affect the performance of the system due

to unnecessary throttling, but it will not violate correctness

guarantees.

3.2.3 Voltage Emergency Signature Semantics
The function of a voltage emergency signature is to precisely

indicate whether a pattern of control flow and microarchitec-

tural event activity will give rise to an emergency. To eval-

uate the effectiveness of different flavors of signatures, we

define predictor accuracy as the fraction of predicted emer-

gencies that become actual emergencies.

Contents. Information tracking in the event history reg-

ister must correspond to parts of the execution engine that

experience large current draws, as well as dramatic spikes

in current activity. The event history register can collect the

control flow trace at different points in a superscalar pro-

cessor: in-order fetch and decode, out-of-order issue, and

in-order commit. Each of these points contribute different

amounts of information pertaining to an emergency. For

instance, tracking execution in program order fails to cap-

ture any information regarding the impact of speculation on

voltage emergencies. Tracking information at the in-order

fetch and decode sequence captures the speculative path, but

it does not capture the out-of-order superscalar issuing of

instructions.

The accuracies of different signature types are illustrated

in Figure 6(a) (assuming a signature size of 32 entries, which

will be discussed next). Tracking committed control flow

sequences in the event history register gives an accuracy of

only 40%. If the history register tracks information at the

decode stage, an accuracy of 72% is possible because the

decode stage captures the speculative control flow path. Ac-

curacy improves further by 12%, from 72% to 84%, if the

history register tracks control flow at the issue stage, since

we can now capture interactions more precisely at the level

of hardware instruction scheduling and code executed along

a speculative path.

Interleaving microarchitectural events with program con-

trol improves accuracy even further, as processor events pro-

vide additional information about swings in the supply volt-
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Figure 6: Prediction accuracy improves as (a) signature contents represent

machine activity more closely and as (b) the number of entries per signature

increases.

age. For instance, pipeline flushes cause a sharp change in

current draw as the machine comes to a near halt before re-

covering on the correct execution path (as observed in Fig-

ure 4(a) immediately following pipeline flush events). The

last two bars of Figure 6(a) show accuracy improvements

from adding microarchitectural event activity to the event

history register. The second to last bar represents the ef-

fect of capturing events that have the potential to induce

large voltage swings—pipeline flushes and secondary (L2)

cache misses. An improvement of five percentage points is

achieved by taking flushes and L2 misses into account (i.e.,

total accuracy of 89%). Another additional improvement in

the margin of ∼4% Capturing the more frequently occurring

events like DTLB and DL1 misses contributes additional im-

provements of ∼4%. Microarchitecture perturbations result-

ing from instruction cache activity (i.e., IL1 and ITLB) are

negligible and do not lead to an improvement in accuracy.

From here on, we assume the event history register

resides at the issue stage of the pipeline and captures

microarchitectural-event activity. More formally, the event

history register is updated whenever a control flow instruc-

tion is executed, along with Level 1 and Level 2 cache and

TLB misses. Lastly, pipeline flushes are also events recorded

in the event history register.

Size. Accuracy depends not only on recording the right in-

terleaving of events, but also on balancing the amount of

information the event history register keeps. Accuracy im-

proves as the length of history register increases.

However, it can be detrimental to increase the number of

register entries beyond a certain count. Large numbers of

entries in a signature can cause unnecessary differentiation

between similar signatures—signatures whose most recent

entries are identical and whose older entries are different,

but not significantly so. The predictor would have to track

more unique signatures per emergency because of this dif-

ferentiation.

Figure 6(b) shows prediction accuracy improves as signa-

ture size increases. Accuracy is only 13% on average for a

signature containing only 1 entry, which supports the discus-

sion presented in Section 3.2.1 that voltage emergencies do

not solely depend upon the last executed branch or a single

microarchitectural event. It is the history of activity that de-

termines the likelihood of a recurring emergency. Prediction

accuracy begins to saturate once signature size reaches 16,

and peaks at 99% for a signature size of 64 entries.

Signature encoding. Hardware implementations are re-

source constrained. So the number of bits representing a

signature in a realistic hardware implementation matters. To

avoid large overheads, we use a 3-bit encoding per entry

in the event history register. But encoding causes aliasing

between signatures. Therefore, we extend an encoded sig-

nature to also contain the program counter for the most re-

cently taken branch—the anchor PC. Anchor PC’s have the

added benefit of implicitly providing the complete path in-

formation leading up to the most recent event in the history

register. The 3-bit encoding compactly captures all of the

relevant information consisting of different processor events,

and takes into account the edge taken by each branch (i.e.,

fall-through paths are encoded as 000 versus 001 for taken

edges). The compact representation described above results

in a total signature length of 16 bytes (4 bytes for the anchor

PC and 12 bytes for a signature size of 32 entries with 3 bits

per entry).

Signature compaction. We can further reduce hardware

overheads by folding multiple signatures corresponding to a

specific anchor PC into a single representative signature. We

use a weighted similarity metric based on Manhattan dis-

tance to determine how much compaction is possible for a

set of signatures corresponding to a particular benchmark.

Let x and y be k-element signatures associated with the

same instruction address. We define the similarity of x and

y to be

s =
2

k(k + 1)

k∑
i=1

i
0

{
if xi = yi
otherwise

If the signatures are identical, s is one. If no two correspond-

ing elements are the same, it is zero. The later elements in

x and y correspond to later events in time. They are more

heavily weighted in s, because they are more significant for

emergency prediction. Other measures of similarity might

yield better compaction, but they would be more expensive

to compute in hardware. For a given instruction address, we

partition the signatures into maximal sets in which each sig-

nature x is related to one or more other signatures y with

similarity of 0.9 or greater. The resulting partition is then

used instead of the original signature set.

The number of recurring signatures per benchmark varies

significantly. Benchmark 403.gcc has nearly 87000 signa-

tures that repeatedly give rise to emergencies. At the other

end of the spectrum is benchmark 462.libquantum with only

39 signatures. Applying signature compaction on 403.gcc
reduces the number of signatures to 29000, thereby achiev-

ing a ∼67% reduction. Overall, compaction reduces the

number of signatures by over 61% and the biggest winners

are benchmarks that exhibit a large number of signatures.



Clock Rate 3.0 GHz RAS 64 Entries
Inst. Window 128-ROB, 64-LSQ Branch Penalty 10 cycles

Functional 8 Int ALU, 4 FP ALU, Branch 64-KB bimodal
Units 2 Int Mul/Div, Predictor gshare/chooser

2 FP Mul/Div BTB 1K Entries
Fetch Width 8 Instructions Decode Width 8 Instructions
L1 D-Cache 64 KB 2-way L1 I-Cache 64 KB 2-way

L2 I/D-Cache 2MB 4-way, Main Memory 300 cycle
16 cycle latency latency

Table 1: Baseline architecture (Arch 1) parameters for SimpleScalar.

4. Experimental Framework
The vehicle for all concepts and data presented in this pa-

per is the x86 SimpleScalar infrastructure. Table 1 lists the

configuration parameters used to initialize SimpleScalar for

our baseline microprocessor design, which we refer to as

Arch 1. The workload set is comprised of benchmarks from

the SPEC CPU2006 suite. All but a few were simulated for

100 million instructions across their different inputs using

the phase most heavily weighted by Simpoint [21].1 The

benchmarks were compiled at optimization level -O3 using

the GNU GCC 3.4 compiler toolchain.

To get a detailed cycle-accurate current profile, we in-

corporate a modified version of Wattch [4] into our Sim-

pleScalar simulator. Simulated current profiles are con-

volved with an impulse response of the power delivery sub-

system to obtain voltage variations. Other studies [13, 23]

use this second-order model as well.

Operating margin. For the purpose of quantitative com-

parisons and evaluation, a maximum swing of 4% is allowed

between nominal supply voltage and the lower operating

voltage margin, beyond which a voltage emergency occurs.

However, the work in this paper is independent of a spe-

cific margin and the major findings of the paper remain un-

changed across different margin settings.

Power delivery model. We evaluate three different pack-

ages. Quality factor (Q) is the ratio of the resonant fre-

quency to the rate at which the package dissipates its en-

ergy. A larger Q gives rise to larger voltage swings for

currents oscillating within the resonance band of frequen-

cies. Applications with current fluctuations in the resonance

band therefore suffer more from inductive noise with a high-

Q package. The packages are labeled Pkg 1, Pkg 2 and

Pkg 3. Details pertaining to the packages are shown in Ta-

ble 2. Our baseline package is Pkg 1, which closely resem-

bles characteristics of the Pentium 4 package [11]. Pack-

age Pkg 2 is representative of the package used in an ear-

lier study [13], and its parameters are based on the Alpha

21264/21364 package. For comparisons, we include Pack-

age Pkg 3, which represents a bad package with very large

quality factor.

1445.gobmk input 13x13, 456.hmmer, 471.omnetpp, 473.astar,

434.zeusmp, 453.povray and 470.lbm are omitted because SimpleScalar’s

x86 decoder does not support instruction encodings used by these bench-

marks.

Package Peak Impedance Current Quality Resonance Comment(mOhm) (A) Factor Cycles

Pkg 1 5 16–50 3 30 Pentium 4 [2]
Pkg 2 2 30–70 2 60 Used in [13]
Pkg 3 17 16–50 6 30 Worst package

Table 2: Characteristics of the packages evaluated.

Single-core vs. multi-core and multi-threaded architec-
tures. We limit our evaluations in this paper to a single-

core platform with an off-chip power delivery subsystem.

Much of prior work is also within the context of single-core

platforms, which allows comparative analysis of our scheme

to others. Kim et al. and Gupta et al. have shown that volt-

age emergencies are problematic for multi-core platforms as

well [7, 14]. The authors demonstrate that synchronous/in-

phase operation of cores or chip-wide resonant behavior can

cause voltage emergencies, and so can per-core power do-

mains. We believe it is possible to extend our work to

capture inter-core activity leading to emergencies by track-

ing additional events such as cache coherence messages and

inter-thread synchronization primitives. And in the case of a

multi-threaded architecture, it is possible to easily adapt the

emergency capturing mechanism to be a part of the hard-

ware’s thread context. Building a predictor for a multi-core

and multi-threaded architecture is beyond the scope of this

paper and requires further investigations.

5. Predictor Accuracy Evaluation
A signature-based emergency predictor, in contrast to a

sensor-based scheme, is broadly applicable across different

combinations of microprocessor designs and power deliv-

ery subsystems with no need for fine-tuning, catering for the

worst-case, or relying on soft thresholds. In this section,

we demonstrate the robustness of signature-based prediction

across different machine configurations assuming a signa-

ture size of 32 entries. We also demonstrate an ability to

predict emergencies 16 cycles ahead of time with 90% accu-

racy.

Workloads. Applications exhibit different characteristics

that drive the machine into different levels of activity and,

therefore, varying rates of current draw. Figure 7(a) plots

prediction accuracy across the spectrum of benchmarks

from CPU2006. For benchmarks with multiple inputs,

we present the average prediction accuracy across differ-

ent inputs. The signatures enable high prediction accuracy

with an average of 93% and a median of 94%. Voltage

emergency signatures are able to handle a range of bench-

marks from control-flow-intensive benchmarks like 403.gcc
and 400.perlbench to memory-intensive benchmarks like

429.mcf, and to 462.libquantum that exhibit a large number

of microarchitectural events such as cache misses. Overall,

high prediction accuracy is observed across both the integer

and floating-point benchmarks.

Tolerance. Figure 7(b) shows that when we pair power de-

livery packages Pkg 1, Pkg 2, and Pkg 3 with our baseline

microprocessor design Arch 1 (Table 1), average prediction
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(c)

Figure 7: A voltage emergency predictor maintains high prediction ac-

curacy across different (a) program types and (b) power delivery packages

and microarchitecture combinations. (c) The predictor is also capable of

predicting emergencies with sufficient lead time.

accuracy remains high (93%, 96%, and 95%, respectively)

despite decreasing package quality. Signatures consistently

enable emergency prediction with over 90% accuracy with-

out specialization. By comparison, sensor-based schemes

require careful configuration of soft thresholds [9]. When

we pair package Pkg 1 with a simpler out-of-order proces-

sor Arch 2 (one with the same structure as that in Table 1,

but with half-sized fetch and decode widths and half-sized

buffers, queues, and caches), the accuracy of our predictor

still remains high at 97%.

Lead time. Predicting an emergency with sufficient lead

time enables the machine to throttle execution and success-

fully avoid an impending emergency. Figure 3(b) illustrates

this notion of lead time using the Lead time label. Up to this

point in the paper, we assumed a lead time of 0 cycles to

initially validate that signatures are good predictors of emer-

gencies. However, real systems require non-zero lead times

to account for circuit delays and allow for throttling to take

effect. To experiment with other lead times, we can erase

trailing segments of the signatures that we capture. Fig-

ure 7(c) shows accuracy slightly degrades from 93% as lead

time increases. However, even with 16 cycles of lead time,

ample time to prevent an emergency, prediction accuracy re-

mains high at 90%.

It is important to note that throttling cannot prevent all

emergencies even when they are correctly predicted with 16

cycles of lead time. In such cases, the fail-safe mechanism

must recover processor state and the machine incurs rollback

penalties. However, our experimental data (not shown) ver-

ifies that the number of such emergencies is only 1% of the

total emergencies that occur without throttling and resulting

penalties are very low.

6. Performance Evaluation

An aggressive reduction in operating voltage margins can

translate to higher performance or higher energy efficiency.

Since performance and power are inextricably tied, we fo-

cus on clock frequency performance improvements. Assess-

ing performance also enables straightforward accounting of

penalties resulting from throttling and rollbacks. We evalu-

ate the maximum attainable performance within the context

of all runtime costs previously illustrated in Figure 3(a) and

compare to a variety of idealized and non-ideal approaches.

While the initial analysis makes optimistic assumptions in

regards to hardware implementations of the voltage emer-

gency predictor, Section 6.2 explores design tradeoffs and

shows a resource-constrained predictor implementation that

retains high accuracy and performance improvements.

Designers typically build in conservative margins (guard-

bands) to safeguard against potentially large voltage droops

that can lead to timing violations. Such margins translate

to clock frequency reductions and performance loss. Re-

cent papers on industrial designs have shown that 15% to

20% operating voltage margins would be required to protect

against voltage emergencies [3, 12]. Similarly, our analysis

of our baseline system (Pkg 1 and Arch 1) reveals a worst-

case droop of 13%.

The nearly-linear relationship between operating voltage

and clock frequency facilitates translation of voltage mar-

gin reductions into performance gains. Based on detailed

circuit-level simulations of an 11-stage ring oscillator con-

sisting of fanout-of-4 inverters, we observe a 1.5x rela-

tionship between voltage and frequency at the PTM 32nm

node [30]. This relationship is consistent with results re-

ported by Bowman et al. [3], which show that a 10% re-

duction in voltage margins leads to a 15% improvement

in clock frequency. While we use this 1.5x voltage-to-

frequency scaling factor throughout the rest of the paper, we

also observe a disconcerting trend across technologies. Sim-

ulation results reveal voltage-to-frequency scaling factors of

1.2x, 1.5x, 2.3x, and 2.8x for PTM nodes at 45nm, 32nm,

22nm, and 16nm, respectively. Given a slowdown in tradi-

tional constant-field scaling trends, sensitivity of frequency

to voltage is growing, which further stresses the need for

techniques that can efficiently reduce voltage noise in future

processors.

Based on the 1.5x scaling factor, the 4% operating volt-

age margin assumed in this paper corresponds to a 6% loss in

frequency. Similarly, a conservative voltage margin of 13%,

sufficient to cover the worst-case droops observed, leads to

20% lower frequency. If we take this conservative margin

as the baseline for comparisons and the 13% margin can re-

duce to 4% while avoiding voltage emergencies, the corre-

sponding clock frequency improvement offers system per-

formance gains of 17.5%. This sets the upper bound on max-

imum performance gains achievable. We make a simplifying

assumption that frequency improvements directly translate

to higher overall system performance.



Schemes Performance
Gain (%)

Predictor throttling
Oracle 14.2
Voltage emergency signature 13.5
Microarchitectural event 4.1

Ideal sensor throttling 2% soft threshold 2.2
3% soft threshold 9.0

Explicit checkpoint and recovery -13.0
Delayed commit and rollback (DeCoR) 13.0

Table 3: Performance comparison across different flavors of throttling and

checkpoint-recovery for handling voltage emergencies.

6.1. Comparison of Schemes
To thoroughly evaluate the benefits of using our signature-

based predictor, we compare it to variety of other schemes

that also use throttling and/or checkpoint-recovery. We as-

sume a half-rate throttling mechanism that gates every other

clock cycle. For sensor-based schemes, we assume sen-

sors are ideal with zero delay, and can instantly react to

either resonant or single-event-based voltage emergencies.

For our predictor, we assume an unbounded prediction table

with a voltage emergency signature predictor with 16 cy-

cle lead time. Calculation of performance gains shown for

each scheme begins with the maximum 17.5% gains possi-

ble, which then scales down by accounting for all perfor-

mance overheads. Again, a conservative voltage margin of

13% allows for emergency-free, lower-frequency operation

and is the common baseline for all comparisons. Table 3

shows the performance gains of all schemes.

Oracle predictor. To set an upper bound on the potential

benefits of prediction-based schemes, we consider an oracle

predictor. It throttles exactly when an emergency is about

to occur, and it always prevents the emergency. It does not

waste throttles nor does it incur rollback penalties. By re-

moving all voltage emergencies, the resulting performance

gain of 14.2%, is the best achievable performance while in-

curring only 2.9% throttling overhead.

Voltage emergency signature predictor. Our signature-

based prediction scheme incurs performance overhead of

3.5% on average, due to throttling and rollbacks that are

needed to detect emergencies and also due to emergencies

that throttling cannot avoid. The slightly higher overhead

translates to performance gain relative to our baseline of

13.5%, just 0.7% less than the oracle predictor.

Microarchitectural event predictor. We also evaluate a

simpler prediction scheme that associates an emergency with

the most recent microarchitectural event and the address of

the instruction responsible for it [10]. Whenever that com-

bination recurs, this scheme throttles execution to prevent

another emergency. The prediction accuracy of this simple

scheme is poor, translating to large amounts of unnecessary

throttling that severely degrades performance. Large over-

heads limit performance gain to only 4.1% with this method.

Ideal sensor. Still using a 4% operating margin as the hard

lower operating voltage margin, we evaluate sensor-based

schemes for two soft voltage threshold settings, a conserva-

tive threshold of 2% and an aggressive one of 3%. We opti-

mistically assume a 0-cycle sensor delay and that all emer-

gencies that would occur after crossing the soft threshold are

prevented. Note that an actual sensor would have a delay of

several cycles and so would give poorer performance results.

Despite the optimistic assumptions, performance gains for

the the 2% and 3% soft thresholds are only 2.2% and 9.0%,

respectively. These low gains are due to the high fraction

of benign soft threshold crossings that lead to unnecessary

throttling penalties, shown earlier in Figure 2(b).

Explicit checkpoint and recovery. Gupta et al. propose

the use of checkpointing specifically for the purpose of han-

dling voltage emergencies [9]. They demonstrate that ex-

plicit checkpoint-recovery schemes cannot be directly ap-

plied to handling voltage emergencies due to their high roll-

back costs. Our results confirm their claim. We observe a

13% performance loss when using an explicit checkpoint-

recovery mechanism that has a 100-cycle rollback penalty.

Delayed commit and rollback. To overcome limitations

of explicit checkpoint-recovery, Gupta et al. propose an

implicit checkpointing scheme called DeCoR that specula-

tively buffers register file and memory updates until it has

been verified that no emergency has occurred during a pe-

riod long enough to detect an emergency [9]. The commit

proceeds as usual unless an emergency is detected, in which

case the machine rolls back and resumes execution at a throt-

tled pace. We assume a 5-cycle sensor delay for DeCoR,

which represents the best case as demonstrated by its de-

signers.

DeCoR’s performance gain is 13.0%, so our signature-

based predictor outperforms it, but only slightly. How-

ever, the benefits of using a signature-based predictor out-

weigh using DeCoR for a general-purpose processor design.

DeCoR’s implicit checkpointing requires changes to tradi-

tional microarchitectural structures. In comparison, coarse-

grained checkpoint-recovery is already shipping in produc-

tion systems [1,26] and can serve multiple purposes ranging

from boosting processor performance [15,16,27] to fault de-

tection [25] and debugging [19]. A signature-based predic-

tor leverages the coarse-grained checkpoint-recovery hard-

ware, thereby retaining all the benefits of coarse-grained

checkpoint-recovery while also reducing voltage emergen-

cies.

Issue-rate staggering. Pipeline muffling [20, 23] and a

floor-plan aware di/dt controller [17] both stagger issue rates

to combat cycle-to-cycle high-frequency noise within indi-

vidual microarchitectural units. In contrast, this paper con-

siders inductive noise in the mid-frequency (10-100MHz)

range that impacts the entire chip over periods of tens of

cycles. As discussed in [23], issue-ramping strategies are

not suitable for mid-frequency noise because ramping cur-

rent over such a large number of cycles is not practical; these

strategies are thus orthogonal to our approach.

6.2. Proof-of-Concept Implementation
Up to this point we assume unbounded resources for match-

ing voltage emergency signatures. In this section, we show



one way to implement a resource constrained predictor.

Our implementation combines a content-addressable mem-

ory (CAM) with a Bloom filter. We discuss why this com-

bination is more efficient than a CAM or a Bloom filter by

itself. Using a 8KB table, we observe a performance gain

of 11.1%, as compared to the 13.5% gain for the unbounded

predictor (described in Section 6.1).

Prediction table. A prediction table is a hardware struc-

ture for recognizing voltage emergency signatures. Lookups

in the prediction table happen whenever the processor up-

dates the contents of the event history register. The proces-

sor combines the event sequence from the history register

with the address of the last issued branch instruction to form

a signature, and then tries to match that signature in the pre-

diction table. If the match succeeds, the processor throttles

execution to prevent a potential emergency. We assume the

prediction table is managed by firmware.2 When an emer-

gency occurs, the firmware makes a signature by combining

the contents of the event history register with the most re-

cently issued branch address and enters it in the prediction

table.

CAM. A CAM is a natural structure for implementing a

prediction table. However, our analysis shows that at least

8,000 entries would be needed to achieve good performance.

At 16 bytes per entry, such a large CAM would require too

much area and power. With a smaller CAM, capacity misses

could prevent emergencies from being detected, which could

lead to severe rollback penalties.

Bloom filter. A Bloom filter is a compact lookup structure

that saves space, but may sometimes return a false match. It

is a probabilistic hash table that maps keys to boolean val-

ues, implemented using a bit vector and k hash functions.

The procedure to add a key to the Bloom filter hashes the

key k ways and sets the bits in the bit vector correspond-

ing to the k indices returned by the hash functions. A key

matches in the Bloom filter if and only if the bits for all k
indices hashed from that key are set. With some probabil-

ity, all of the indices for a key that has never been entered

may nevertheless be set, in which case matching that key

produces a false positive result.

For our purposes, false positives can be tolerated be-

cause they only affect performance, not correctness. How-

ever, we find that a Bloom filter by itself needs to be quite

large to give acceptable performance. Smaller Bloom fil-

ters have higher false positive rates, and the resulting un-

necessary throttling severely degrades performance. While

a 64KB Bloom filter could yield a performance gain compa-

rable to our unconstrained signatured-based predictor, that

for a Bloom filter of a more practical size, such as 8KB, falls

to less than 2%.

CAM plus Bloom filter. By screening the anchor PC com-

ponents of signatures using a CAM, we can reduce the num-

2The use of firmware to manage the prediction table is consistent with

systems in which firmware manages energy and deals with processor design

errors [5,18,24,28]. Firmware implementation details are beyond the scope

of this paper.

ber of lookups in the Bloom filter, which reduces the num-

ber of times false positives cause throttling. In our exper-

iments we observe that the working set of anchor PCs is

small enough that a CAM is practical. Sizing the CAM ap-

propriately is important, however, because capacity misses

allow emergencies to happen, which leads to rollbacks. At

CAM sizes of 32 and 64 entries, our results show that roll-

back penalties reduce performance gains by as much as 50%

and 10%, respectively. But with a 128-entry CAM, the per-

formance loss due to capacity misses is negligible.

Thresholds. The other way to reduce false positives is to

keep the occupancy of the Bloom filter low. That can be

done by excluding the less frequently occurring emergency

signatures. The trade-off is that with higher thresholds, we

miss more emergencies and incur more rollback costs. The

firmware that manages the prediction table could at the same

time profile signature occurrences and exclude those signa-

tures whose occurrence counts fall below a chosen threshold.

To investigate the effects of thresholds, we used a predic-

tion table combining a 128-entry CAM (one 32-bit address

per entry) with a Bloom filter that uses three hash functions.

Figure 8(a) shows that a threshold of one captures all but

2.8% of all emergencies. Larger thresholds cause so many

emergencies to be missed that performance degradation due

to rollbacks is severe.

Figure 8(b) shows the performance gains with different

prediction table sizes for a variety of threshold values. For

small table sizes, a higher threshold yields better perfor-

mance because it reduces the false positive rate. With a 2KB

prediction table size, performance gain is only 0.8% without

a threshold (T=0). But a threshold of T=10 reduces throt-

tles caused by false positives so much that performance gain

increases to 7.3%, despite increased rollback penalties. On

the other hand, as table size grows, the false positive rate

drops so that lower thresholds are more attractive. With an

8KB prediction table size, performance gain for a threshold

of T=10 is 3 percentage points less than that for a thresh-

old of T=1, because false positives are reduced so much that

rollback penalties dominate. With T=1 (which simply ex-

cludes all non-recurring emergency signatures), the perfor-

mance gain for an 8KB table is 11.1%, as compared to the

13.5% gain for the unbounded prediction table described in

Section 6.1.

7. Summary and Conclusions
With continued technology scaling, the inductive noise prob-

lem is an increasingly important design challenge. Several

architectural solutions have been proposed in the past to deal

with inductive noise in processors. However, these solutions

either have trouble guaranteeing correctness or they incur

severe performance penalties. This paper proposes a novel

voltage emergency predictor that learns to predict recurring

voltage emergencies by collecting signatures of the program

behavior and processor activity that leads to such emergen-

cies. Our proposed predictor-based architecture uses the col-

lected signatures to anticipate emergencies and proactively
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Figure 8: The effect of threshold value (T ) on (a) the fraction of emergen-

cies not handled by the predictor and (b) performance gains when voltage

margin is reduced from a conservative 13% to an aggressive 4% setting.

avoid them via throttling, while relying on a checkpoint-

restart fall-back scheme already available in today’s produc-

tion systems to train the throttling predictor. Our signature-

based voltage emergency predictor operates independently

of sensor delays, package characteristics, and microarchi-

tecture details, and it enables operation at aggressive volt-

age margins without compromising correctness. With an ag-

gressive margin of 4%, it can enable a performance gain of

as much as 13.5%, compared to 14.2% for an ideal oracle-

based throttling mechanism.
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