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Voltage stability in a grid-connected inverter with

automatic Volt-Watt and Volt-VAR functions
Julio H. Braslavsky, Senior Member, IEEE, Lyle D. Collins, and John K. Ward, Member, IEEE

Abstract—The growing uptake of solar power in low-voltage
grids across the world has drawn attention to potential overvolt-
age issues. In an effort to mitigate overvoltage, automatic Volt-
Watt and Volt-VAR inverter response functions have been intro-
duced in recent standards. The utility of these functions has been
established in a number of recent studies. However, relatively
little analysis exists on the stability of grid-connected inverters
where decentralised operation of these response functions can
potentially trigger undesirable interactions. This paper presents
a rigorous stability analysis of a grid-connected inverter under
simultaneous operation of automatic Volt-Watt and Volt-VAR
response functions. Conditions for the existence of an equilibrium
voltage are established together with tests that characterise its
stability in terms of the inverter and line parameters. The
analysis reveals a little-known stability vulnerability arising when
both Volt-Watt and Volt-VAR functions are in operation if Watt
output takes precedence over the provision of VAR support, a
generally recommended setting. To circumvent this vulnerabil-
ity, the proposed stability tests allow parameter selection for
guaranteed stability margins. A safe configuration alternative is
also identified to avoid instability at the expense of real power
output. Numerical methods to compute equilibrium voltages are
presented and used in two illustrative numerical studies.

Index Terms—Stability analysis; Stability criteria; Reactive
power control; Photovoltaic power systems; Voltage control; DC-
AC power conversion; Power quality; Power distribution control;
Overvoltage protection; Distributed control; Current-controlled
inverters.

I. Introduction

A. The emergence of inverters with grid-support functions

Dramatic reductions in costs have promoted the develop-

ment of renewable energy technologies even in the absence

of capital subsidies and in a context of lower fossil fuel

prices. Solar energy generated from photovoltaic (PV) panels

is an increasingly critical part of the energy supply. Germany

leads the way with an installed PV capacity that already

exceeds that of all other types of power plants and covers

approximately 7.5% of the country’s net energy electricity

consumption. More than 98% of Germany’s over one million

PV power plants are connected to low-voltage grids, and

75% of them have an installed capacity below 1 MW [1].

In other countries, directed incentives towards small-scale PV

systems have resulted in even more distributed decentralised

PV generation. Australia, for example, has over 1.6 million

small-scale PV systems with an aggregate installed capacity
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already exceeding 10% of the peak electricity demand of

the primary electricity grid; 98% of these systems have an

installed capacity below 10kW [2], [3].

PV systems are connected to the grid via an inverter, which

converts electricity generated by the PV panels as a direct

current into a grid-compatible alternating current. Depending

on the inverter output, the inverter can be current-controlled if

the output is controlled to appear to the grid as a current source

and voltage-controlled if the output is controlled to appear to

the grid as a voltage source. Current-controlled inverters are

easier to implement and are typically used to maximise PV

power output exported to the grid [4].

However, high density distributed PV generation can be

problematic, particularly with current-controlled inverters,

which cannot directly contribute to the regulation of power

system frequency and voltage [4, Chapter 18], with increased

voltage swings and overvoltages (voltages exceeding design or

regulated limits) a reported consequence [5, p. 75]. Voltage

rise is likely to occur whenever generation exceeds consump-

tion — the typical context being solar generation exceeding

household load. Concerns about such voltage issues motivated

electricity utilities in Australia to place precautionary restric-

tions on PV installations, such as limiting size, preventing

energy exports to the grid, requiring specific reactive power or

power factor settings, or limiting ramp rates [6], [7]. Ramp rate

restrictions effectively require installations to include energy

storage to minimise rapid fluctuations in power output such as

those arising from passing clouds.

In a contrasting response to potential voltage swings and

overvoltages, inverter manufacturers have developed new grid-

support functions, such as Volt-Watt and Volt-VAR response

functions, which allow the gradual curtailment of real power

and/or the consumption of reactive power to mitigate over-

voltages. The curtailment of real power through a Volt-Watt

function improves asset utilisation over the earlier practice of

simply shutting down the inverter in an overvoltage event.

The inclusion of reactive power control through a Volt-VAR

function can allow higher levels of real power output whilst

still contributing to mitigate overvoltages. These functions

have been advocated by the Electric Power Research Institute

[8, §9,§10] and feature in current standards for grid-connected

inverters [9]–[11]. Typical response shapes recommended are

illustrated in Figure 1.

B. Existing research work

The utility of these new grid-support functions has been

established in a number of recent studies [12]–[21]. How-
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Fig. 1. The Volt-VAR support function (top) and the Volt-Watt constraint
function (bottom)

ever, relatively little analysis exists on the stability of grid-

connected inverters where the decentralised operation of such

functions can potentially trigger undesirable interactions. A

stability analysis in [13] of a grid-connected inverter with Volt-

VAR response functionality shows that delay in the voltage

measurement may lead to instability in the response. Similar

instabilities are identified in a numerical study in [16], from

which the authors derive empirical criteria for stability in

terms of the system parameters for single and multi-inverter

cases. Numerical simulations in [14, §4] show that instability

may also arise when Volt-Watt and Volt-VAR functions are

implemented simultaneously. The simulations in [14], [16]

provide evidence that stability can critically depend on the

line impedance and the voltage measurement filter.

The authors in [12] investigated the effectiveness of ad-

justing both Volt-Watt and Volt-VAR functions according to

local network characteristics to maximise PV hosting capacity,

which they demonstrate on a small experimental trial. Recent

works [15], [19]–[21] also adopt combined Volt-Watt, Volt-

VAR strategies to optimise voltage management capabilities

of inverters by tuning the balance between active and reactive

power responses to the characteristics of the local network.

Most of the existing stability analyses for inverters with

active and reactive power response capabilities are based

on numerical studies, while theoretically-based analyses are

scarce. Of the theoretically-based existing stability work, the

analysis in [13] is limited to inverters with a Volt-VAR

response function and no power curtailment capabilities. A

small-gain stability analysis is developed in the recent work

[21]. The authors exploit the stability criterion developed to

derive an interesting optimal control scheme with guaranteed

input-output stable solutions. While the stability analysis in

[21] addresses the case of multiple distributed inverters, it

applies to a linear approximation of the system that is assumed

to have a bounded error with respect to the exact nonlinear

power flow equations. It is not clear how such approximation

error could be quantified or guaranteed to be small, and hence

the ensuing stability criterion may not capture sustained local

voltage oscillations or other instabilities arising from nonlinear

dynamic interactions.

The stability of inverters connected to low-voltage networks

thus remains a challenging topical problem that requires

further analysis and understanding. While the stability of

generators connected to high and medium-voltage networks

is well-understood [22], assumptions typically made to sim-

plify the analysis in high-voltage lines (e.g., line impedance

predominantly inductive) do not apply to low-voltage distri-

bution networks, where small PV generators are increasingly

prevalent.

C. Main contributions

The present paper extends the existing body of work by

developing a rigorous stability analysis of a current-controlled

inverter with Volt-VAR and Volt-Watt automatic response

functions connected to a low-voltage network. The paper

provides conditions for the existence of equilibria and analytic

criteria for their stability. These criteria are used to characterise

a previously unidentified stability vulnerability arising in the

event of significant voltage rise whilst the inverter is operating

at or near its real power output capacity. For the simple case of

an inverter connected through a lossy line to the distribution

network, it is shown that sustained voltage oscillations may

be triggered when both Volt-Watt and Volt-VAR functions are

in operation if the inverter Watt output takes precedence over

the provision of VAR support. Without further analysis, such

precedence may be taken as the generally preferred option to

maximise PV power exported to the grid [8, pp. 10-6–10-

8]. However, as shown in the present paper, with the Volt-

VAR function designed to utilise as much of the available

inverter capacity as possible, its activation in conjunction with

the Volt-Watt function may result in sustained oscillations of

voltage and power output. These potential oscillations were

first identified and numerically verified by the authors in [23].

This paper makes the following main original contributions:

(a) a rigorous mathematical characterisation and proof for the

existence of an equilibrium voltage when both the Volt-

Watt and the Volt-VAR responses are in operation

(b) non-conservative tests for stability of the equilibrium volt-

age, which may be efficiently evaluated numerically

(c) parametric tests for stability that, at the expense of some

conservatism, enable the direct design of parameter ranges

for implementation with guaranteed stability margins.

In addition, the paper provides numerical procedures to com-

pute voltage equilibria for any given set of inverter and line pa-

rameters. These procedures are implemented in two numerical

studies that demonstrate stability and instability as predicted

by the analysis developed, and a thorough comparison of the

proposed theoretic and parametric tests for stability over a

range of parameters for the voltage measurement filter and

the line impedance.

The rest of the paper is organised as follows: Section II

defines the system considered, assumptions, and underlying

power and voltage relationships. Section III contains the

main contributions of the paper: the mathematical framework

(Section III-A), conditions for the existence of an equilibrium
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voltage (Section III-B) and numerical procedures for its com-

putation (Section III-C), and tests for stability (Section III-D).

Stability implications are discussed in terms of the system

parameters in Section III-E. Two illustrative numerical studies

are presented in Section IV. The paper is summarised with

concluding remarks in Section V.

II. Preliminaries

A. System definition

Consider the two-bus system illustrated in Figure 2, where

a current-controlled inverter is connected to an external grid

through a line impedance z = R + jX = Z∠θ. The inverter

represents a single-phase, or a balanced three-phase device

capable of delivering real power to the external grid with any

power factor. The voltage at the inverter bus is denoted U , and

the voltage at the grid bus is denoted V .

=

Voltage
measurement

✘

❞❞

❞

❞

✒✑
✓✏

✱
✱

✲ ✲

❍
❍

❍
❍
❍

❍❍

V ∠0

GridInverter

∼
∼

U∠φ Z∠θ

Line

P,Q

Ek Uk

Fig. 2. Inverter connected to an infinite bus

The inverter is assumed to be exporting real power to the

grid in a mode of operation where its active and reactive output

powers are responsive to the inverter bus voltage U , which is

available to the inverter as a sampled-data measurement Ek

obtained as the output of a stable voltage measurement device.

The external grid is represented as an infinite bus assumed

to regulate frequency and voltage, with V ∠0 taken as the phase

reference. The line impedance z is assumed to have non-zero

resistance and is inductive so that both R and X are positive.

Current flowing from the inverter to the external grid is

defined as positive, from which it follows that delivered real

and reactive powers are defined as positive, in accordance with

generator convention [24]. The term ‘injection’ is used to refer

to the magnitude of the reactive power delivered/absorbed. The

Volt-VAR function (specified in more detail below) indicates

that reactive power is injected as voltage increases.

The voltage U∠φ at the point of connection of the inverter

to the line must satisfy, in steady-state, the nonlinear algebraic

relationship with the injected powers, line impedance, and grid

voltage, as given by the following fact.

Fact 1 (Voltage at inverter connection point). The voltage

magnitude U at the connection point between the inverter and

the external grid in the system illustrated in Figure 2 satisfies

the steady-state algebraic equation

U4 −
(

2(RP +XQ) + V 2
)

U2 + (P 2 +Q2)Z2 = 0. (1)

Proof. The complex current injected by the power source is

given by I = (G+ jB)
(

Uejφ − V
)

, where G + jB =
Y ∠− θ = z−1 is the line admittance. The real and imaginary

components of the apparent power S = I∗Eejφ injected by

the inverter into the grid satisfy the power-flow equations [22,

§ 6.4]

P = U2G− V U (G cosφ+B sinφ) , (2)

Q = −U2B − V U (G sinφ−B cosφ) . (3)

The sum of (2) multiplied by B and (3) multiplied by G is

PB +QG = −V UY 2 sinφ, (4)

and the difference between (2) multiplied by G and (3)

multiplied by B is

PG−QB − U2Y 2 = −V UY 2 cosφ. (5)

Squaring and adding (4) and (5) to eliminate cosφ
and sinφ yields U4Y 4 − U2Y 2

(

2 (PG−QB) + V 2Y 2
)

+
Y 2

(

P 2 +Q2
)

= 0, from which (1) follows by substituting

G = R/(R2 +X2) and B = −X/(R2 +X2).

For given values of P,Q, V,R,X , the equation (1) admits

only two real positive solutions,. Namely, a high-voltage fea-

sible solution U+ and a low-voltage infeasible solution U−

[25], defined by

U± =

[

RP +XQ+ V 2
/2 ±

[

(

RP +XQ+ V 2
/2
)2
− (P 2 +Q2)Z2

]1/2
]1/2

. (6)

Both solutions exist if the discriminant
(

RP +XQ+ V 2
/2
)2
− (P 2 +Q2)Z2 ≥ 0. (7)

Expressions such as (6) have been used in line loadability

studies (e.g. [26]). The analysis in the present paper focuses

on the high-voltage feasible solution U+.

B. Volt-Watt and Volt-VAR response functions

Following [8], [9], the inverter is equipped with Volt-Watt

and Volt-VAR grid-support response functions as illustrated in

Figure 1. The purpose of these functions is to trigger automatic

absorption of reactive power and curtailment of active power in

the event of overvoltage by calculating reference values for the

inverter injected powers P and Q as functions of the measure-

ment Ek of the voltage Uk at the inverter point of connection

(see Figure 2), where Ek, Uk represent voltage magnitudes at

the discrete-time instant k. In an ideal measurement Ek = Uk.

However, as described in Section III, all dynamics arising in

the Volt-Watt / Volt-VAR response feedback loops will be

lumped in the dynamics of the measurement filter. Thus, in

general Ek 6= Uk, except once an equilibrium is reached.

Curtailment of real power output with the Volt-Watt function

P(E) is defined, following existing guidelines [8], [9], as

P(E)=

{

µS[1− d(E − EA)] if E ∈ [EA, EB ]

µS[1− d(EB − EA)] if E > EB ,
(8)

where µ is a fractional measure of the real power output of

the inverter relative to its maximum capacity S > 0 at the

instant overvoltage occurs. The Volt-Watt response function

(8) is configured by the real parameters d, EA and EB (EB >
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EA), such that the lowest value to which real power output can

be curtailed is nonnegative, namely

µS[1− d(EB − EA)] ≥ 0.

When the measured voltage is less than EA, no constraints are

imposed on real power output, which is then set to µS.

The inverter Volt-VAR function is also assumed present on

the condition that it does not infringe on real power output,

through a pre-defined limit on the maximum absolute reactive

power, or by imposing a physical limit on the maximum

apparent power. Note that as the traditional model of an

inverter as having a limit on the apparent power output is

derived from a nominal value of voltage with a current limit,

it follows that in an overvoltage situation the capacity may be

larger than the nominal amount.

By limiting the maximum amount of reactive power output

Qlim > 0 admissible to the grid (typically defined in terms of a

minimum power factor at maximum capacity) and combining

this constraint with the physical limitations of the inverter,

the maximum absolute amount of reactive power that can be

injected by the inverter is

Qma = min
{

Qlim,
√

S2 − P(E)2
}

≤ S. (9)

The Volt-VAR function Q(E) specifies the amount of VARs

to be injected as a dynamic function of Qma, which fluctuates

as a function of P(E). We define Q(E) as

Q(E) =











0 if E < EC ,

−Qma
E−EC

ED−EC
if E ∈ [EC , ED] ,

−Qma if E > ED.

(10)

The definition of Q(E) in (10) prioritises real power output

over the provision of reactive power [18], since real power

output is curtailed only after the injected reactive power has

reached its maximum. Such priority is commonly recom-

mended [8], [13], [27].

C. Voltage region of operation (control region)

The analysis that follows focuses on the case where the Volt-

Watt and Volt-VAR functions (8) and (10) are configured so

that the voltage E is in the region {E : E ∈ [EA, EB ] andE ≥
ED}, where both real power curtailment and reactive power

injection functions are simultaneously in operation.

In the sequel we assume that the fractional real power µ
available to the inverter for export is constant and sufficiently

large, such that µlim ≤ µ ≤ 1, where the lower bound

µlim
.
=

√

1−Q2
lim/S

2 (11)

is defined by the maximum admissible reactive power injection

level Qlim ∈ (0, S]. This means that the inverter operates at

maximum capacity within the voltage region of operation of

interest [EA, EB ], namely,

P(E)2 +Q(E)2 = S2, (12)

which in turn implies that Ek does not exceed the value

Elim = EA +
1

d

(

1−
µlim

µ

)

. (13)

Note that µlim represents the limit value of power factor

consistent with the maximum admissible level of reactive

power injection Qlim.

Summarising the assumptions above, in the voltage region

of interest (8), (10) and (12) reduce to

P(E) = µS (1− d(E − EA)) ,

Q(E) = −
√

S2 − P(E)2 ,

µ ∈ [µlim, 1],

Ek ∈ [EA, Elim].

(14)

The voltage region of operation considered is illustrated in

Figure 3 in terms of P(E) and Q(E).

P(Ek)

Q
(E

k
)

Capability Curve

Curtailment Trajectory

Specified Control Region

µlimS ≤ P(Ek) ≤ µS

Fig. 3. The operating voltage region under study (control region).

III. Voltage dynamics under simultaneous operation of

the Volt-Watt and Volt-VAR response functions

A. System dynamics and nonlinearities

Following a practise common in recent analyses of inverter

microgrids [28], [29] and industry standards [10, p. 18], all

delays and dynamics arising in the measurement of volt-

age Ek and the computation of the inverter power outputs

P(Ek),Q(Ek) are lumped in a simple discrete-time low-pass

filter model of the form

Ek+1 = aEk + (1− a)Uk, (15)

where 0 ≤ a < 1 and the input Uk represents the inverter bus

voltage U sampled at time k.

The voltage measurement dynamics (15) are assumed to be

much slower than the electric transients arising in the line

when the inverter outputs P = P(Ek) and Q = Q(Ek) are

adjusted at the arrival of each voltage measurement sample

Ek. Therefore, Uk is taken as the steady-state high-voltage

feasible solution U+ of the power flow equation (1) obtained

using (6) with P = P(Ek) and Q = Q(Ek). We write the
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resulting dependency of Uk on the measure voltage Ek in

compact form as

Uk = F (Ek), (16)

where the function F is defined from (6) as

F (E)
.
=

√

G(E) + V 2
/2 +H(E) , (17)

with the functions G and H defined as

G(E)
.
= RP(E) +XQ(E), (18)

H(E)
.
=

√

(

G(E) + V 2
/2
)2
− S2Z2 . (19)

The following properties of the functions G(E) and F (E)
will be required to show the existence of an equilibrium in the

voltage region of operation considered.

Lemma 2 (Monotonicity of G(E) and F (E)). Under the

assumptions (14), given E ∈ [EA, Elim],

(a) G(E) is a convex and monotonically decreasing function.

(b) If RµlimS−XS
√

1− µ2
lim +V 2/2 > SZ, then F (E) is

a real, positive and monotonically decreasing function.

Proof. (a) Under the conditions (14), and since P(E) ≥ 0, we

have from (18) that the derivative

G′(E) = −µSd

(

R+
XP(E)

√

S2 − P2(E)

)

< 0,

which includes the case µ = 1 by taking limE→E+

A

G′(E) =

−∞, and shows that G(E) is decreasing. Moreover, since

G′′(E) =
µ2S4d2X

(S2 − P2(E))
3/2

> 0,

G(E) is in fact convex in [EA, Elim].

(b) Since G(E) is decreasing in [EA, Elim], it attains its

minimum at E = Elim. This minimum may be expressed as

min
[EA,Elim]

G(E) = G(Elim) = RµlimS −XS
√

1− µ2
lim ,

(20)

by substituting (13) in (18). The expression (20) with the

condition RµlimS−XS
√

1− µ2
lim +V 2/2 > SZ imply that

G(E) + V 2/2 > SZ ⇒ (G(E) + V 2/2)2 − S2Z2 > 0

for E in [EA, Elim], which shows that H(E) in (19) is real

and positive, and in consequence so is F (E) in (17). Note

that this condition implies (7) holds, and hence that the power

flow equation (1) has real positive solutions.

By differentiating (17) with respect to E, it is seen that

F ′(E) =
G′(E)F (E)

2H(E)
< 0, (21)

since F (E) and H(E) are real and positive and G′(E) is

negative. This shows that F (E) is also strictly decreasing in

[EA, Elim].

B. Existence of an equilibrium voltage

The following result establishes simple sufficient conditions

under which the discrete-time system (15) has an equilibrium

within [EA, Elim] where the Volt-Watt and Volt-VAR response

functions are simultaneously active.

Proposition 3 (Existence of an equilibrium voltage). Consider

the inverter system with dynamics (15) subject to the conditions

(14) and the algebraic relationship (1) where P and Q are

replaced by the Volt-Watt and Volt-VAR response functions

defined in (8) and (10). Under the condition of Lemma 2(b),

then

F (EA) ≥ EA and F (Elim) ≤ Elim, (22)

if and only if (15) has a unique equilibrium E = E∗ ∈
[EA, Elim] that satisfies equation (1) with P = P(E∗) and

Q = Q(E∗).

Proof. We first show that a unique equilibrium E∗ exists in

[EA, Elim] whenever (22) is satisfied.

Lemma 2 implies that F (E) is continuous, real, positive and

strictly monotonically decreasing in [EA, Elim]. It then follows

from the boundary conditions (22) and the intermediate value

theorem (see, e.g. [30, Theorem 4.23]) that F (E) has a unique

fixed-point E∗ = F (E∗) in [EA, Elim]. This fixed-point is an

equilibrium of (15), since if Ek = E∗ at a time k, then at

time k + 1,

Ek+1 = aE∗ + (1− a)F (E∗) = E∗.

Direct substitution shows that F (E∗) = E∗ is indeed a

solution of equation (1) when P and Q are substituted by

P = P(E∗) and Q = Q(E∗).
To see that condition (22) is also necessary, suppose that

there exist a voltage E∗ ∈ [EA, Elim] such that F (E∗) =
E∗. Then (22) follows from the fact that F (E) is continuous

and strictly monotonically decreasing in [EA, Elim], and thus,

F (E) ≥ E for E ≤ E∗, and F (E) ≤ E for E ≥ E∗.

The boundary conditions (22) may be alternatively checked

using the algebraic expression on the left hand side of equa-

tion (1). Namely, F (EA) ≥ EA is equivalently mapped to

E4
A −

(

2(P(EA)R+Q(EA)X) + V 2
)

E2
A + S2Z2 ≤ 0,

and F (Elim) ≤ Elim is equivalently mapped to

E4
lim −

(

2(P(Elim)R+Q(Elim)X) + V 2
)

E2
lim + S2Z2 ≥ 0.

These equivalences may be verified by squaring the inequal-

ities in (22) and completing squares to construct the double

quadratic function on the left hand side of equation (1).

C. Computation of the equilibrium voltage

Obtaining an explicit analytic expression for the equilibrium

voltage E∗ is generally difficult. However, under the condi-

tions (22), E∗ may be numerically computed to any desired

precision using the expression for F given in (17). Standard

numerical procedures to find roots of a function can be applied

to the function F (E)− E to find E∗ : F (E∗)− E∗ = 0.

A bisection procedure to do so is illustrated in Algorithm 1.

The bisection method is simple and its convergence to within
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a given error tolerance ǫ is guaranteed, with an error that is

halved at each iteration [31, Chapter 8]. A disadvantage of the

bisection procedure is its relatively slow convergence.

Algorithm 1: Bisection procedure to compute equilibrium

voltage E∗ in [EA, Elim] to within error ǫ.

Data: parameters EA, Elim, R,X, V, S, d, µlim, µ,

tolerance ǫ
Result: equilibrium voltage E∗

Check condition (22) in Proposition 3;

if (F (EA)− EA)(F (Elim)− Elim) > 0 then
return No equilibrium in [EA, Elim]

Initialisation;

A← EA;

B ← Elim;

C ← (A+B)/2;

Computation;

while |F (C)− C| > ǫ do

if ((F (A)−A)(F (C)− C) < 0) then
B ← C

else
A← C

C ← (A+B)/2;

E∗ ← C

Alternatively, a faster procedure based on the Newton-

Raphson method could be implemented using also the ex-

pression for F ′ in (26), as shown in Algorithm 2. The

disadvantage of the Newton-Raphson procedure is that its

convergence can only be guaranteed if its initial condition is

a sufficiently close approximation to the sought root (see e.g.

[31, Chapter 8]). However, a suitable initial condition may be

obtained by running a few iterations of the bisection procedure

in Algorithm 1, and then follow refinement via the Newton-

Raphson procedure in Algorithm 2 to obtain a combined

procedure with guaranteed convergence and improved conver-

gence speed. For illustration, using the parameters listed in

(28) E∗ is computed to within ǫ = 10−6 in 23 iterations with

Algorithm 1, and in 6 iterations with Algorithm 2 initialised

with E0 = (EA + Elim)/2.

We apply these algorithms to compute the system equilibria

in the numerical studies in Section IV.

D. Stability of the equilibrium voltage

Assuming the Volt-Watt and Volt-VAR responses are in-

stantaneously computed from the measured voltage Ek (all

delays and dynamics in the loop are lumped in the dynamics

of the voltage measurement filter (15)–(16)), then the stability

of the interaction between these response functions around an

equilibrium E∗ ∈ [EA, Elim] is determined by the magnitude

of the Jacobian of the difference equation (15),

ρ
.
=

∣

∣

∣

∣

∂ (aE + (1− a)F (E))

∂E

∣

∣

∣

∣

E=E∗

= |a+ (1− a)F ′(E∗)|. (23)

Algorithm 2: Newton-Raphson procedure to compute

equilibrium voltage E∗ in [EA, Elim] to within error ǫ.

Data: parameters EA, Elim, R,X, V, S, d, µlim, µ,

tolerance ǫ, initial condition E0 ∈ [EA, Elim]
Result: equilibrium voltage E∗

Check condition (22) in Proposition 3;

if (F (EA)− EA)(F (Elim)− Elim) > 0 then
return No equilibrium in [EA, Elim]

Initialisation;

C ← E0;

Computation;

while |F (C)− C| > ǫ do

C ← C −
F (C)− C

F ′(C)− 1

E∗ ← C

Discrete-time system stability theory establishes that the

equilibrium of the system will be exponentially stable if and

only if ρ = |a + (1 − a)F ′(E∗)| < 1 (see for example [32,

Theorem 22.11]). This result may be translated from (23) into

the following tests for stability and instability.

Proposition 4 (Theoretic tests for stability). Assume the

conditions of Proposition 3 are satisfied. Then

(T1) The equilibrium E∗ of system (15) is locally exponen-

tially stable if and only if

F ′(E∗) +
1 + a

1− a
> 0.

(T2) The equilibrium E∗ is unstable if

F ′(E∗) +
1 + a

1− a
< 0.

Proof. The expressions follow directly from (23) and applica-

tion of Theorem 22.11 in [32] and the fact that F ′(E) < 0 for

E in [EA, Elim].

The case of F ′(E∗) + (1 + a)/(1− a) = 0, not considered

in Proposition 4, corresponds to the Jacobian of the system

having an eigenvalue on the boundary of the stability region.

The stability of this singular point requires more advanced

analysis (e.g. [33, Chapter 8]) beyond the scope of the paper.

While Proposition 4 provides non-conservative tests for

stability, they require the knowledge of the equilibrium voltage

E∗, which is hard to characterise analytically, as discussed

in Section III-C. However, these theoretic tests may be used

by computing E∗ for a given set of system parameters using

Algorithms 1 and 2, as illustrated in Section IV-B.

To obtain stability tests that do not require computation of

E∗, we derive from (T1) and (T2) sufficient analytic conditions

for stability and instability as explicit expressions of the system

parameters. These sufficient conditions help to evaluate the

impact of these parameters on stability without numerical

computations, at the expense of some conservativeness.

Corollary 5 (Parametric tests for stability). Under the condi-

tions of Proposition 3,
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(P1) The equilibrium E∗ of system (15) is locally exponen-

tially stable if

−µSd

(

R+
Xµ

√

1− µ2

)

Elim

2H(Elim)
+

1 + a

1− a
> 0. (24)

(P2) The equilibrium E∗ is unstable if

−µSd

(

R+
Xµlim

√

1− µ2
lim

)

EA

2H(EA)
+
1 + a

1− a
< 0. (25)

Proof. Expression (21) and the facts that EA ≤ E∗ =
F (E∗) ≤ Elim, and that G(E) > 0 is monotonically

decreasing (and so is then H(E) > 0), and G′(E) < 0
is monotonically increasing in [EA, Elim] (since G(E) is

convex), yield the bounds

F ′(E∗) =
G′(E∗)E∗

2H(E∗)
≥

G′(EA)Elim

2H(Elim)
, (26)

F ′(E∗) =
G′(E∗)E∗

2H(E∗)
≤

G′(Elim)EA

2H(EA)
. (27)

Then, (26) and (T1) leads to (P1), and (27) and (T2) to (P2)

after substituting G′(EA) = µSd
(

R + Xµ/
√

1− µ2
)

and

G′(Elim) = µSd
(

R+Xµlim/
√

1− µ2
lim

)

.

In comparison with Proposition 4, the tests in Corollary 5

are conservative, in the sense that if their conditions are not

satisfied one cannot conclude stability or instability of the

equilibrium. However, the tests in Corollary 5 permit direct

analytic evaluation of the impact on stability of line and

inverter parameters, such as the ratio X/R, the droop gain

d, and the voltage measurement filter parameter a.

The parametric test (P1) may be used as a means to draw

design guidelines for safe parameter ranges that guarantee

exponentially stable equilibria over the voltage region of opera-

tion, without need for precise equilibrium voltage calculations.

E. Analytic implications

Corollary 5(P2) shows that unstable interactions between

the Volt-Watt and Volt-VAR inverter response functions are

indeed possible when the inverter operates near capacity if

real power output takes precedence over the provision of

reactive power. Note that this observation places a caveat on a

typically suggested setting for inverters that aims to maximise

injected active power [8], [13], [27]. As shown by the above

results, insisting on maximal active power injection introduces

a potential instability risk when the inverter is at capacity, by

a mechanism that first unintentionally restricts reactive power

output in the Volt-VAR droop range, and then reenables it once

the voltage reaches the Volt-Watt droop range.

The explicit dependence of the equilibrium stability on the

impedance of the line and the voltage measurement filter

captured by the tests (P1) and (P2) are in correspondence with

observations made in [13], [14]. Indeed, note how the stability

margin of the equilibrium is reduced as the filter is made

faster as a → 0. Namely, the condition (24) for exponential

stability is less likely to be satisfied, and the condition (25) for

instability is more likely to be satisfied for a given set of system

parameters. On the other hand, these analytic conditions also

show that for any given set of line and inverter parameters, the

equilibrium can always be made stable by making the filter

sufficiently slow, as a→ 1.

The influence of the bandwidth of the voltage measurement

filter on the stability of these automatic response mechanisms

to mitigate overvoltages has been observed in [14] and [13].

In [14] it is noted that a voltage measurement filter with

sufficient damping is required for the voltage controller to find

a new steady operation point after perturbation in a system

comprising two parallel inverters with Volt-VAR and Volt-Watt

automatic response functions.

In [13] the stability of a system where only a Volt-VAR

response function is active is shown to have instances where

a fast filter with a = 0 (referred to as Type-A in [13]) leads

to instability, while a slower filter with a = 0.9 (referred to as

Type-B in [13]) leads to a stable system. Note, however, that

even in the latter case instability may arise in the interaction

between Volt-VAR and Volt-Watt responses, as may be seen

from (P2) if, for example, the X/R ratio is sufficiently high.

This point is illustrated in the numerical study in Section IV-B.

Sensitivity to other system parameters can also be studied

from (24) and (25). The active power droop gain d, for

example, reduces the stability margin of the system as d is

increased. For inductive lines, instability is more likely when

the maximum admissible level of reactive power Qlim is lower,

which makes µlim → 1, as can be seen from (11). The latter

is emphasised for lines that are more predominantly inductive,

namely, lines with higher X/R ratio.

IV. Numerical studies

A. Simulation example

An illustrative two-bus system featuring an inverter and

a voltage source (Figure 2) was simulated in PYPOWER,

an open source port of MATPOWER [34] developed in

the Python programming language. For each timestep, the

measured voltage (Ek+1 in (15)) was calculated using the

voltage value Uk returned from the load flow calculation

(substituted for F (Ek)) and the previous measured value (Ek).

The resultant value for Ek+1 was then used to calculate the

appropriate amount of real and reactive power output from the

inverter for the next time step.

A realistic scenario was simulated using the parameters

EA = 240V, EB = 250V, V = 230V,

R = 0.606Ω, X = 1.251Ω, S = 10kVA, (28)

d = 10%/V, µlim = 0.95, µ = 0.99.

For these parameters, Lemma 2(b) is satisfied because

R

Z
µlim −

X

Z

√

1− µ2
lim +

V 2

2SZ
= 2.036 > 1.

The inequalities in (22) are satisfied with F (EA) =
240.91V ≥ EA = 240V and F (Elim) = 230.11V ≤ Elim =
240.40V, which by Proposition 3 guarantee the existence of

an equilibrium E∗ ∈ [EA, Elim].
The equilibrium voltage E∗ was numerically found to be

240.023V , which gives F ′(E∗) = −37.31. As Figure 4 and

5 show, using a = 0.90 or a = 0.94 in the filter makes this
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equilibrium unstable, while a = 0.96 makes it exponentially

stable. This is predicted by the theoretic tests in Proposition 4,

F ′(E∗) + 1+a
1−a

∣

∣

a=0.90
= −18.31

F ′(E∗) + 1+a
1−a

∣

∣

a=0.94
= −4.98

}

⇒ instability by (T2),

F ′(E∗) + 1+a
1−a

∣

∣

a=0.96
= 11.68 ⇒ stability by (T1).
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237.5

238.0

238.5

239.0

239.5

240.0

240.5

241.0

E
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(V
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a = 0.94

a = 0.96

Control Region Boundary

Fig. 4. Time-domain response of the voltage Ek at the point of connection
of the inverter to the line. The responses are unstable for a = 0.90 and
a = 0.94, and exponentially stable for a = 0.96. The lower end of the
control region (240V) is indicated in dash line. The equilibrium voltage in
this case, E∗ = 240.023 is the limiting value of the exponentially stable
response obtained for a = 0.96.
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Fig. 5. Time-domain responses of the inverter output active and reactive
powers P(Ek) (left vertical axis) and Q(Ek) (right vertical axis) for different
values of the voltage measurement filter parameter a. The responses are
unstable for a = 0.90 and a = 0.94, and exponentially stable for a = 0.96.

The evaluation of the left hand sides of the bounds given

by Corollary 5 yields

LHS of (25)
∣

∣

a=0.90
= −0.14 < 0⇒ instability by (P2),

LHS of (25)
∣

∣

a=0.94
= 13.19 > 0 (P2) inconclusive,

LHS of (24)
∣

∣

a=0.94
= −12.92< 0 (P1) inconclusive,

LHS of (24)
∣

∣

a=0.96
= 3.74 > 0⇒ stability by (P1).

The bound given by (P2) implies instability for values of

a ≤ 0.9001, while the theoretical test (T2) implies instability

for values of a ≤ 0.9522, which illustrates the degree of

conservativeness of the parametric tests in Corollary 5. Further

comparison between the theoretical and parametric tests for

stability is provided in the next numerical study, which maps

stability regions over the parameter space spanned by a and

the ratio X/R.

B. Stability margins with respect to line impedance and volt-

age measurement filter

A numerical sensitivity study was conducted to analyse

stability of the equilibrium voltage E∗ with respect to the

line impedance X/R ratio, and the voltage measurement filter

bandwidth parameter a. The system considered is defined by

the nominal parameters listed in (28), except for

• R and X , which are varied, such that X/R ranges

over 500 values distributed in the interval [1.4, 2.15] that

satisfy the constraint X + R = 1.875 (satisfied by the

nominal values of X and R listed in (28)), and

• a, which is varied, ranging over 500 values distributed in

the interval [0.85, 1].

For each of the 500×500 pairs {X/R, a} sampled from their

ranges, the resulting equilibrium voltage E∗ is numerically

computed to within a precision of ǫ = 10−4 by means of

a procedure that combines the bisection method in Algo-

rithm 1 and the Newton-Raphson method in Algorithm 2 to

guarantee convergence and improve convergence speed. The

chosen ranges for X/R and a are such that the conditions of

Proposition 3 are satisfied for every combination and thus the

ensuing equilibria E∗ are in [Ea, Elim].
The conditions from Proposition 4 and Corollary 5 were

evaluated at each equilibrium voltage E∗ to determine ex-

ponential stability or instability. Figure 6 maps the stability

regions obtained over the range of values of X/R and a.

The map is divided into top and bottom halves by a curve

in solid line that represents the theoretical stability boundary

corresponding to the tests (T1) and (T2), namely

F ′(E∗) +
1 + a

1− a
= 0.

The top half (light and dark grey) above the theoretical stability

boundary corresponds to exponentially stable equilibria, while

the botom half (light and dark green) below the theoretical

stability boundary represents unstable equilibria.

Each of these halves is in turn divided by curves in dotted

lines. These curves represent the stability boundary for which

the parametric tests (P1) (top dotted line) and (P2) (bottom

dotted line) are conclusive. The darker grey area at the top of

the stable region represents stable equilibria implied by (P1).

Similarly, the darker area at the bottom of the instability region

represents unstable equilibria as implied by (P2).

Note that the degree of conservatism of (P1) and (P2) with

respect to (T1) and (T2) is quantified by the extent of the

lighter (grey and green) areas. Observe how the stability test

(P1) is less conservative for lower values of X/R and a, while

in contrast, the instability test (P2) becomes less conservative

for higher values of X/R and a.
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Unstable equilibria

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

X/R ratio

0.86

0.88

0.9

0.92

0.94

0.96

0.98

F
ilt

e
r 

c
o

e
ff

ic
ie

n
t 

a

Exponentially stable (P1 and T1)

Exponentially stable (T1)

Unstable (T2)

Unstable (P2 and T2)

Fig. 6. Theoretic and parametric stability regions as functions of the X/R ratio and the filter coefficient a. The same parameters as listed in (28) apply,
with the exception of X,R, which are varied such that X +R = 1.857 (= 1.251 + 0.606) remains constant.

In correspondence with our analytic observations in Sec-

tion III-E, line impedances with higher values of X/R (more

inductive) show reduced margins of stability, which are further

reduced by relatively smaller measurement filter coefficient

values a (faster voltage measurement).

V. Conclusions

This paper has presented a rigorous stability analysis of

a grid-connected inverter under simultaneous operation of

automatic Volt-Watt and Volt-VAR response functions to mit-

igate overvoltage issues. The inverter is assumed to be a

current-controlled inverter operating at or near capacity in

real power output, which is assumed to take precedence over

the production of reactive power, as recommended in current

standards and guidelines [8], [9].

The analysis presented by the paper provides sufficient

conditions for the existence of an equilibrium in the voltage

region of simultaneous operation of the Volt-Watt and Volt-

VAR response functions. The stability of this equilibrium is

determined by theoretical and parametric stability tests, which

may be evaluated numerically or analytically. The paramet-

ric tests are useful to analytically identify safe parameter

ranges for design implementation with guaranteed stability

margins. The paper discussed implications of these tests on

how stability is affected by key system parameters, such as

the inverter voltage measurement filter bandwidth, Volt-Watt

droop response gain, maximum admissible level of reactive

power, and line impedance X/R ratio. The observed impact

of these parameters is consistent with previous stability studies

for inverters with Volt-VAR response function [13], [16].

An important observation derived from the analysis is the

existence of an inherent stability vulnerability in the interaction

between Volt-Watt and Volt-VAR inverter response functions,

which appears not to have been identified previously. This

vulnerability arises under a typically recommended inverter

design configuration, where real power output takes prece-

dence over the absorption of VARs for voltage support.

Fundamentally, the stability vulnerability identified is

caused by the fact that the Volt-VAR support in the instance

of overvoltage is inhibited by the inverter being at or near its

capacity limit for real power output, which is given precedence

over the production of reactive power output. While VAR

support is triggered for voltages E > EC , VAR injection may

be constrained if there is sufficiently high real power output.

If the voltage then rises to EA, real power output is curtailed

alongside increased VAR injection, potentially causing high

rates of change of voltage and real/reactive power, due to

the quadratic coupling (12) between active and reactive power

outputs. This vulnerability does not exist if the precedence of

the Volt-Watt and Volt-VAR response functions is changed by

adopting a “reactive power preferred” model [18].

By setting precedence on reactive power, additional real

power losses will occur, which may not be a desirable solution

to PV owners. However, this has been argued to be of minor

practical consequence [18]. In this case, it is necessary to

bound the maximum absolute reactive power injected by the

inverter to avoid similar stability issues that can potentially

exist, due to an arbitrarily large negative gradient if ED ≤ EB .

Alternatively, stability margins may be increased while pre-

serving the real power preferred model by careful adjustment

of the system parameters to guarantee that the sufficient

condition for exponential stability prescribed by the proposed

stability criteria (Corollary 5(P1)) is satisfied.

Voltage-controlled inverters, connected to the grid as voltage

sources rather than as current sources, may be more suitable
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to feed power to the grid under high levels of renewable

energy penetration [35]. Voltage-controlled inverters naturally

regulate voltage and may be configured to mimic conventional

synchronous generators to directly participate in the regulation

of power system frequency and voltage via well-established

droop-control techniques [4, Chapter 18].

While the analysis presented applies to any grid-connected

current-controlled inverter irrespective of the larger network

configuration, it is limited to internal loop dynamics involving

the voltage measured at the inverter point of connection.

The stability analysis of dynamic interactions across multiple

inverters is a subject of ongoing research.
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