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Abstract 
The present review focuses on voltammetric and amperometric methods applied for 
determination of epinephrine (EP) in last five years (2013-2017). Occurrence, role and 
biological importance of EP, as well as non-electrochemical methods for its assessment, are 
firstly reviewed. The electrochemical behavior of EP is then illustrated, followed by a 
description of the voltammetric and amperometric methods for EP content estimation in 
various media. Different methods for development of electrochemical sensors are reviewed, 
starting from unmodified electrodes to different composites incorporating carbon 
nanotubes, ionic liquids or various mediators. From this perspective, the interaction 
between functional groups of the sensor material and the analyte molecule is discussed, as 
it is essential for analytical characteristics obtained. The analytical performances of the 
voltammetric or amperometric chemical and biochemical sensors (linear range of analytical 
response, sensitivity, precision, stability, response time, etc.) are highlighted. Numerous 
applications of EP electrochemical sensors in fields like pharmaceutical or clinical analysis 
where EP represents a key analyte, are also presented. 
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1. Introduction 

Epinephrine (EP), also called adrenaline, is an important catecholamine neurotransmitter in the 

mammalian central nervous system [1]. Many life phenomena are related to the concentration of 

EP in blood. It also served as a chemical mediator for conveying the nerve pulse to efferent organs. 

Medically, EP has been used as a common emergency healthcare medicine [2,3]. EP is used to 

stimulate heartbeat and to treat emphysema, bronchitis, bronchial asthma and other allergic 

conditions, as well as the eye disease, glaucoma. Therefore, performing the research of EP has an 

important significance to medicine and life science [4]. EP is synthesized naturally in the body from 

L-tyrosine by the action of different enzymes. Almost 50 % of the secreted hormone appears in urine 

as free and conjugated, 3 % as vanilmandelic acid (VAM), the most abundant metabolite in urine [5]. 

Only small amounts of free EP are excreted. Meanwhile, EP is an electroactive compound and can 

be determined by electrochemical methods [6-11]. However, actual electrochemical detection of EP 

has two challenges. One is its low concentration level, while another challenge often encountered 

is the strong interference arising from electroactive compounds like norepinephrine (NE), dopamine 

(DA), ascorbic acid (AA) and uric acid (UA) [6]. To resolve these problems, one of the most common 

routes is using a modified electrode to improve the measuring sensitivity of EP and minimize the 

interference of AA and UA to EP determination [7-12]. Although many modified electrodes have 

been demonstrated to be effective for detecting EP, there is still a need to develop a new method 

with high efficiency and convenience for the detection of EP [13,14]. 

Injectable EP solutions used by emergency medical personnel and hospitals are principally 

degraded via oxidation. This degradation can be accelerated by heavy metals, ultraviolet light, 

exposure to oxygen, and increased pH. Typical preventive measures for hindering oxidative 

degradation use light-resistant containers, buffered solutions, and/or antioxidants [15-20]. Due to 

the crucial role of EP in biochemistry and industrial applications, the determination of EP still 

presents research interest. Quick monitoring of EP levels during production and quality control 

stages is important [21-24]. In this review, we investigate the latest progress in modification of 

electrodes and its improvement in detection of EP.  

2. Epinephrine determination by non-electrochemical techniques 

Several methods have been reported for the determination of EP including high performance 

liquid chromatography (HPLC) [25,26], HPLC-mass spectrometry [27], fluorimetry [28], HPLC optical 

fiber biosensor [29], capillary electrophoresis [30,31], flow injection [32,33], HPLC with fluorimetric 

detection [34], chemiluminescence [35,36] and spectrophotometry [37,38]. 
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3. Voltammetric and amperometric sensors 

Voltammetry is a potentiodynamic technique, based on measuring the current arising from 

oxidation or reduction reactions at the working electrode surface, when a controlled potential 

variation is imposed [39,40]. Amperometry is based on the application of a constant potential to a 

working electrode, and the subsequent measurement of the current generated by the 

oxidation/reduction of an electroactive analyte [41-43].  

3. 1. Voltammetry/amperometry at bare/unmodified electrodes 

Bare electrodes without functionalization represent an interesting alternative, in particular when 

high sensitivity is not required. This approach has been realized by use of a simpler system, resulting 

in reduced costs for both production and use, and long-term stability. An electrochemical biosensor 

for the sensitive detection of EP was introduced by Li et al. [44]. Their results showed that the 

magnitude of the oxidation peak current of EP is related to many factors, including the pH value of 

the supporting electrolyte in the working electrode electrolytic cell, the acidity of the supporting 

electrolyte in the auxiliary electrode electrolytic cell, the distribution coefficients for different EP 

species, the properties of electrode surface charge and the molecular configuration of electroactive 

component. In performing experiments, pH of PBS buffer solution was kept at 7.0 in the working 

electrode electrolytic cell and HCl solution maintained at 1.0 mol L-1 in the auxiliary electrode 

electrolytic cell. The standard solutions of different amounts of EP were added to the working 

electrode electrolytic cell and the oxidation peak current of EP was recorded by cyclic voltammetry 

(CV). The range of 2.0×10-7-1.0×10-4 mol L-1, with a detection limit of 6.2×10-8 mol L-1 was obtained. 

Satisfactory results have been achieved for the determination of EP in injection. The recovery of the 

standard addition was in the range of 95.0 -102.0 %.  

Jemelkova et al. [45] reported the voltammetric behavior of EP investigated by differential pulse 

voltammetry (DPV) at a carbon paste electrodes (CPE) made with different carbon powders CR-2, 

glassy carbon (GC) microparticles, and single-wall carbon nanotubes (SWNT). In Briton-Robinson 

(BR) buffer solution (pH 6), the linear dependence was found for the determination of EP by the 

given method in the concentration ranges of 1×10-6-1×10-4 (CR-2), 1×10-6-1×10-4 (GC microparticles) 

and 4×10-6-1×10-4 (SWNT) mol L-1. Limits of detection were 8× 10-7, 8×10-7 and 2×10-6 mol L-1, 

respectively. The best results were obtained by employing the CPE containing carbon paste with 

50 % (w/w) of SWNT, which showed a linear dynamic range of 4×10-7-1×10-4 mol L-1 and a limit of 

detection 2×10-7 mol L-1.  

3. 2. Voltammetry/amperometry at modified electrodes  

The need for over-potential diminution and fouling minimization has required the electrode 

modification with a view to increase sensitivity and obtain more prominent peak separation. These 

properties are required mainly in complex media such as biological samples particularly prone to 

interferences, where EP coexists with other electroactive species. 

3. 2. 1. Chemically modified electrodes 

Numerous electrochemical methods have been developed to determine EP on the basis of its 

electroactive nature. Most of these methods, however, have two major problems in EP 

determination which reduce accuracy and sensitivity of the results. The first is that in a natural 

environment, EP often coexists with a high concentration of electroactive biomolecules like UA, DA, 

NE, and AA that interfere with each other. The second problem of reported methods is that the 

product of EP oxidation (epinephrine chrome) can easily transform into polymers, which block its 
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further oxidation on the electrode surface. Hence, despite of considerable investigations, the 

preparation of a sensitive sensor with satisfactory selectivity and low detection limit with high 

sensitivity is still of great interest.  

Development and application of L-glutamic acid functionalized graphene nanocomposite 

modified GCE for the determination of EP were reported by Kang et al. [46] Linear relationship 

between EP concentration and current response measured by DPV method was obtained in the 

range of 1×10-7 to 1×10-3 mol L-1 with a limit of detection of 3×10-8 mol L-1. The modified electrode 

was employed to determine EP in urine with satisfactory results.  

Zhang and Wang [47] have described β-Mercaptoethanol self-assembled monolayer modified 

electrode, fabricated on a bare gold (ME/Au SAMs). The films accelerated the electron transfer as 

mediators, and showed an excellent electrocatalytic activity for the oxidation of EP. The 

electrochemical behavior of EP at ME/Au SAMs has been studied by CV and the electrocatalytic 

mechanism is explored. At potential of -0.044V (vs. SCE) in the aqueous buffer (pH 4.0), the first 

oxidation wave was observed for EP at the modified electrode (electrochemical oxidation of 

leucoepinephrine to epinechrome). In contrast, the first oxidation wave was not observed for NE or 

DA under same conditions. 

Fabrication of modified GCE for determination of EP in aqueous solutions was reported by 

Ahmadian Yazdely et al. [48]. Their DPV results exhibited the linear dynamic range from 5.0×10-8 to 

1.1×10−5 mol L-1 and detection limit of 2.3×10−8 mol L-1 for EP. In addition, the analytical performance 

of the modified electrode for quantification of EP in real samples was evaluated.  

Sharath Shankar and Kumara Swamy [49] have successfully investigated tetradecyltrimethyl 

ammonium bromide (TTAB) surfactant immobilized at CPE which has been proposed for 

simultaneous investigation and determination of EP and serotonin (5-HT) in presence of AA. 

Voltammetric techniques in the phosphate buffer solution (PBS) (pH 7.4) were applied. The anodic 

peak of EP was observed at 198 mV (vs. Ag/AgCl/KCl) at the scan rate 50 mV s-1. The interference 

studies showed that the modified electrode exhibits excellent selectivity for the determination of 

EP in the presence of large excess of AA and 5-HT. Differences of the oxidation peak potentials for 

EP-AA and EP-5-HT were about 215 and 165 mV, respectively. Detection limit of the modified 

electrode obtained by DPV technique was found to be 0.12 µmol L-1. The developed method was 

applied to the determination of EP in synthetic samples with satisfactory results. 

Jahanbakhshi [50] reported a synthesis of mesoporous carbon foam (MCF) with particular 

properties due to simplistic and template-free procedure. The synthesized MCF was characterized 

by transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction 

and BET surface area techniques. Porous MCF, with pore diameters of 5 to 10 nm resulted in 

extensive specific surface area that modifies the electrode surface. The obtained MCF was dispersed 

in the Salep solution to prepare a stable suspension (S-MCF). The resultant composite was casted 

on the surface of GCE to assemble the S-MCF modified GCE electrode (S-MCF/GCE). CV method was 

used to study electrochemical behavior and determination of EP was conducted by applying DPV 

method in the presence of UA. In the optimized conditions, the presented sensor was found able to 

detect the concentration range of 0.1-12 μmol L-1 with a limit of detection of 40 nmol L-1. The 

presented methodology possesses a reliable reproducibility, repeatability and stability in biological 

samples.  

Sensitive and selective determination method for EP was developed by Chandrashekar et al. [51] 

by immobilization of TX-100 surfactant on the bare CPE. The catalytic activity of the modified 

electrode for the oxidation of EP was determined using CVs recorded at different scan rates. The 
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effect of the solution pH on the voltammetric response of EP was examined using the phosphate 

buffer solution. The TX-100/CPE demonstrated a good performance for the determination of EP in 

the concentration range from 10 to 50 μmol L-1, with a detection limit of 1×10−6 mol L-1. The 

application was conducted for the determination of EP in a human serum sample and the sensor 

was proven to be rapid, having excellent selectivity and repeatability.  

In the research of Dehghan Tezerjani et al. [52], an electrochemical sensor was constructed for 

determination of EP. The sensor was based on the CPE modified with graphene oxide (GO) and 

2-(5-ethyl-2,4- dihydroxyphenyl)-5,7-dimethyl-4 H-pyrido (2,3-d) (1,3) thiazine-4-one (EDDPT) as 

modifiers. The modified electrode was applied as an electrochemical sensor for oxidation of EP. 

Under the optimum conditions, the overpotential value for EP oxidation decreased for about 

279 mV at the modified CPE more than at non-modified CPE. Also, the designed electrochemical 

sensor was applied to determine EP in the drug sample and for simultaneous determination of EP, 

ACT and DA in human serum solutions.  

3. 2. 2. Modified electrodes with polymer 

In recent years, electrochemically modified electrodes with conductive or redox polymers have 

been widely used owing to their excellent and unique physical and chemical properties. This kind of 

modification is established as the best approach for selective determination of some biomolecules 

because the surface characteristic on the electrode can be modulated by introducing various 

chemicals with reactive groups. The polymer-modified electrodes showed broad potential windows 

and can still catalyze electrochemical reactions which have high overpotential and poor selectivity.  

Electropolymerization of fuchsine acid (FA) was studied by Taei et al. [53] on the surface of GCE 

in different electrolyte media. Then, a novel Au-nanoparticle poly(FA) film modified GCE 

(poly(FA)/AuNP/GCE) was constructed for the simultaneous determination of AA, EP and UA. In 

addition, for the poly(FA)/AuNP/GCE, oxidation peak potentials of AA-EP and EP-UA were found 

separated for 150 mV and 180 mV, respectively. At the same time, for the bare GCE, not any 

separation was noticed. DPV results exhibited the linear dynamic range of 0.5-792.7 μmol L−1 for EP 

with the detection limit of 0.01 μmol L-1. The diffusion coefficient for the oxidation reaction of EP on 

AuNP/poly (FA) film coated GC electrode was calculated as 2.6 (±0.10) × 10−5 cm2 s−1.  

Li and Wang [54] have investigated an electrochemical sensor based on the poly(guanine) (PGA) 

modified GCE that was fabricated by electropolymerization of guanine on the bare GCE surface. This 

modified electrode exhibited good electrocatalytic property towards the oxidation of EP and UA in 

0.1 mol L-1 PBS (pH 4.0), seen as enhanced peak currents and well defined peak separations. Under 

optimum reaction conditions, oxidation peak currents of EP and UA were proportional to their 

concentrations in the range of 1.0×10-5 to 1.0×10-3 mol L-1 and detection limit of 1.8×10-6 mol L-1 was 

determined for both compounds. Finally, this method was efficiently used for the determination of 

EP in EP injections. 

Kocak and Dursun [55] used a modified electrode that was fabricated by overoxidation of 

polymer film after electropolymerization of p-aminophenol on a bare GCE. Higher catalytic activity 

was observed for electrocatalytic oxidation of AA, EP, and UA in PBS (pH 7.4) at the overoxidized 

poly(p-aminophenol) film modified GCE (Ox-PAP/GCE), due to enhanced peak current and well 

defined peak separations compared to both bare GCE and poly (p-aminophenol) film modified GCE 

(PAP/GCE).  

Devadas et al. [56] presented for the first time, a simultaneous voltammetric determination of 

EP and p-acetoaminophenol (AP) on the poly(curcumin) (1,7 bis((4-hydroxy-3-methoxyphenyl)-1,6- 
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-heptadiene-3,5 dione) modified GCE. Curcumin (CM) was polymerized onto the GCE surface by 

simple electropolymerization process. Low peak to peak (ΔEp) separation of 60 mV was observed, 

indicating fast electron transfer between poly(CM) and the electrode surface. Moreover, the 

poly(CM) modified GCE exhibited enhanced electrocatalytic activity for EP in the linear range of 

4.97-230.76 µmol L-1 and very low detection limit (LOD) of 0.05 µmol L-1.  

Taei and Jamshidi [57] introduced a polymerized film of Adizol Black B (ABB) on the surface of 

GCE for the simultaneous determination of AA, EP and UA. This new modified electrode presented 

an excellent electrocatalytic activity towards the oxidation of AA, EP and UA by DPV method. The 

separation of the oxidation peak potentials for AA-EP and EP-UA were at about 180 and 130 mV, 

respectively. The diffusion coefficient for the oxidation reaction of EP at the poly(ABB) film coated 

GCE was calculated as 1.54 (±0.10)×10−4 cm2 s-1.  

Ma et al. [58] demonstrated an electrochemical sensor based on the silver doped poly-L-cysteine 

film (Ag-PLC) that has been fabricated for simultaneous determination of DA, EP and UA in the 

presence of AA. Although voltammetric signals of DA and EP were resolved at the bare GC electrode, 

the signals of DA and UA were not resolved in a mixture. However, (Ag-PLC) modified electrode does 

not only separate voltammetric signals of DA, EP and UA with potential difference of 390 and 

135 mV between DA-EP in the cathodic peak potential and UA-(DA+EP) in the anodic peak potential 

respectively, but also shows higher electrocatalytic activity towards DA, UA and EP in the presence 

of high concentration of AA. For EP, the linear range was determined from 5.00×10-6 to 

1.10×10-4 mol L-1. The practical application for this modified electrode was demonstrated by 

determining the concentration of DA, UA and EP in human urine samples.  

Li and Sun [59] introduced a novel paladium doped poly(L-arginine) modified electrode 

(Pd-PLA/GCE), fabricated by electrochemical immobilization of the paladium doped poly (L-arginine) 

on a GCE. This modified electrode was used for determination of EP by the CV method. The method 

was successfully applied to the determination of EP in injection with satisfactory results. 

A simple and sensitive poly(L-aspartic acid)/electrochemically reduced graphene oxide modified 

GCE, poly(L-Asp)/ERGO/GCE, has been constructed by electrochemical reduction of GO that was 

drop coated on the GCE within 2 mmol L-1 L-aspartic acid in PBS (pH 6). As suggested by Mekassa et 

al 60, this procedure gives rise to in situ polymerization of L-aspartic acid on the ERGO. Significant 

enhancement of the peak current response of EP was observed, accompanied with a negative shift 

in the peak potential value at the composite modified electrode, compared to the bare electrode. 

Real sample analysis was carried out in the pharmaceutical formulation of EP hydrochloride 

injection, which revealed good recovery results of 94–109 %.  

According to Vieira da Silva [61], the polymerization of ferulic acid (FA), forming poly(FA) on 

MWCNTs modified GCE was performed and the modified platform applied for simultaneous 

determination of NADH, EP and DA. CV and CA methods were employed to investigate the 

electrocatalytic oxidation of NADH, EP and DA on the modified electrode in aqueous solutions. The 

obtained analytical curve for EP showed linear range between 73-1406 μmol L−1. The detection limit 

was 22.2 μmol L−1 for EP.  

Poly(ionic liquids), (PILs), have been applied as the linkers between Au nanoparticles and 

polypyrrole nanotubes (PPyNTs) for the synthesis of Au/PILs/PPyNTs hybrids. As was reported by 

Mao et al. [62], due to the presence of PILs, high density of well dispersed AuNPs was deposited on 

the surface of PILs/PPyNTs by anion exchange with Au precursor and in situ reduction of metal ions. 

The catalytic oxidation peak current obtained by DPV method increased linearly with increasing EP 

concentration in the range of 35-960 µmol L-1 with a detection limit of 298.9 nmol L-1, according to 
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the criterion of a signal-to-noise ratio (S/N=3). These results suggested that this modified electrode 

shows excellent electrocatalytic activity towards this significant hormone in human life.  

3. 2. 3. Modified electrodes with carbon nanotubes 

Carbon nanotubes (CNTs) have attracted more attention in physical, chemical and material 

science fields due to their unique electrical conductivity, chemical stability and high mechanical 

strength and modulus. The subtle electronic properties of carbon nanotubes suggest that they are 

able to promote electron transfer when used as the electrode material in electrochemical reactions. 

These properties provided a new manner of electrode surface modification for designing new 

electrochemical sensors and novel electrocatalytic materials.  

In the research performed by Apetrei [63], a biosensor comprising tyrosinase immobilized on a 

SWCNTs modified GCE was developed for determination of EP. Tyrosinase maintained high 

bioactivity on this nanomaterial by catalyzing the oxidation of EP to EP quinone, which was 

electrochemically reduced (-0.07 V vs. Ag/AgCl) on the biosensor surface. Under optimum 

conditions, the biosensor showed a linear response in the range of 10-110 μmol L-1 and a limit of 

detection was calculated as 2.54 μmol L-1 with a correlation coefficient of 0.977 for EP. The 

repeatability, expressed as the relative standard deviation for five consecutive determinations of 

10-5 mol L-1 EP solution, was 3.4 %.  

Valentini et al. [64] used oxidized single wall carbon nanohorns (o-SWCNHs) for the first time, in 

order to assemble chemically modified screen printed electrode (SPE) that is selective towards the 

electrochemical detection of EP in the presence of serotonine-5-HT (S-5HT), DA, NE, AA, ACT and 

UA. EP neurotransmitter was detected by using DPV in a wide linear range of concentrations 

(2-2500 μmol L-1) with high sensitivity, very good reproducibility (RSD ranging from 2 to 10 % for 

different SPEs), short response time for each measurement (only 2 s) and low detection limit 

(LOD = 0.1 μmol L-1).  

A simple electrochemical sensor for EP has been developed by Ghica and Brett [65]. They 

modified a carbon film electrode (CFE) with MWCNTs in a chitosan matrix. Under optimum 

conditions (pH 7.0), the MWCNT/CFE electrode showed significant electrocatalytic oxidation of EP 

with a decrease of overpotential value for about 200 mV and 11-fold increase of the peak current 

value, compared to the unmodified CFE. The sensor exhibited excellent stability over a period of 6 

months and was successfully applied to the analysis of injectable adrenaline solutions.  

The electrochemical behavior of a multi walled carbon nanotube paste electrode modified with 

2-((7-(2,5-dihydrobenzylideneamino) heptylimino methyl) benzene-1,4-diol (DBHB) was studied by 

Mazloum Ardakani et al. [66]. CV method was used to study the electrocatalytic mechanism of EP 

electrooxidation at the modified electrode. Catalytic rate constant and diffusion coefficient were 

obtained for oxidation of EP. By using DPV method, a highly selective and simultaneous 

determination of EP, acetaminophen and folic acid has been obtained at the modified electrode 

used as an electrochemical sensor.  

Wu et al. [67] reported a sensor for EP that is based on ITO electrode modified with MWCNTs 

being pre-coated with a polymerized ionic liquid (PILMWNTs). The chitosan film was 

electrodeposited on the ITO electrode in the presence of EP and the PILMWNTs. This film acts as an 

excellent recognition matrix due to excellent film forming ability and many functional groups that 

favor hydrogen bond formation with the target EP. The electrochemical response to EP was linear 

in 0.2 μmol L-1 to 0.67 mmol L-1 concentration range, and detection limit was as low as 60 nmol L-1 

(at S/N =3).  
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Wang et al. [68] demonstrated a modified GCE that was covered with a layer of MWCNT coated 

with hexadecyltrimethyl ammonium bromide (CTAB). The modified electrode showed excellent 

electrochemical catalytic properties for the redox reaction of EP and AA. In the presence of CTAB, 

the peak separation between EP and AA can be broadened to 256 mV by the CTAB.  

 Graphite paste electrode (GPE) modified with 1-butyl-3-methylimidazolium hexafluoro 

phosphate (BMIMPF6) and MWCNTs was prepared for simultaneous voltammetric determination of 

EP and xanthine (XN) by Rajabi et al. [69]. The prepared electrode (BMIMPF6-MWCNT/GPE) showed 

excellent catalytic activity in the electrochemical oxidation of EP and XN, leading to remarkable 

enhancement of the corresponding peak currents and lowering the peak potentials. The peak 

current values of linear sweep voltammograms increased linearly with EP concentrations in the 

range of 0.30-60 μmol L-1 in 0.1 mol L-1 PBS (pH 7.0). Applicability of this modified electrode as the 

voltammetric biosensor was demonstrated by simultaneous determination of EP and XN in human 

urine, human blood serum and ampoule.  

In the study of Babaei et al. [70], electrooxidation of EP, ACT and mefenamic acid (MEF) has been 

investigated by application of nickel hydroxide nanoparticles/MWCNT modified GCE 

(MWCNT-NHNPs/GCE) using CV and DPV methods.  

In another study, Pradhan et al. [71] employed a composite electrode for the amperometric 

detection of EP. Composite electrode was developed by electropolymerizing bromothymol blue 

(BTB) on the CPE bulk modified with MWCNTs. Electropolymerization of BTB on the surface of CPE 

involved much less energy compared to a CPE surface. The modification enhanced the current 

sensitivity of EP by 5.5 times as compared to the bare CPE. The sensor showed the optimum current 

response at physiological pH and the response was linear for the concentration of EP in the ranges 

0.8-9.0 µmol L-1 and 10.0-100 µmol L-1, respectively. The detection limit was 8×10-7 mol L-1. The 

amperometric response of EP remained unaltered even in the presence of 50-fold excess of UA, AA 

and 100-fold excess of L-Tryptophan, L-Tyrosine, L-cysteine and nicotinamide adenine dinucleotide. 

This sensor showed stability, reproducibility, antifouling effects and was successfully applied for the 

determination of EP in blood serum and adrenaline injection.  

Thomas et al. [72] developed an amperometric sensor for the determination of EP which was 

fabricated by modifying the CPE with pristine multi walled carbon nanotubes (pMWCNTs). Bulk 

modification, followed by a drop casting of sodium dodecyl sulfate (SDS) onto the surface for its 

optimal potential application was performed. Analytical applications of the modified electrode were 

demonstrated by determining EP in spiked blood serum and adrenaline tartrate injection.  

Filho et al. [73] developed an electrochemical method for the single and simultaneous 

determination of DA and EP in human body fluids, using a GCE modified with nickel oxide 

nanoparticles and carbon nanotubes within a dihexadecyl phosphate film. SWV and DPV methods 

were applied. By using DPV with the proposed electrode, a separation of ca. 360 mV between the 

peak reduction potentials of DA and EP was present in binary mixtures. The detection limit of EP 

was determined as 8.2×10-8 mol L-1. 

Koteshwara Reddy et al. [74] checked out an efficient electrochemical sensor for selective 

detection of EP. It was fabricated with the aid of a functionalized MWCNT-chitosan biopolymer 

nanocomposite (Chit-f CNT) electrode. MWCNTs were successfully functionalized with the aid of 

nitric acid and confirmed by the Raman spectral data. Functionalized carbon nanotubes (f CNT) were 

dispersed in chitosan solution and the resulting bio nanocomposite was used for the fabrication of 

sensor surface by drop and cast method. Electrochemical characteristics of the fabricated sensor 

were understood using CV and DPV analysis for the detection of EP in PBS (pH 7.4).  
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3. 2. 4. Modified electrode with nanoparticles and nanocomposites 

Nanotechnology and nanoscience represent new and enabling platforms that promise to provide 

a broad range of novel uses and improved technologies for environmental, biological and other 

scientific applications. One of the reasons staying behind the intense interest is that nanotechnology 

permits the controlled synthesis of materials, where at least one dimension of a structure is less 

than 100 nm. Nanostructured materials have also been incorporated into electrochemical sensors 

for biological and pharmaceutical analyses. While they offer unique advantages, including enhanced 

electron transfer, large edge plane/basal plane ratios and rapid kinetics of the electrode processes.  

In a study of Sadeghi et al. [75], CPE was modified with zinc oxide (ZnO) nanoparticles and 

1,3-dipropylimidazolium bromide was used as a binder. It was found that the oxidation of EP at the 

surface of modified electrode occurs at about 80 mV less positive potential than at unmodified CPE. 

DPV peak current values showed a linear relationship with concentration of EP in the range of 0.09-

800 μmol L-1, with a detection limit of 0.06 μmol L-1. The proposed sensor was successfully applied 

for the determination of EP in real samples. 

As suggested by Babaei et al. [76], simultaneous determination of EP and ACT can be performed 

using a GCE modified with a MWCNTs, nickel hydroxide nanoparticles (NHNPs) and Mg-Al layered 

double hydroxide (LDH) composite (MWCNTs-NHNPs-LDH/GCE). Based on DPV method, the 

oxidation of EP exhibited a dynamic range between 0.04-60 µmol L-1 and detection limit (3) of 

11 nmol L-1. This method was used for the determination of EP in real samples, using the standard 

addition method.  

Gold nanoparticles/polyaniline nanocomposite thin film was deposited on to the surface of GCE 

by Langmuir-Blodgett (LB) technology to fabricate a new voltammetric sensor (GNPs/PAn-LBGCE) 

for EP and UA detection, as was reported by Zou et al. [77]. Electrochemical behavior of EP and UA 

at the modified electrode was investigated in PBS (pH 6.6).  

Silai et al. [78] have reported a modified electrode that was prepared by immobilizing Pt-

nanoparticles into a chitosan film. The investigation of the influence of experimental conditions 

(scan rate, frequency, pH) on the electrochemical behavior of EP was realized by the CV method.  

Novel MCM/ZrO2 nanoparticles modified CPE was fabricated and used by Mazloum-Ardakani et 

al. [79], in order to study the electrooxidation of EP and ACT and their mixtures. The modified 

electrode showed electrocatalytic activity toward EP and ACT oxidation with a decrease of the 

overpotential value by 173 mV for EP at the surface of the MZ-CPE and an increase in peak current 

at pH 7.0.  

Jin and Zhang [80] used the nanogold modified GCE obtained by electrodeposition, which can 

catalytically oxidize and accumulate EP. In this research, effects of changes of pH and concentration 

of PBS on the electrochemical behavior of EP were studied. This modified electrode could be applied 

for determination of EP in the presence of AA. DPV data showed that under optimal conditions, the 

obtained anodic peak currents were linearly dependent on the EP concentration in the range of 

1.0×10-4-1.0×10-6 mol L-1.  

Razavian et al. [81] employed electrochemical sensor that was developed and tested for 

detection of L-tyrosine in the presence of EP. The electrode was prepared by surface modification 

of a GCE with nafion and cerium dioxide nanoparticles. The modified electrode exhibited a 

significant electrochemical oxidation effect of EP in a 0.2 mol L-1 Britton-Robinson (BR) buffer 

solution (pH 2). The electro-oxidation peak current increased linearly with the EP concentration in 

the molar concentration range of 5 to 220 μmol L-1. By employing DPV method for simultaneous 
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measurements, two reproducible peaks for L-tyrosine and EP in the same solution with a peak 

separation of about 443 mV were detected.  

Nitrogen doped three dimensional porous graphene (NG) modified electrode was fabricated by 

Yang et al. [82]. The obtained data showed that electrooxidation of EP at the modified electrode is 

greatly facilitated, which was ascribed to the excellent properties of NG. The modified electrode was 

used for simultaneous determination of EP and metanephrine (MEP). DPV peak currents of EP 

increased linearly with their concentration within the range of 1.0 μmol L-1 to 1.0 mmol L-1, with a 

sensitivity of 0.021 μA / (μmol L-1) for EP. The detection limit for EP was ascertained to be 

0.67 μmol L 1. Additionally, the detection of EP and MEP was found possible in the presence of AA 

and UA. The modified electrode was applied to the detection of EP and MEP in human plasma 

samples with recoveries from 98.9 % to 100.9 %, and EP hydrochloride injections with recoveries 

from 100.3 % to 104.6 %.  

Chen and Ma [83] used a graphene modified GCE obtained via drop casting method and applied 

it to the simultaneous detection of EP, UA, and AA by CV method in a PBS solution (pH 3.0). The 

oxidation potentials of EP, UA, and AA at the graphene modified GCE were 0.484, 0.650, and 0.184 V 

(vs. Ag/AgCl), respectively. Peak separations between EP and UA, EP and AA, and UA and AA were 

about 166, 300, and 466 mV, respectively.  

A hybrid membrane, consisting of aminated graphene and Ag nanoparticles, (AgNPs), was 

prepared on the surface of GCE by the CV method, where aminated graphene (GR-NH2) acted as a 

matrix for immobilizing AgNPs. The morphology and electrochemical properties of this hybrid 

membrane were characterized together with the voltammetric behavior of EP in a study of 

Huanhuanin et al. [84]. The membrane exhibited excellent eletrocatalytic activity for the redox 

reaction of EP and resolved the electrochemical response of EP and UA into two oxidation peaks.  

According to Mak et al. [85], organic electrochemical transistors (OECTs) were found to be 

excellent transducers for various types of biosensors. It was highly sensitive EP sensor based on 

OECTs prepared on glass substrates by solution process. The device performance was optimized by 

immobilizing Nafion and carbon based nanomaterials on the gate electrodes of the OECTs. The 

detection limit of the sensors was as low as 0.1 nmol L-1, which could cover the concentration level 

of EP in medical detections.  

In a study performed by Beitollahi et al. [86], CPE modified with vinyl ferrocene (VF) and CNTs 

was used for the sensitive and selective voltammetric determination of EP, which could be related 

to the strong electrocatalytic effect of the VF and CNT towards this compound. The mediated 

oxidation of EP at the modified electrode was investigated by CV. SWV method of EP at the modified 

electrode exhibited linear dynamic ranges with a detection limit of 3.0×10-8 mol L-1. SWV was also 

used for simultaneous determination of EP and tryptophan at the modified electrode. Quantification 

of EP and tryptophan in some real samples was performed by the standard addition method.  

Zhang et al. [87] described a facile preparation of polydopamine (PDA)-nanogold composite 

modified GCE used for the sensitive determination of EP, DA, AA and UA simultaneously. Under mild 

spontaneous reaction condition, DA as a reducing agent and monomer and HAuCl4 as an oxidant 

trigger for DA polymerization were mixed together with the source of gold nanoparticles to yield a 

composite of DA polymer and gold nanoparticles. These composite particles were then anchored on 

GCE by electropolymerization of the remaining DA monomer. The resultant electrode exhibited 

excellent electrocatalytic redox activities toward EP, DA, AA and UA. Furthermore, although the 

oxidation peaks of EP and DA at the modified electrode appeared at the same potential of 230 mV 
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(vs. Ag/AgCl), three well defined oxidation peaks were generally obtained for AA, EP, DA and UA (50, 

230, 380 mV vs. Ag/AgCl).  

In a study of Redin el al. [88], a green approach for the preparation of carbon black (CB) and 

electrochemically reduced graphene oxide composite (ERGO) was described. Electrochemical 

sensors were based on screen printed carbon electrodes (SPCEs), fabricated on poly (ethylene 

terephthalate) (PET). The SPCE/CB-ERGO sensor was tested with DA, EP and paracetamol (PCM), 

exhibiting an enhanced electrocatalytic performance compared to the bare SPCE.  

In another study, Gupta et al. [89] have synthesized NiO/CNTs nanocomposite and applied it for 

fabrication of NiO/CNTs nanocomposite modified CPE (CPE/NiO/CNTs) as SWV sensor for the deter-

mination of EP. The electrooxidation signal of EP showed an irreversible response at 0.3 V 

(vs. Ag/AgCl). The oxidation current of EP was doubled compared to a CPE. At the best electroche-

mical conditions, the voltammetric oxidation signal of EP showed linear dynamic range 

(0.08-900.0 μmol L-1), with detection limit of 0.01 μmol L-1.  

Electrochemical sensor developed by Anithaa et al. [90] for the simultaneous determination of 

EP and xanthine is based on the gamma irradiated SDS-WO3 NPs. The fabricated sensor exhibited 

wide linear range (0.009-1000 μmol L-1) with low detection limit (1.8 nmol L-1) for EP.  

Tsele et al. [91] studied electrochemical properties of functionalized MWCNT/polyaniline (PANI) 

doped with metal oxide (TiO2, RuO2) nanoparticles. Successful syntheses of MWCNT, TiO2, RuO2, 

PANI, MWCNT-PANI-TiO2 and MWCNT-PANI-RuO2 nanomaterials were confirmed using suitable 

characterization techniques. Au-MWCNT-PANI-TiO2 and Au-MWCNT-PANI-RuO2 modified electro-

des showed the best electron transport properties towards the oxidation of EP, compared with 

other electrodes investigated. The Tafel values obtained in the presence of EP as 0.448 and 

0.442 V/decade for Au-MWCNT-PANI-TiO2 and Au-MWCNT-PANI-RuO2 electrodes respectively, 

suggested adsorption due to analyte oxidation intermediates products. The linear calibration plot 

for EP was obtained in the concentration range of 4.9 to 76.9 μmol L-1, while a limit of detection for 

Au-MWCNT-PANI-TiO2 electrode was 0.16 μ mol L-1.  

4. Interferences from compounds present in biological media and pharmaceuticals 

Interference studies were carried out with several chemical substances prior to the application 

of the proposed method for the assay of EP in urine samples and the injection solution. The potential 

interfering substances were chosen from the group of substances commonly found with EP in 

pharmaceuticals and biological fluids. In biological environments, AA is commonly present with EP 

and may be oxidized at similar potential as EP.  

In the research performed by Kang et al. [46], CVs of EP and AA were respectively recorded at 

the L-glutamic acid-graphene/GCE. The results showed that the oxidation peak of EP is not affected 

by presence of AA. This means that the modified electrode is able to distinguish EP from AA. 

The influence of various foreign species on the determination of 50.0 μmol L-1 EP, 100.0 μmol L-1 

AA and 50.0 μmol L-1 UA was investigated by Taei et al. [53]. The tolerance limit was taken as the 

maximum concentration of the foreign substance(s) which caused an approximately ±5 % relative 

error in the determination. It was also found that Mg+2, Ca+2, SO4
-2, Br-, K+, NO- 3, ClO4

- glycine, 

glucose, sucrose, lactose, fructose, valine, aspartic acid, urea, and saturation of starch solution did 

not interfere with the determination of these compounds. However, greater amounts of cysteine 

(40-fold), oxalate ion (100-fold), and citric acid (30-fold) did cause interference in the simultaneous 

determination of EP, AA and UA by poly(fuchsine acid) modified GCE. 
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As was reported by Ahmadian Yazdely et al. [48], the maximal tolerable concentration of foreign 

substances was, by using the thiourea modified GCE, determined as 5.0×10−5 mol L-1 for glucose, 

uric acid, ascorbic acid, citric acid, dopamine, and Na+, K+, Cu2+, Mg2+, NO3
- and SO4

2- ions. 

In their study, Li and Wang [54] have illustrated that K+, Na+, Ca2+, Mg2+, sucrose and glucose do 

not interfere significantly, while L-glutamic acid, Cu2+ and Fe2+ ions showed a certain effect on the 

examinations of EP and UA. 

Sadeghi et al. [75] studied the influence of various substances as potential interfering compounds 

on the determination of EP by the SWV method under optimum conditions. A study was performed 

by a novel biosensor based on ZnO nanoparticle/1,3-dipropylimidazolium bromide ionic liquid 

modified CPE. The tolerance limit was defined as the maximum concentration of the interfering 

substance like glucose, fructose, lactose, sucrose tryptophan, histidine, glycine, valine, methionine, 

lucine, alanine, phenylalanine, Ca2+, Li+, ClO4
 -, SO4

2-, SCN-, Na+, Mg2+, K+, AA, urea, cysteine and UA 

that caused an error less than 5 % for the determination of EP. The results showed that the peak 

current of EP was not affected by all conventional cations, anions and organic substances. 

As stated by Babaei et al. [70], interferences of AA, L-glutamic, L-alanin, aspartic acid and aspirin 

in determination of EP were significant only at relatively high concentrations, confirming that the 

proposed nickel hydroxide nanoparticles/MWCNTs modified GCE (MWCNT-NHNPs/GCE) was likely 

to be free from interferences from common components of biological samples.  

Wang et al. [68] have illustrated the influence of some metal ions and anions that usually exist in 

biological fluid on the determination of 5.0×10-5mol/L EP. If the ±5 % error was allowed, 

5.0×10-3 mol/L of K+, Na+, Fe2+, Mg2+, Cl-, SO4
2- did not show obvious interference on a modified GCE, 

fabricated by covering with a layer of MWCNTs coated with hexadecyl trimethyl ammonium 

bromide (CTAB).  

In another work, Apetrei et al. [63] investigated the influence of various interfering agents on 

determination of EP. The interfering substances Na+, S2O5
2-, Cl-, urea, tartaric acid, hydrochloric acid, 

glucose and glycine did not show any influence on the biosensor response when detecting EP. An 

absence of significant modification of the peak current recorded in the presence of interfering 

species was demonstrated. Therefore, tyrosinase immobilized on a single-walled carbon nanotube 

modified GCE (tyrosinase/SWCNT-GCE) can be considered to be a good biosensor for recognition of 

EP.  

Mazloum Ardakani et al. [66] studied the electrochemical behavior of a MWCNT paste electrode 

modified with 2-((7-(2,5-dihydrobenzylideneamino) heptylimino) methyl) benzene-1, 4-diol (DBHB). 

Influence of various foreign species like AA, DA, UA, levodopa, N-acetyl and captopril at 

concentrations 5 times higher than EP did not show any interference in the determination of EP.  

The influence of various foreign species on the determination of 50 μM EP was investigated by 

Mekassa et al. [60] under optimum experimental conditions. Potentially interfering substances were 

chosen from the group of substances commonly found with EP in pharmaceutical formulations and 

biological fluids. The tolerance limit was defined as the maximum concentration of the foreign 

substance(s) that caused an approximately ±5 % relative error in the determination of EP. According 

to the obtained results, AA, citric acid, D-glucose, lactose, glycine, Mg2+, Ca2+, Na+, and K+ did not 

show any interference effect in the determination of EP.  

Study of Vieira da Silva [61] showed that influence of interference on the electrode response can 

be useful to set up the sample preparation with the goal to minimize their effects. Interference from 

electroactive compounds typically present in a physiological sample (e.g., serotonin (SER), AA and 
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UA) commonly hinders the accurate determination of EP. The selectivity of the sensor was examined 

in the presence of SER, AA and UA.  

5. Analytical performances of electrochemical epinephrine sensors 

The analytical performances of electrochemical methods depend on the sensor’s construction 

and some of the most illustrative examples are extensively reviewed in Table 1.  

Table 1. Some analytical performances attained in electrochemical determination of EP. 

Type of 
detection 

Transducer Linear response 
Detection 

limit 
Relative 

stand. dev. 
Ref. 

Voltammetry  
(CV, DPV) 

L-glutamic acid functionalized graphene 
nanocomposite, modified glassy carbon 
electrode 

10-7- 10-3  

mol L-1 
3×10-8  

mol L-1 
≤ 3.4 % [46] 

Voltammetry 
(DPV) 

β-Mercaptoethanol self-assembled 
monolayer modified gold electrode 

10-7-10-4  
mol L-1 

3.3×10-8 

mol L-1 
 

 
[47] 

Voltammetry 
(CV, DPV) 

Glassy carbon electrode modified with 
thiourea 

5.0×10-8-1.1×10−5 

mol L-1 
2.3×10−8  
mol L-1 

1.2 % [48] 

Voltammetry  
(CV, DPV) 

Tetradecyltrimethyl ammonium bromide 
(TTAB) surfactant immobilized carbon 
paste electrode 

0.15 - 30  
µmol L-1 

0.12  
µmol L-1 

2.4 % [49] 

Voltammetry  
(CV, DPV) 

Mesoporous carbon foam modified 
glassy carbon electrode 

0.1-12.0  
µmol L-1 

40 nmol L-1  [50] 

Voltammetry 
(CV, DPV) 

Au-nanoparticle poly-fuchsine acid film 
modified glassy carbon electrode 
(poly(FA)/AuNP/GCE) 

0.5–792.7  
μmol L−1 

0.01  
μmol L−1 

0.37 % [53] 

Voltammetry 
(CV, SWV) 

Poly (guanine) modified glassy carbon 
electrode (PGA/GCE) 

10−5 - 10−3  
mol L-1 

1.8 × 10−6  

mol L-1 
 [54] 

Voltammetry 
(CV) 

Single-walled carbon nanotube-modified 
glassy carbon electrode 

10-110  
μmol L-1 

2.54  
μmol L-1 

3.4 % [63] 

Voltammetry 
(SWV) 

ZnO nanoparticle/1,3-dipropylimidazo-
lium bromide ionic liquid-modified 
carbon paste electrode 

0.09-800  
μmol L−1 

0.06  
μmol L−1 

3.2 % [75] 

Voltammetry 
(CV, DPV) 

Glassy carbon electrode coated with a 
novel Mg–Al layered double hydroxide–
nickel hydroxide nanoparticles–multi-
walled carbon nanotubes composite 

0.04-60  
µmol L-1 

11.0  
nmol L-1 

≤3.1 % [76] 

Voltammetry 
(CV) 

Gold nanoparticles/polyaniline 
Langmuir–modified glassy 
carbonelectrode 

4×10-7 - 10-5  
mol L-1 

8×10-8  
mol L-1 

1.97 % [77] 

Voltammetry 
(DPAS) 

MCM/ZrO2 nanoparticles modified 
carbon paste electrode 

10-6-2.5×10-3  
mol L-1 

5.0×10-7  
mol L-1 

 [79] 

Voltammetry 
(CV) 

A graphene-modified glassy carbon 
electrode 

0.20-100  
µmol L-1 

0.001  
µmol L-1 

 [83] 

Voltammetry 
(CV, DPV) 

Aminatedgraphene and Ag nanoparticles 
modified GCE 

0.916-184  
μmol/L 

2.0  
nmol L-1 

 [84] 

Voltammetry  
(CV, SWV) 

Vinylferrocene and carbon nanotubes 
(CNTs)-modified carbon paste electrode 

0.1-1000.0  
µmol L-1 

3.0 × 10-8  
mol L-1 

≤ 2.5 % [86] 

6. Some applications of electrochemical epinephrine sensors in pharmaceutical and biological 
fluid analysis 

Electrochemical EP sensors have widespread application in pharmaceutical and biomedical 

analysis, as shown in Table 2. 
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Table 2. Numerical data on EP content determined in various analysed systems. 

Method Electrode type Analysed medium Recovery, % Reference 

CV, DPV 
L-glutamic acid functionalized graphenenano-
composite, modified glassy carbon electrode 

EP Injection 100.4 [46] 

DPAS 
β-Mercaptoethanol self-assembled monolayer 
modified gold electrode 

EP Injection 100.9 [47] 

CV Glassy carbon electrode modified with thiourea EP Injection 101.2 [48] 

DPV 
Tetradecyltrimethyl ammonium bromide 
(TTAB) surfactant immobilized carbon paste 
electrode 

EP Injection 96.3 [49] 

DPV 

Glassy carbon, electrode coated with a novel 
Mg–Al layered, double hydroxide–nickel 
hydroxide nanoparticles, multi-walled carbon 
nanotubes composite 

Blood 
 

Urine 

97.6 
 

98.2 
[76] 

DPV 
Gold nanoparticles/polyanilineLangmuir–
modified glassy carbonelectrode 

Serum 98.36 [77] 

DPV 
MCM/ZrO2 nanoparticles modified, carbon 
paste electrode 

EP Injection 101.7 [79] 

DPV Graphene-modified glassy carbon electrode Urine 99.7 [83] 

DPV 
GCE, modified by aminatedgraphene and Ag 
nanoparticles 

Serum 100.24 [84] 

DPV 
Vinylferrocene and carbon nanotubes (CNTs)-
Modified Carbon Paste Electrode 

EP Injection 
Ampoule 

101.0 
102.0 

[86] 

7. Conclusions 

In past five years, utilization of electroanalytical methods for pharmaceutical analysis has 

significantly increased, especially for EP assessments. However, there is a limited number of 

publications concerning a combination of pre-concentration and electrochemical detection of EP. 

Electrochemical techniques are often preferred to laborious instrumental methods for EP 

determination, which is due to the simplicity of procedure and instrumentation, minimum 

requirements with respect to sample pretreatment, as well as fast response, sensitivity and low cost. 

Also, accurate results can be obtained in real time and complex media. Different modalities of sensor 

development already described in the literature are presented, starting from bare to chemically 

modified sensors. Recent advances imply the use of carbon nanotubes and various composites, for 

which large surface area and electrocatalytic activity greatly enhance the analytical signal, 

diminishes the peak potential corresponding to EP oxidation and solves peak overlapping problems 

in complex samples. Provided that adequate pretreatment and cleaning steps are included, several 

examples of viable EP determination in various media performed by bare electrodes, even in the 

presence of interfering compounds are also presented. Method performances and application areas 

depend on the chosen electrochemical technique. It can be generally concluded that different ways 

of construction and expected performances of sensor electrodes are adequate and tuned to the 

nature of the analysed compound and respective matrix. The nature of the electrode material and 

surface groups formed, as well as their interaction with analyte molecules, greatly influence the 

electrooxidation rate, as well as pH value of the analysed matrix, electrolyte type, and the peak 

potential and height. The mechanism and rate of electrooxidation are strongly dependent on the 

following factors: electrode nature and modifiers, electrode pre-treatment, surface groups, pH, 

electrolyte and presence of other compounds. The interaction between the respective form of 

analyte molecule present at some pH value (range) and the functional groups of the electro-

de/modifier layer is found essential for determining electrooxidation rate and electrode 



H. Beitollahi et al. J. Electrochem. Sci. Eng. 9(1) (2019) 27-43 

doi:10.5599/jese.569 41 

performance. In complex media where interference is expected, modifiers enhance the catalytic 

peak current of the analyte of interest, allowing better peak separation from interfering compounds. 

Abbreviation 

AA Ascorbic acid  

CFE Carbon film electrode  

CPE Carbon paste electrodes  

CV Cyclic voltammetry  

DA Dopamine  

DPV Differential pulse voltammetry  

EP Epinephrine  

GCE Glassy carbon electrode  

MWCNT Multi walled carbon nanotube 

NE Norepinephrine  

SWV Square wave voltammetry 

SWNT Single-walled carbon nanotube  

UA Uric acid  

VAM Vanilmandelic acid  
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