Voltage Stability of Electric
Power Systems



Power Electronics and Power Systems

Series Editors: M. A. Pai Alex Stankovic
University of Illinois at Urbana-Champaign ~ Northeastern University
Urbana, Illinois Boston, Massachusetts

Digital Control of Electical Drives
Slobodan N. Vukosavié¢
ISBN 978-0-387-48598-0

Three-Phase Diode Rectifiers with Low Harmonics
Predrag Pejovi¢
ISBN 978-0-387-29310-3

Computational Techniques for Voltage Stability Assessment and Control
Venkataramana Ajjarapu
ISBN 978-0-387-26080-8

Real-Time Stability in Power Systems: Techniques for Early Detection of the Risk of Blackout
Savu C. Savulesco, ed.
ISBN 978-0-387-25626-9

Robust Control in Power Systems
Bikash Pal and Balarko Chaudhuri
ISBN 978-0-387-25949-9

Applied Mathematics for Restructured Electric Power Systems: Optimization, Control, and
Computational Intelligence

Joe H. Chow, Felix F. Wu, and James A. Momoh, eds.

ISBN 978-0-387-23470-0

HVDC and FACTS Controllers: Applications of Static Converters in Power Systems
Vijay K. Sood
ISBN 978-1-4020-7890-3

Power Quality Enhancement Using Custom Power Devices
Arindam Ghosh and Gerard Ledwich
ISBN 978-1-4020-7180-5

Computational Methods for Large Sparse Power Systems Analysis: An Object Oriented Approach
S.A. Soman, S.A. Khaparde, and Shubha Pandit
ISBN 978-0-7923-7591-3

Operation of Restructured Power Systems
Kankar Bhattacharya, Math H.J. Bollen, Jaap E. Daalder
ISBN 978-0-7923-7397-1

Transient Stability of Power Systems: A Unified Approach to Assessment and Control
Mania Pavella, Damien Ernst, and Daniel Ruiz-Vega
ISBN 978-0-7923-7963-8

Maintenance Scheduling in Restructured Power Systems
M. Shahidehpour and M. Marwali
ISBN 978-0-7923-7872-3

Continued after index



Thierry Van Cutsem - Costas Vournas

Voltage Stability of Electric
Power Systems

@ Springer



Thierry Van Cutsem Costas Vournas

University of Li¢ge National Technical University

Belgium Athens, Greece

Series Editors:

M.A. Pai A .M. Stankovic

Department of Electrical and Department of Electrical and
Computer Engineering Computer Engineering

University of Illinois at Urbana Champaign Northeastern University

Urbana, IL 61801 Boston, MA 02115

USA USA

Library of Congress Control Number: 2007936412
Printed on acid-free paper.

Hardcover Edition ©1998 Springer Science+Business Media, LLC
ISBN 978-0-7923-8139-6 (Hardcover)

ISBN 978-0-387-75535-9 (Paperback) e-ISBN 978-0-387-75536-6

© 2008 Springer Science+Business Media, LLC (Paperback Edition)

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade
names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken
as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com



CONTENTS

Foreword
PREFACE
Part1 COMPONENTS AND PHENOMENA

1 INTRODUCTION
1.1 Why another Book?
1.2 Voltage Stability
1.3 Power System Stability Classification
1.4 Structure of this Book
1.5 Notation

2 TRANSMISSION SYSTEM ASPECTS
2.1 Single-Load Infinite-Bus System
2.2 Maximum Deliverable Power
2.3 Power-Voltage Relationships
2.4 Generator Reactive Power Requirement
2.5 A First Glance at Instability Mechanisms
2.6 Effect of Compensation
2.7 V@ Curves
2.8 Effect of Adjustable Transformer Ratios
2.9 Problems

3  GENERATION ASPECTS

3.1 A review of synchronous machine theory
3.2 Frequency and voltage controllers

ix

xi

~N W

10
12

13
13
15
2
25
26
31
38
41
44

47
47
64



Vi

33
34
35
3.6
3.7

VOLTAGE STABILITY OF ELECTRIC POWER SYSTEMS

Limiting devices affecting voltage stability

Voltage-reactive power characteristics of synchronous generators

Capability curves
Effect of machine limitations on deliverable power
Problems

4 LOAD ASPECTS

4.1
42
43
4.4
4.5
4.6
4.7
4.8

Part 11

Voltage Dependence of Loads
Load Restoration Dynamics
Induction Motors

Load Tap Changers
Thermostatic Load Recovery
Generic Aggregate Load Models
HVDC Links

Problems

INSTABILITY MECHANISMS AND ANALYSIS

METHODS

S MATHEMATICAL BACKGROUND

5.1
52
53
54

Differential Equations (qualitative theory)
Bifurcations

Differential-Algebraic Systems

Multiple time scales

6 MODELLING : SYSTEM PERSPECTIVE

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Outline of a general dynamic model

Network modelling

A detailed example

Time-scale decomposition perspective

Equilibrium equations for voltage stability studies
Detailed example (continued): equilibrium formulation
Number-Crunching Problem

LOADABILITY, SENSITIVITY AND

BIFURCATION ANALYSIS

73
78
86
89
91

93
94
97
99
113
123
126
131
132

135

137
137
153
161
166

175
175
178
184
193
194
206
210

213



Contents

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Loadability Limits

Sensitivity Analysis

Bifurcation Analysis

Eigenvector and Singular Vector Properties
Loadability or Bifurcation Surface

Loadability Limits in the Presence of Discontinuities
Problems

INSTABILITY MECHANISMS AND

COUNTERMEASURES

8.1
82
8.3
8.4
8.5
8.6
8.7

Types of Countermeasures

Classification of Instability Mechanisms
Examples of Short-term Voltage Instability
Countermeasures to Short-term Instability

Case Studies of Long-term Voltage Instability
Corrective Actions against Long-term Instability
Problems

CRITERIA AND METHODS FOR VOLTAGE

SECURITY ASSESSMENT

9.1
9.2
9.3
94
9.5
9.6
9.7

Voltage Security: Definitions and Criteria
Contingency Evaluation

Loadability Limit Computation

Secure Operation Limit Determination
Eigenanalysis for Instability Diagnosis
Examples from a Real-life System
Real-time Issues

REFERENCES

INDEX

vii

214
223
226
246
249
255
260

263
263
265
269
275
277
286
297

299
299
304
322
334
338
343
356

359

377



FOREWORD

Angle stability had been the primary concern of the utilities for many decades. In the
80’s due to the declining investments in new generation and transmission facilities,
the system became stressed, resulting in a new phenomena hitherto largely ignored,
namely voltage stability. Thus the role of reactive power in maintaining proper voltage
profile in the system began receiving attention. Several instances of voltage collapse
around the world only heightened the interest in this topic. Initially, treated as a static
concept, the importance of dynamics of the machines, exciters, tap changers as well
as dynamics of the load were found to affect voltage stability significantly.

This monograph addresses all these issues in depth from a rigorous analytical per-
spective as well as practical insight. Besides being a useful resource for engineers
in industry, it will serve as a starting point for new researchers in this field. In the
evolving scenario of a restructured power industry, the issues of voltage stability will
be more complex and challenging to solve.

Profs. T. Van Cutsem and C. Vournas have worked in this research area extensively
and have also offered short courses on this topic in the past.

I have great pleasure in welcoming this monograph in our power electronics and power
system series.

M. A. Pai
University of Illinois
Urbana, IL



PREFACE

The idea of writing this book has probably its root in the enjoyable discussions we
had in the Spring of 1994 during a sabbatical visit in Liége. Two years later, a couple
of common papers and the encouragement of Prof. Pai provided the motivation for
embarking on this adventure.

‘We undertook it courageously, in the middle of other obligations and with the help of
Internet to bridge the 2500 km that separate our cities. It has been a year-long, difficult
but enriching journey and for us it will remain memorable.

And so it will for our families ! Our very first thanks go to them: Marie-Paule, Frangois,
Nicolas, and Olivier on the one part, Malvina on the other. Their patience in coping
with us and our absences during this period is heartily recognized.
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Finally, the valuable technical support of George Efthivoulidis, at NTUA, as well as
his help in improving [ATgXstyles, are thankfully acknowledged.



PART I

COMPONENTS AND PHENOMENA



INTRODUCTION

“Je n’ai fait celle-ci plus longue que parce que
je n’ai pas eu le loisir de la faire plus courte™
Blaise Pascal

1.1 WHY ANOTHER BOOK?

There was a time when power systems, and in particular transmission systems could
afford to be overdesigned. However, in the last two decades power systems have
been operated under much more stressed conditions than was usual in the past. There
is a number of factors responsible for this: environmental pressures on transmission
expansion, increased electricity consumption in heavy load areas (where it is not
feasible or economical to install new generating plants), new system loading patterns
due to the opening up of the electricity market, etc. It seems as though the development
brought about by the increased use of electricity is raising new barriers to power system
expansion.

Under these stressed conditions a power system can exhibit a new type of unstable
behaviour characterized by slow (or sudden) voltage drops, sometimes escalating to
the form of a collapse. A number of such voltage instability incidents have been expe-
rienced around the world. Many of them are described in [Tay94]. As a consequence,
voltage stability has become a major concern in power system planning and operation.

As expected, the power engineering community has responded to the new phenomenon
and significant research efforts have been devoted to developing new analysis tools

1(speaking of a letter) I made this one longer, only because I had not enough time to make it shorter
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and controlling this type of instability. Among the early references dealing with the
subject are textbooks on power system analysis devoting a section to voltage stability
[ZR69, WeeT9, Mil82] as well as technical papers [WC68, Nag75, Lac78, BB8O,
TMI83, BCR84, Cal86, KG86, Cla87, CTF87, Con91]. A series of three seminars on
this specific topic [Fin88, Fin91, Fin94] has provided a forum for the presentation of
research advances. Several CIGRE Task Forces [CTF93, CTF94a, CTF94b, CWG98]
and IEEE Working Group reports [IWG90, IWG93, IWG96] have offered a compilation
of techniques for analyzing and counteracting voltage instability. More recently, a
monograph [Tay94] as well as one chapter of a textbook [Kun94] have been devoted
to this topic.

One important aspect of the voltage stability problem, making its understanding and
solution more difficult, is that the phenomena involved are truly nonlinear. As the stress
on the system increases, this nonlinearity becomes more and more pronounced. This
makes it necessary to look for a new theoretical approach using notions of nonlinear
system theory [Hil95].

In this general framework the objective of our book is twofold:

m  formulate a unified and coherent approach to the voltage stability problem, consis-
tent with other areas of power system dynamics, and based on analytical concepts
from nonlinear systems theory;

m  use this approach in describing methods that can be, or have been, applied to
solve practical voltage stability problems.

To achieve these two goals, we rely on a variety of power system examples. We start
from simple two-bus systems, on which we illustrate the essence of the theory. We
proceed with a slightly more complex system that is detailed enough to capture the
main voltage phenomena, while still allowing analytical derivations. We end up with
simulation examples from a real-life system.

1.2 VOLTAGE STABILITY

Let us now address a fundamental question: what is voltage stability ?

Convenient definitions have been given by IEEE and CIGRE Working Groups, for
which the reader is referred to the previously mentioned reports. However, at this
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early point we would like to define voltage instability within the perspective adopted
throughout this book:

Voltage instability stems from the attempt of load dynamics to restore power
consumption beyond the capability of the combined transmission and gen-
eration system.

Let us follow this descriptive definition word by word:

m  Voltage: as already stated, the phenomenon is manifested in the form of large,
uncontrollable voltage drops at a number of network buses. Thus the term
“voltage” has been universally accepted for its description.

®  nstability: having crossed the maximum deliverable power limit, the mechanism
of load power restoration becomes unstable, reducing instead of increasing the
power consumed. This mechanism is the heart of voltage instability.

®m  Dynamics: any stability problem involves dynamics. These can be modelled with
either differential equations (continuous dynamics), or with difference equations
(discrete dynamics). We will refer later to the misconception of labeling voltage
stability a “static” problem.

m  Loads are the driving force of voltage instability, and for this reason this phe-
nomenon has also been called load instability. Note, however, that loads are not
the only players in this game.

w  Transmission systems have a limited capability for power transfer, as is well
known from circuit theory. This limit (as affected also by the generation system)
marks the onset of voltage instability.

m  Generation: generators are not ideal voltage sources. Their accurate modelling
(including controllers) is important for correctly assessing voltage stability.

One term also used in conjunction with voltage stability problems is voltage collapse.
In this book we use the term “collapse” to signify a sudden catastrophic transition that
is usually due to an instability occurring in a faster time-scale than the one considered.
As we will see, voltage collapse may, or may not be the final outcome of voltage
instability.
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Figure 1.1 DC system

On the role of reactive power

The reader may have noticed that we did not include in the above definition of voltage
instability the important concept of reactive power. It is a well-known fact that in
AC systems dominated by reactances (as power systems typically are) there is a close
link between voltage control and reactive power. However, by not referring to reactive
power in our definition, we intend not to overemphasize its role in voltage stability,
where both active and reactive power share the leading role.

The decoupling between active power and phase angles on the one hand, and reactive
power and voltage magnitudes on the other hand, applies to normal operating conditions
and cannot be extended to the extreme loading conditions typical of voltage instability
scenarios.

The following example illustrates that there is no “cause and effect” relationship
between reactive power and voltage instability. Consider the system of Fig. 1.1 made
up of a DC voltage source F feeding through a line resistance R a variable load
resistance Ry.

We assume that R, is automatically varied by a control device, so as to achieve a power
consumption setpoint P,. For instance it could be governed by the following ordinary
differential equation: _

R, =I?R, - P, (1.1)

It is well known that the maximum power that can be transferred to the load corresponds
to the condition R, = I and is given by:
EZ

Pz = — 1.2
1B (1.2)
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Figure 1.2 Voltage instability in a DC system

If the demand P, is made larger than Py, ., the load resistance will decrease below R
and voltage instability will result after crossing the maximum power point. A typical
simulation for this case is shown in Fig. 1.2.

This simple paradigm has the major characteristics of voltage instability, although it
does not involve reactive power. In actual AC power systems, reactive power makes the
picture much more complicated but it is certainly not the only source of the problem.

1.3 POWER SYSTEM STABILITY CLASSIFICATION

We now place voltage stability within the context of power system stability in general.
Table 1.1 shows a classification scheme based upon two criteria: time scale and driving
force of instability.

The first power system stability problems encountered were related to generator rotor
angle stability, either in the form of undamped electromechanical oscillations, or in
the form of monotonic rotor acceleration leading to the loss of synchronism. The
former type of instability is due to a lack of damping torque, and the latter to a lack of
synchronizing torque.
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Table 1.1 Power System Stability Classification

Time scale Generator-driven Load-driven
hort.term rotor angle stability short-term
short-te | transient | | steady-state | voltage stability
- long-term
long-term frequency stability voltage stability

The first type of instability is present even for small disturbances and is thus called
steady-state or small-signal stability. The second one is initiated by large disturbances
and is called transient or large-disturbance stability. For the analysis of steady-state
stability it is sufficient to consider the linearized version of the system around an operat-
ing point, typically using eigenvalue and eigenvector techniques. For transient stability
one has to assess the performance of the system for a set of specified disturbances.

The time frame of rotor angle stability is that of electromechanical dynamics, lasting
typically for a few seconds. Automatic voltage regulators, excitation systems, turbine
and governor dynamics all act within this time frame. The relevant dynamics have been
called transient dynamics in accordance with transient stability, generator transient
reactances, etc. However, this may create misinterpretations, since “transient” is also
used in “transient stability” to distinguish it from “steady-state stability”, which also
belongs to the same time frame. For this reason we prefer to refer to the above time
frame of a few seconds as the short-term time scale.

‘When the above mentioned short-term dynamics are stable they eventually die out some
time after a disturbance, and the system enters a slower time frame. Various dynamic
components are present in this time frame, such as transformer tap changers, generator
limiters, boilers, etc. The relevant transients last typically for several minutes. We will
call this the long-term time scale.

In the long-term time scale we can distinguish between two types of stability problems:

1. frequency problems due to generation—load imbalance irrespective of network
aspects within each connected area;

2. voltage problems, which are due to the electrical distance between generation and
loads and thus depend on the network structure.



Introduction 9

In modern power systems, frequency stability problems can be encountered after a
major disturbance has resulted in islanding. Since we have assumed that the elec-
tromechanical oscillations have died out, frequency is common throughout each island
and the problem can be analyzed using a single-bus equivalent, on which all genera-
tors and loads are connected. The frequency instability is related to the active power
imbalance between generators and loads in each island?.

Voltage stability, on the other hand, requires a full network representation for its
analysis. This is a main aspect separating the two classes of long-term stability
problems. Moreover, as suggested by the definition we gave in Section 1.2, voltage
instability is load driven.

Now, when referring to voltage stability we can identify dynamic load components
with the tendency to restore their consumed power in the time-frame of a second,
i.e. in the short-term time scale. Such components are mainly induction motors and
electronically controlled loads, including HVDC interconnections. We have thus to
introduce a short-term voltage stability class alongside generator rotor angle stability.
Since these two classes of stability problems belong to the same time scale, they
require basically the same complexity of component models and sometimes distinction
between the two in meshed systems becomes difficult [VSP96]. In other words, in
the short-term time scale, there is not a clear-cut separation between load-driven and
generator-driven stability problems, as there is as between frequency and long-term
voltage stability.

It should be noted that the identification of the driving force for an instability mechanism
in Table 1.1 does not exclude the other components from affecting this mechanism.
For instance, load modelling does affect rotor angle stability, and, as we will show in
this book, generator modelling is important for a correct voltage stability assessment.

Each of the four major stability classes of Table 1.1 may have its own further subdivi-
sions, like the ones we have already seen in the case of generator rotor angle stability.
We can thus identify small-signal and large-disturbance forms of voltage stability.
Note, however, that this distinction is not as important as in the case of rotor angle
stability, where transient and steady-state stability relate to different problems. Thus,
although the small-signal versus large-disturbance terminology exists and is in accor-
dance with the above stability classification we will not use it extensively in this book.
We see voltage stability as a single problem on which one can apply a combination of
both linearized and nonlinear tools.

2Note that the counterpart of frequency stability in the short-term time scale is rotor angle stability, since
in this time scale there is no common frequency



10 CHAPTER 1

Another point to be made here deals with the distinction between dynamic and “static”
aspects. In fact, long-term voltage stability has been many times misunderstood as
a “static” problem. The misconception stems from the fact that static tools (such as
modified power flow programs) are acceptable for simpler and faster analysis. Voltage
stability, however, is dynamic by nature, and in some cases one has to resort to dynamic
analysis tools (such as time-domain methods). One should thus avoid to confuse means
with ends in stability classification.

1.4 STRUCTURE OF THIS BOOK

The book consists of two parts.

Part I deals with phenomena and components. It includes Chapters 2, 3, and 4, each
dealing with one of the three major aspects of the voltage stability problem according
to our definition of Section 1.2.

We start with transmission aspects in Chapter 2, because it is the limits on power
transfer that set up the voltage stability problem. In this chapter we review the
problem of maximum deliverable power in AC systems and concentrate on a number
of transmission components that are linked to voltage stability, such as compensation,
off-nominal tap transformers, etc.

Chapter 3 reviews the basics of generator modelling, including significant details,
such as the effect of saturation on capability limits. Frequency and voltage controls
are also reviewed, as well as the various limiting devices that protect generators from
overloading. We finally consider how generator limits affect the maximum deliverable
power of the system.

In Chapter 4 we focus on the driving force of voltage instability, i.e. load dynamics.
We first give a general framework of load restoration and then we proceed with the
analysis of three major components of load restoration, namely induction motors, load
tap-changers and thermostatic load. Finally we discuss aggregate generic load models.

Part II of the book deals with the description of voltage instability mechanisms and
analysis methods.

We first provide in Chapter 5 a summary of the mathematical background from non-
linear system theory necessary for the analysis of later chapters. This includes the
notions of bifurcation, singularity, and time-scale decomposition.
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In Chapter 6 we discuss general modelling requirements for voltage stability analysis,
and illustrate them using a simple but fully detailed example.

Chapter 7 gives the basic voltage stability theory in terms of three closely linked
concepts: loadability limits, bifurcations, and sensitivities. For the most part, this
chapter deals with smooth parameter changes. The effect of discontinuities, especially
those caused by the overexcitation limiters of synchronous generators is explicitly
taken into account.

In Chapter 8 we concentrate on large, abrupt disturbances and describe one by one
the possible mechanisms of losing stability, whether in the long-term, or the short-
term time scale. We also concentrate on countermeasures applicable to each type of
instability. The detailed example introduced in Chapter 6 is used to illustrate some of
the key instability mechanisms.

Finally, in Chapter 9 we give a representative sample of criteria and computer methods
for voltage stability analysis. After a brief review of security concepts, we consider
methods for contingency evaluation, loadability limit computation and determination
of secure operation limits. We end up with examples from a real-life system.

At the end of some chapters we provide problems. Some of them are straightforward
applications of the presented methods. Other problems refer to the examples and test
cases given in the text. Finally, some are at the level of research topics. The authors
would be pleased to receive suggestions and exchange views on all these.
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1.5 NOTATION

We give below a short list of notation conventions used in this book.

m  Phasors are shown as capital letters with an overline, e.g. I, V.

= Phasor magnitudes are shown by the same capital letter without the overline, e.g.
LV.

m  Lowercase bold letters, e.g. x,y, correspond to column vectors. Superscript T
denotes transpose. Therefore row vectors are written as x7,y7 .

® A collection of phasors in a column vector is represented as a capital bold letter
with an overline, e.g. 1.

w  Matrices are normally shown as bold capital letters, e.g. A J.

s  Jacobian matrices are shown as a bold letter (indicating the vector function) with
a bold subscript (indicating the vector with respect to which we differentiate).

Thus: .
= |5

w  Time derivatives appear with a dot, e.g. &.



TRANSMISSION SYSTEM
ASPECTS

“Maybe I can’t define stability, but I know it when I see it !"!
Carson W. Taylor

In this chapter we analyze the role played by the transmission system in voltage
stability.

We first deal with two basic notions: the maximum power that can be delivered to loads
and the relationship between load power and network voltage. Then we briefly and
qualitatively explain how these two basic properties may result in voltage instability.
Next, we discuss the effect of components that affect the transmission capability, series
and shunt compensation on one hand, transformers with adjustable tap ratio on the other
hand. We also introduce the notion of VQ curves that express the relationship between
voltage and reactive power at a given bus.

Most of the material of this chapter is based on the analysis of a simple single-load
infinite-bus system, which allows easy analytical derivations and provides insight into
the problem. Basic concepts introduced in this chapter will be generalized in later
chapters to large system of arbitrary complexity.

2.1 SINGLE-LOAD INFINITE-BUS SYSTEM

We consider the simple system of Fig. 2.1, which consists of one load fed by an infinite
bus through a transmission line. By definition, the voltage magnitude and frequency

1 Panel Session presentation at the 1997 IEEE/PES Winter Power Meeting
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Figure 2.1 Single-load infinite-bus system

R X
_ﬁ
—_— T —

Figure 2.2 Circuit representation

are constant at the infinite bus. We assume balanced 3-phase operating conditions, so
that the per phase representation is sufficient. We also consider steady-state sinusoidal
operating conditions, characterized by phasors and complex numbers. The phase
reference is arbitrary and need not be specified at this stage.

This leads to the circuit representation of Fig. 2.2. The infinite bus is represented by
an ideal voltage source E. The transmission line is represented by its series resistance
R and reactance X, as given by the classical pi-equivalent. The line shunt capacitance
is neglected for simplicity (the effects of shunt capacitors are considered later in
Section 2.6.2). The transmission impedance is:

Z=R+3jX

Alternatively, we may think of £ and Z as the Thévenin equivalent of a power system
as seen from one bus. Note that, because power generators are not pure voltage sources,
the Thévenin emf somewhat varies as more and more power is drawn from the system;
we will however neglect this variation in a first approximation and consider a constant
emf £ as mentioned previously.
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Figure 2.3 Definition of angle ¢

Finally, let us recall that the load power factor is given by:

PF :£:~——Ij————=cos¢

S /P24 Q?
where P, () and S are the active, reactive and apparent powers and ¢ is the angle
defined in Fig. 2.3.

2.2 MAXIMUM DELIVERABLE POWER

As pointed out in the Introduction, voltage instability results from the attempt of loads
to draw more power than can be delivered by the transmission and generation system.
In this section we focus on determining the maximum power that can be obtained at
the receiving end of the simple system of Fig. 2.2, under various constraints.

2.2.1 Unconstrained maximum power

For the sake of simplicity we start by assuming that the load behaves as an impedance.
In fact we will show later on that this choice does not affect the results. We denote the
load impedance by:

Zy=Re+ jXe

where R, and X, are the load resistance and reactance, respectively.

We first revisit a classical derivation of circuit theory known as the load adaptation
problem [CDK87] or maximum power transfer theorem: assuming that both R, and
X are free to vary, find the values which maximize the active power consumed by the
load.
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The current I in Fig. 2.2 is given by:

Fo E
T (R+Re)+ (X + Xy)
and the active power consumed by the load:
2
P =Ry = R 2.1)

(R4 R+ (X + Xy)?

Maximizing P over the two variables R, and X, the necessary extremum conditions
are:

opP
ore - °
oP
ax, = 0

which after some calculations yields:

(R+ Re)? + (X + Xe)?* — 2Ry(R+ Rye)
~Ry(X + Xo)

The solution to these equations, under the constraint R, > 0, is unique:

R, = R (2.2a)
X = =X (2.2b)
or in complex form:
Zy =27

One easily checks that this solution corresponds to a maximum of P. In other words:

load power is maximized when the load impedance is the complex conjugate
of the transmission impedance.

Under the maximum power conditions, the impedance seen by the voltage source is
R+ Ry + 37X + jXe = 2R, i.e. itis purely resistive and the source does not produce
any reactive power. The corresponding load power is:

E2

Proe = — 2.
iE (23)

and the receiving-end voltage:

Vinazp = 5
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where the subscript maz P denotes a value under maximum active power condition.

The unconstrained case is not well suited for power system applications. The first
problem is that in a transmission system the resistance R can be negligible compared
to the reactance X. Now, making R tend to zero, the optimal load resistance (2.2a) also
goes to zero, while the maximum power (2.3) goes to infinity. The two results might
seem in contradiction: however, as R and R, go to zero, the current I goes to infinity
(since X + X; = 0) and so does the power R,I? ! This is obviously unrealistic.

Even when taking into account the nonzero transmission resistance R, the above resuit
is not directly applicable to power systems. Indeed, a highly capacitive load would
be required to match the dominantly inductive nature of the system impedance. A
modified derivation, closer to power system applications is made by assuming that the
power factor of the load is specified. This case is dealt with in the next subsection.

2.2.2 Maximum power under a given load power factor

Specifying the load power factor cos ¢ is equivalent to having a load impedance of the
form:
Zy=Re+jXe=Re+ jRytan ¢

which now leaves R; as the single degree of freedom for maximizing the load power.
The current 7 is now given by:
E

= (R+ R) + j(X + Rytan ¢)

and the load active power by:

R,E?
— 2 _
P=RJI = (BT R’ + (X 1 Ritang)? 2.4)
The extremum condition is:

0P

OR;
or, after some calculations:

(R24+ X% — R}(1 + tan?¢) = 0 (2.5)

which is equivalent to:
1Ze| = |2
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The second derivative is given by:

9*P
R = —2R(1 + tan? ¢)

which is always negative, thereby indicating that the solution is a maximum. In other
words:

under constant power factor, load power is maximized when the load impedance
becomes equal in magnitude to the transmission impedance.

The optimal load resistance and reactance are thus given by:
leaa:P - lZl cos ¢
XemazP = |Z| sin ¢ = R¢magp tan ¢

As an illustration, Fig. 2.4 shows the load power P, the voltage V' and the current
magnitude [ as a function of R,. Aninfinite &, corresponds to open-circuit conditions.
As R, decreases, V drops while [ increases. Aslongas R, remains larger than Ry, 40P,
the increase in I? gains over the decrease in R, and hence P increases. When R,
becomes smaller than Rsmqzp the reverse holds true. Finally, R, = 0 corresponds to
short-circuit conditions.

Lossless transmission

Let us come back to the case where R = 0. The optimal load resistance under constant
power factor is, according to (2.5):

Remaep = X cos ¢

Substituting in (2.4) yields the maximum active power:

cos¢ E?
Prowg = —————— 2.6
M ] 4 sing 2X (2.6)
with the corresponding reactive power:
sing FE?
= — 2.
Qmaa:P 1 +Sil’l¢ 92X ( 7)
and receiving-end voltage:
E (2.8)

dedf = Y
P v2/1+ sin L)
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PX/E? e

¢\ leaa:P / X
short-circuit no-load —a=

Figure 24 P,V and [ as a function of Ry, for a lossless system (R = 0) and under
constant power factor (tan ¢ = 0.2)

Lossless transmission and unity power factor

If we assume furthermore that the load is perfectly compensated, so that cos ¢ = 1, the
optimal resistance, maximum power and receiving-end voltage become respectively:

Rimazp = X
EZ
Pmaa: = 'ﬁ
E
VmazP = ﬁ ~ 0.707TF

Extensions to multiport systems

Some generalizations of the above results to multiport systems are given in [Cal83].
Let a multiport circuit be characterized by

V=E+7I
where V is the vector of terminal voltages, E the vector of open-circuit voltages, 1the
vector of injected currents and Z the (short-circuit) impedance matrix.



20 CHAPTER 2

If the circuit is purely reactive, and characterized by Z = jX, it can be shown that
the total active power delivered is maximized when a purely resistive network with
impedance matrix Z, = X is connected to the multiport. The corresponding maximum
power is easily obtained.

Furthermore if all the elements of the multiport matrix Z have the same argument ¢
and all the elements of the loading matrix Z, the same argument ¢, i.e.

Z=Ne’® and Z,=Lé?
the total active power is maximum when N = L.

Note that the individual load powers are not constrained with respect to each other in
this derivation. If a pattern of load increase is specified, the maximum power delivered
will be smaller. These aspects will be further discussed in Chapters 7 and 9.

Remark on load characteristics

Note that the maximum deliverable power given by either (2.3) or (2.6) depends only
on the network parameters (&, X) and is independent of the load characteristic which
was assumed to be that of an impedance for simplicity. This will be verified in the
sequel, where no assumption will be made as to the nature of the load. For this purpose
we now adopt a formulation in terms of powers.

2.2.3 Maximum power derived from load flow equations

For the sake of simplicity, we neglect the transmission resistance R (see Fig. 2.2). We
also take the ideal voltage source as the phase reference by setting £ = EZ0. We
denote the load voltage magnitude and phase angle by V' and 8 respectively.

One easily obtains from Fig. 2.2:
V=F-jXI

The complex power absorbed by the load is:
o R E* _ V*
S = P+jQ=VI=V ———

J(EV cosf + jEV sinf — V2 2.9)
X



Transmission system aspects 21

which decomposes into:

EV .

P = ——-;c—smﬂ (2.1021)
v? EV

Q = —7+7COSQ (2.10b)

Equations (2.10a,b) are the power flow or load flow equations of the lossless system.
For a given load ( P, @), they have to be solved with respect to V' and 6, from which all
other variables can be computed. Let us determine for which values of (P, @) there is
one solution.

Eliminating 8 from (2.10a,b) gives:
(V)24 (20X — BV 4+ X3 (P2 4+ Q%) =0 2.11)

This is a second-order equation with respect to V2. The condition to have at least one
solution is:
(2QX ~ E*)? —4X*(P* + Q%) > 0

which can be simplified into:
—-pP?2_ —Q + (—)2 >0 (2.12)

The equality in (2.12) corresponds to a parabola in the (P, Q) plane, as shown in
Fig. 2.5. All points “inside” this parabola satisfy (2.12) and thus lead to two load flow
solutions. Outside there is no solution while on the parabola there is a single solution.

This parabola is the locus of all maximum power points. Points with negative P
correspond to a maximum generation while each point with positive P corresponds to
the maximum load under a given power factor, as derived in the previous section.

The locus is symmetric with respect to the ()-axis (i.e. with respect to changing P
into — P). In other words, the maximum power that can be injected at the load end is
exactly equal to the maximum power that can be absorbed. However, this symmetry
disappears if one takes into account the line resistance.

Setting P = 0 in (2.12) one obtains:
E2
@< 4x

Noting that £2/X is the short-circuit power at the load bus, i.e. the product of the
no-load voltage F by the short-circuit current £/ X, the maximum of purely reactive
load is one fourth of the short-circuit power.
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QX :
E? ;
0.2k .
0 solution .
0.1 '
[ S P deooneedpoconcane R
_o.1k
02 2 solutions
-0.3
PX
04 . . E?
0.8 -0.6 ~-04 -0.2 0 0.2 04 0.6 0.8

Figure 2.5 Domain of existence of a load flow solution

Similarly, by setting ) = 0 in (2.12) one gets:

EZ
P<—
- 2X
which is the same power limit we derived for a lossless line with unity power factor,
and corresponds to half the short-circuit power.

As can be seen, there is a fundamental difference between the active and reactive
powers: any active power can be consumed provided that enough reactive power is
injected at the load bus () < 0), while the reactive load power can never exceed
E?/4X. This difference comes from the inductive nature of the transmission system
and further illustrates the difficulty of transporting large amounts of reactive power.
Note that in practice the large reactive support that is required for large active power
will finally result in unacceptably high load bus voltage.

2.3 POWER-VOLTAGE RELATIONSHIPS

Assuming that condition (2.12) holds, the two solutions of (2.11) are given by:

B2 Jo
V=% - QX /- - X?P? - XE*Q (2.13)



