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ABSTRACT: Al-doped Li7-xLa3Zr2O12 is found to be more ionically conductive following 

voltammetric treatment in an all-solid-state Li | Li7-xLa3Zr2O12 | Li cell configuration. This result 

is consistent with electrical impedance spectroscopy measurements, which reveal that the 

activation energy for lithium diffusion is reduced from 0.32 eV to 0.26 eV following 

voltammetric treatment. The Li deposition–dissolution signal has been observed in the 

voltammograms, and neutron powder diffraction shows an increase in the lithium content of the 

Li7-xLa3Zr2O12. Furthermore, X-ray photoelectron spectroscopy indicates a local rearrangement 

of O, resulting in a reduction of defects following voltammetric treatment, with the enhanced 

conductivity attributable to both the reduction of defect oxygen and increased lithium content. 

This work, therefore, reveals such voltammetric treatment as a simple and inexpensive 

alternative to existing doping approaches to boost the electrochemical performance of Li7-

xLa3Zr2O12. The findings can improve the future development of all-solid-state Li-ion batteries. 

On the other hand, our approach to understanding the conductivity enhancement via 

voltammetric treatment may provide a better alteration in the ionic conduction of solid 

electrolytes during solid-state battery operation. 
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1. Introduction 

  Cutting edge Li-ion battery (LIB) technology currently utilizes liquid or organic-based 

electrolytes; however, LIB miniaturization, as required by small-scale electronics, is a challenge 

because of safety issues. Solid-state Li-ion conductors are promising alternatives to conventional 

LIB electrolytes, mitigating the safety issues of dendritic Li growth in organic-based LIB 

electrolytes.1-2 Among Li-ion conducting materials, Li7La3Zr2O12 (LLZO), possessing a garnet-

type crystal structure, is of particular interest for application as a solid LIB electrolyte because of 

its suitable ionic conductivity, chemical stability in a wide potential range, and ease of scaling 

for industrial applications.3 Murugan et al. first highlighted LLZO as a new garnet-type solid-

state electrolyte, showing that the material featured a high stability, with Li-ion conductivities 

reaching 2.5 × 10-4 S/cm.4 LLZO can crystallize in cubic or tetragonal symmetry phases 

depending on the synthesis conditions. Cubic LLZO possesses Ia3̅d space group symmetry with 

La, Zr, and O atoms located at 24c, 16a, and 96h sites, respectively, whereas Li occupies both 

24d tetrahedral and 96h octahedral sites.5 Tetragonal LLZO possesses I41/acd space group 

symmetry with La, Zr, and O atoms located at 8b (and 16e), 16c, and 32g, respectively. 

Importantly, the conductivity of tetragonal LLZO is two orders lower than for cubic LLZO,6 and 

doping with Al, which preferably occupies 24d site,7 is an effective method to stabilize the more 

favorable cubic LLZO phase.8-9 Nevertheless, the conductivity of LLZO needs to be enhanced 

further to satisfy industrial application criteria. Beyond the stabilization of the favorable crystal 

form, elemental doping has also been shown to enhance the ionic conductivity of LLZO from  

10-4 to 10-3 S/cm by including elements such as Ta 10 and Ga 11. Improvement of ionic 

conductivity by sintering under oxygen has been reported by Guo et al.12 However, due to low 

abundance and expensive, industrial production still remains a challenge. Moreover, interfacial 
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stability issues arising between the Li-ion conductor and electrode materials within a battery 

remain unresolved. Although solid-state batteries are currently emerging as future energy storage 

devices, understanding the change in the Li-ion conduction during the battery operation has yet 

to be addressed.  

  The mechanism of Li-ion conduction in LLZO has been studied by many researchers, who 

have focused on the bottlenecks to improving Li-ion conduction. Xu et al.13 and Miara et al.14 

calculated the activation energy for the Li-ion jump-type diffusion to be 0.26 and 0.24 eV, 

respectively. These values are somewhat lower than the experimentally measured activation 

energy for Li-ion diffusion in the Al-doped LLZO (without other doping elements) of 0.3 eV. 8, 

15-17 

  Galvanostatic method has been employed to simulate the working condition of LLZO in 

batteries and an abrupt voltage (resistance) drop was observed when larger current density was 

applied. The phenomenon was ascribed exclusively to Li dendrite formation.18-21 However, a 

step-function current was applied in the above research, which is not ideal for observing the 

intermediate state of LLZO during the voltage drop. 

The existing researches only proposed solutions to alleviate such phenomenon. Rather than 

suppressing, the present work aims to take advantage of such phenomenon and probe the 

intermediate state of LLZO during the resistance drop. We thus propose a voltammetric 

treatment to study the electrochemical behavior of Al-doped LLZO. Instead of non-continuous 

current, we applied a smoothly-evolved potential to LLZO. After the treatment, the ionic 

conductivity of LLZO is largely enhanced without significantly raising the electronic 

conductivity. Subsequent characterizations are conducted to figure out the mechanism of such 
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increment in ionic conduction without affecting the electronic migration. Both Li (non-blocking) 

and Au (blocking) electrodes systems are utilized in the electrochemical analyses. Neutron 

powder diffraction (NPD) method is used to determine the change in ionic concentration of the 

Al-doped LLZO before and after voltammetric cycles. X-ray photoelectron spectroscopy (XPS) 

is used to identify the realignment of the oxygen skeleton as essential in the mechanism of 

conductivity enhancement. We observe there is a rearrangement of ions occurs during the 

electrochemical measurements; this observation has never been addressed before. 

2. Experimental Methods 

2.1. Syntheses of the material 

  Al-doped LLZO was synthesized through the solid-state reaction of LiOH (+10% excess, 

Alfa Aesar 98% purity, pre-heated at 200 ℃ for 6h), La2O3 (Sigma-Aldrich, 99.9% purity, pre-

heated at  900 ℃ for 12h)3, ZrO2 (Alfa Aesar 99.7% purity), and Al2O3 (1 wt.% of LLZO, Sigma 

99.95% purity) in stoichiometric quantities following ball-milling in isopropanol using PM-100 

zirconia balls at 300 rpm for 6 h. The acquired slurry was dried at 90 ℃, and the well-mixed 

powder was pre-heated to 900 ℃ for 4 h and then calcined at 1230 ℃ for 12 h to obtain LLZO. 

The LLZO was ground by hand into powder with #200 mesh and then uni-axially pressed into 

12-mm-diameter pellets at 1734 MPa. The pellets were subsequently isolated with a thick layer 

of mother powder to mitigate Li evaporation and avoid Al inclusion from corundum crucibles 

and sintered in a multistep method to acquire the pure LLZO phase.22 This process involved 

heating to 1100 ℃ at 5 ℃/min and holding for 4 h and heating to 1230 ℃ at 5 ℃/min and 

holding for 12 h before cooling to room temperature. All heating processes were conducted 

under atmospheric condition using covered corundum crucibles. After sintering, the pellets were 
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polished to 1200 mesh. The density of the pellets was 92% relative to the theoretical crystal 

density. All pellets were stored in an argon glove box to prevent carbon dioxide and moisture 

contamination, which can affect the electrochemical properties. 23 

2.2. Electrochemical analysis 

 All the LLZO pellets used in electrochemical testing were 4.5–5.5 mm thick unless otherwise 

specified. Both sides of the pellets were repeatedly polished to get mirror-polished surface and 

then assembled in a Swagelok cell using Au | LLZO | Au and Li | LLZO | Li configuration for 

further study. In the Au electrode system, both sides of the LLZO were sputtered with Au and 

connected by wire to the instrument. In the Li electrode system, the cell was assembled in the 

argon-filled glove box. LLZO pellets were pressed with Li foil on both sides and sealed in 

Swagelok cells. Unless otherwise specified, all the electrochemical experiments were conducted 

24 h after cell assembly to ensure that the contact between Li foil and LLZO was stable. The 

voltammetric treatment was applied to LLZO using Li | LLZO | Li configuration with potential 

scanning from 0 to -5 V, then to 5 V, and back to 0 V at a scan rate of 0.5 mV/s in each cycle (5 

cycles were done) with CHI611E instrument. Following the treatment, the Li foils were changed, 

and LLZO pellets were re-polished between different instrumental measurements. For each 

characterization set, LLZO pellets before (denoted LLZO_NV) and after (LLZO_V) 

voltammetric treatment were obtained from the same sintering batch. The Li-ion conductivity of 

LLZO was obtained using AC impedance spectroscopy with a signal amplitude of 0.1 V from 3 

MHz to 1 Hz and a Zahner Elektrik IM6eX potentiostat-frequency analyzer. Impedance data 

with both Li and Au electrode systems were acquired. This system with Au electrodes was 

utilized to study the relationship between temperature and conductivity from 30 to 170 ℃. All 

impedance data were analyzed with the Zview software and fitted with the R(R-CPE)(R-CPE) 
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model. The electronic conductivity of LLZO was acquired with DC polarization method using 

CHI611E instrument. The data were collected using polarization potential of 0.1 V and holding 

time of 20000 seconds. 

2.3. Coin cell assembly 

A positive electrode slurry comprising LiNi0.5Co0.2Mn0.3O2 (NCM532), SuperP carbon black, 

KS6 carbon black, and polyvinylidene fluoride (PVDF) in the weight ratio 7.5:0.5:1:1, 

respectively, was made using a suitable amount of N-methyl-2-pyrrolidon (NMP). The slurry 

was well-mixed and coated on Al foil, dried, and cut into a round shape. The positive electrode 

was assembled into 2032 type coin cell with Li anode and electrolyte with ethylene 

carbonate/dimethyl carbonate (1:1) in an argon-filled glove box. 

2.4. Solid-state cell assembly 

  A positive electrode slurry composed of NCM532, SuperP carbon black, KS6 carbon black, 

polyvinylidene fluoride (PVDF) and LiTFSI (bis-trifluoromethane sulfonamide) lithium salt in 

the weight ratio 7.5:0.5:1:1:5.5, respectively, was made using a suitable amount of NMP. It is 

worth mentioned that mixing LiTFSI and PVDF can form a decent polymer electrolyte.24 The 

slurry was well-mixed and coated on one side of a 3-mm LLZO pellet, while the other side was 

coated with a slurry comprising LiTFSI and PVDF in a weight ratio 1:1 to enhance the lithium-

ion transfer at the interface between the LLZO and Li foil-negative electrode. The pellet was 

dried in a vacuum oven for 12 h and sealed in a Swagelok cell in an argon glovebox. The cell 

was tested at 80 ℃ between 2.8 and 4.15 V. Each discharge was performed using a potential hold 

at 2.8 V until the current decreased to 0.01 C. 
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  X-ray diffraction (XRD) was employed to test the phase purity of the synthesized LLZO. 

LLZO pellets were crushed into a powder and sealed into a capillary, where data were obtained 

using the 01C2 beamline of the National Synchrotron Radiation Research Center (NSRRC) in 

Taiwan. An X-ray wavelength of 0.77446(1) Å was used, as determined using the LaB6 

(SRM660c), and data were recorded between 5 and 44.9° 2θ. NPD was used to obtain the Li-ion 

concentration in the sample where the neutron scattering cross-section is not dependent on the 

atomic number and where good elemental contrast could be obtained. Data for the 8-mm 

diameter LLZO pellets were obtained using the high-resolution neutron powder diffractometer, 

ECHIDNA, at the Australian Nuclear Science and Technology Organization (ANSTO); with a  

neutron wavelength of 1.62362(4) Å determined using the LaB6 (SRM660b) between 13 and 

163.9° 2θ.25 GSAS II was employed to refine the structural model obtained from the ICSD 

422259 file.26 The refined parameters of NPD include the background coefficient; zero shift; 

peak shape parameter; positional parameter of O and Li at the 96h site; the site occupancy factor 

of Zr at the 16a site, O at the 96h site, Li at the 24d site, and Li at the 96h site; and the isotropic 

atomic displacement parameters of La at the 24c site, Zr at the 16a site, and O at the 96h site. 

The occupancy of Al at 24d site was fixed at 0.06, which is close to the theoretical value derived 

from 1 wt.% addition of Al2O3.
7 The occupancy of La is set to be unity and the values of other 

atoms are the occupancies relative to La. Li was not refined in XRD data, owing to its low 

sensitivity and was fixed as the value obtained in NPD refinement. The refinement conditions of 

all the other parameters were the same as those obtained through NPD. 

  Core-level XPS of LLZO was performed using Al Kα radiation (20 mA, 1486.7 eV) with a 

PHI Quantera SXM. LLZO pellets were polished to remove surface impurities, and the solid 

electrolyte interphase (SEI) 27 beforehand and loaded immediately into the instrument. The 
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surface was etched with an argon beam for 10 min to remove surface contamination and Li2CO3. 

Zr 3d, La 3d, and O 1s spectra were collected. The acquired data were processed with the 

CasaXPS software. A Voigt-type line shape and Shirley-type background were applied. 

Constraints applied in the Zr 3d deconvolution were that the area ratio of 3d3/2 and 3d5/2 peak 

pairs was 2:3 (following the degeneracy of the spin-orbit coupling). The following constraints 

were applied in the La 3d deconvolution.28 The area ratio of 3d3/2 and 3d5/2 peak pairs was set to 

2:3, and peak pairs were deconvoluted into main peaks, satellites (bonding and anti-bonding of 

ligand charge transfer), and plasmons. The full width at half maximum and energy separation 

(16.8 eV) were identical for each spin-orbit coupling peak pair. The bonding and anti-bonding 

components of the satellites were fixed to be the same area. No constraint was applied in the O 

1s deconvolution. The X-ray absorption near edge spectra for LLZO was collected for powders 

sprayed uniformly onto tape at the 01C1 (for the Zr K-edge) and 17C (for the La L3 edge) 

beamlines at the NSRRC. 

3. Results and discussion 

 Fig. 1 shows the cubic LLZO refinement profile using XRD, indicating a highly 

crystalline phase-pure material. The refined crystallographic parameters are given in 

supplementary information (SI) Table 1. The occupancy ratio of La and Zr is close to unity. The 

lithium occupancy will be referred to the NPD results for their accurate determination. 
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Fig. 1. Rietveld refinement profiles for LLZO using XRD data 

  In the voltammetric treatment, the I-V profile of five scanning cycles was recorded for the Li | 

LLZO | Li cell, as shown in Fig. 2. Since the system is symmetric, the OCV was ~0 V and 

reverse potential scans were also performed. Following the first cycle of activation process, the 

Li deposition–dissolution peak appeared and persisted in both polarization directions for the 

remaining cycles, with peak height 𝑖𝑝  (current maximum in ampere) increasing with cycle 

number. The Li deposition–dissolution peak height reflects the activation state of LLZO. By 

applying the Randles–Sevcik equation (1) 29, the diffusion coefficient, D (cm2/s), of lithium can 

be obtained, 

𝑖𝑝 = 0.4463𝑛𝐹𝐴𝐶 (𝑛𝐹𝑣𝐷𝑅𝑇 )1/2                         (1) 
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where n is the number of electrons transferred in the redox event, A is the electrode area in 

cm2, F is the Faraday current, C is the concentration in mol/cm3, v is the scan rate in V/s, R is the 

gas constant, and T is the temperature in K.  

 

Fig. 2. The I-V profiles of cyclic voltammetry with Li | LLZO | Li cell. 

The results indicate an increasing diffusion of Li ions. The peak heights in the reverse 

polarization direction are lower; this phenomenon may arise from differences in the effective 

contact areas. After voltammogram cycles, the LLZO surface show blackening which propagates 

thoroughly through the bulk (Fig. S1). ZrO2 was also observed to undergo electrochemical 

blackening after polarization, which may result from injection of charge into oxygen vacancies 

or reduction of cations.30-31 

  The results of AC impedance measurements with Li | LLZO | Li cells and Au | LLZO | Au 

cells are presented in Fig. 3. In both systems, the semicircle with the highest frequency (of order 

MHz) can be assigned to the total conductivity, including the bulk and grain boundary 

components, of LLZO.8, 11, 32 A complete low-frequency semicircle (of order kHz) resulting from 
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charge transfer of Li ions on the interface between LLZO and Li metal exists in Li | LLZO | Li 

cells and this presents the reversible nature in such system. In Au | LLZO | Au cells, the low-

frequency semicircle is substituted with a tail that can be assigned to capacitor behavior of 

blocking system.11, 32 The results of Li | LLZO | Li cells are presented in Figs. 3(a) and (b). The 

total ionic conductivity of LLZO_NV is 3.4 × 10-4 S/cm and increased to 1.2 × 10-3 S/cm 

following cycling (LLZO_V); this value was almost three times that of LLZO_NV. Total ionic 

conductivities of LLZO_NV and LLZO_V acquired with Au | LLZO | Au cells were 4.0 × 10-4 

S/cm and 4.6 × 10-3 S/cm, which are analogous to Li | LLZO | Li cells and present similar ionic 

conductivity values of LLZO_NV and conductivity enhancement after voltammetric treatment. 

The corresponding Arrhenius plots for LLZO_NV and LLZO_V are shown in Fig. 3(c), where 

the activation energy (Ea) in eV was determined using equation 2.33 

𝜎 = 𝜎0𝑇 𝑒−𝐸𝑎𝐾𝑇                                    (2) 

where σ is conductivity, T is the temperature in K, and K is the Boltzmann constant. The Ea for 

Li-ion conduction in LLZO_NV and LLZO_V were 0.32 eV and 0.26 eV, respectively, 

indicating an easier Li-ion transport mechanism for LLZO after the voltammetric treatment, with 

this Ea in good agreement with reported simulation values.13-14 
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Fig. 3. EIS data and fitting results for LLZO samples in (a), (b) Li | LLZO | Li and (c), (d) Au | 

LLZO | Au cells. (a), (c) LLZO_NV; (b), (d) LLZO_V; (e) Arrhenius plots of LLZO_NV and 

LLZO_V. 

  Fig. 4 shows Rietveld refinement profiles for the LLZO_NV and LLZO_V using NPD data 

with the crystallographic and refinement results listed in SI Table 2. Before voltammetric 

treatment, the LLZO had fully occupied La, Zr, and O and ~4.98 Li atoms per formula unit. 

After voltammetric treatment, the total Li content increased to ~5.55 Li atoms per formula unit, 

probably a result of the inclusion of Li ions through the oxidation reaction of Li metal during 

voltammetric treatment. 



 14 

 

 

Fig. 4. Rietveld refinement profiles for LLZO using neutron powder diffraction data (a) before 

voltammetric treatment and (b) after voltammetric treatment. 

 Fig. 5 shows the XPS of Zr 3d, La 3d, and O 1s for LLZO_NV and LLZO_V samples with 

the deconvoluted peak positions presented in SI Table 3. The spin-orbit splitting of Zr 3d found 

to be 2.4 eV for both samples; this value is consistent with earlier reports.34-35 The binding 

energies of Zr 3d are found to be 180.8 and 181.4 eV for LLZO_NV and LLZO_V, respectively. 

These values lie between the values of Zr4+ and Zr+ in zirconium oxide. The La 3d5/2 main peaks 
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for LLZO_NV and LLZO_V are located at 833.2 and 833.7 eV, respectively, and are lower than 

those for La in La2O3 and La(OH)3 (La2O3 = 834.9 eV and La(OH)3 = 835.1 eV 28). Both Zr and 

La spectra reveal a binding energy that is lower for the corresponding oxides with the same 

formal charge.  
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Fig. 5. XPS data and deconvoluted Zr 3d spectra for (a) LLZO_NV and (b) LLZO_V, La 3d 

spectra for (c) LLZO_NV and (d) LLZO_V, and O 1s spectra for (e) LLZO_NV and (f) 

LLZO_V 

The phenomenon was also presented in X-ray absorption near-edge spectroscopy by showing 

lower absorption edge energies compared to corresponding oxide standard (Fig. 6). Nevertheless, 

the chemical environment of LLZO is different from that of the corresponding oxides as a result 

of the three different cations, complicating the determination of the chemical state using the pure 

oxide reference spectra. Importantly, an increased binding energy of both Zr and La following 

voltammetric treatment is found and may have arisen from the inclusion of additional Li ions. 

The O 1s XPS data of both samples can be deconvoluted into two peaks located at 528.5 and 

529.9 eV for LLZO_NV. There is a shift of these peaks to 529.3 and 531.2 eV for the LLZO_V 

sample. The O 1s reference spectra for ZrO2 show peaks at 531.0, 531.4, and 532.6 eV,35 for 

La(OH)3, the main peak at 531.3 eV, and for La2O3 at 530.3 eV,28 with none of these describing 

well the spectrum for LLZO. In other bimetal oxide compounds and oxygen conductor 

electrolytes, the lower energy peak in the O 1s spectrum is commonly assigned as lattice oxygen 

in metal oxides while the other to surface, hydroxyl bonding, or defects,10, 36-38 which are all 
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imperfectly arranged oxygen. Interestingly, while the total peak area for features in the O 1s 

spectra for LLZO_NV and LLZO_V are similar, the intensity of the peak assigned to lattice 

oxygen is much stronger for the LLZO_V than the LLZO_NV sample. This result indicates that 

defect oxygen in LLZO may rearrange into well-aligned lattice oxygen during the voltammetric 

treatment.  

 

 

Fig. 6. XANES data at the (a) La L3 and (c) Zr K-edge and first derivative of data at the (b) La 

L3 and (d) Zr K-edge 

 The enhancement of conductivity in LLZO has been studied using physical and 

electrochemical analysis techniques. The increased conductivity has been discussed in light of 

both an increased Li content and the rearrangement of oxygen. The optimum Li concentration for 

Li7-xLa3Zr2-xTaxO12 was found to be approximately 6.5 Li atoms per formula unit 39 and thus 
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increasing Li concentration when below 6.5 Li atoms per formula is beneficial to ionic 

conductivity. 

  Notably, both La2Zr2O7 and ZrO2 conduct oxygen,30-31, 40 therefore, the mobility of oxygen 

atoms in LLZO is implied. Li mobility is also known to be influenced by the arrangement of the 

anionic framework,41 where the local arrangement of oxygen below the limit of detection for 

average structural methods such as NPD may facilitate Li-ion migration. Such a mechanism is 

consistent with the lower activation energy for Li-ion diffusion in the LLZO following 

voltammetric treatment, as evident from the Arrhenius plots. 

  Since polarization with non-blocking electrodes may induce strong electron conduction,18-21 

electron conductivities of the LLZO samples must be measured. Fig. 7 shows the DC 

polarization plots of LLZO_NV and LLZO_V. Upon polarizing, the currents both drop quickly 

and later gradually reach the asymptotes located at 2.7 × 10-8 A for LLZO_NV and 2.4 × 10-7 A 

for LLZO_V. The conductivity of LLZO did increase from 1.2 × 10-7 S/cm to 1.1 × 10-6 S/cm 

after voltammetric treatment. However, the ionic conductivity of LLZO_V is still over 103 times 

larger than electronic conductivity. Therefore, the ionic transference number as per the equation 

3 42 is still close to 1 after voltammetric treatment. 𝑡𝑖𝑜𝑛 = 𝜎𝑖𝑜𝑛𝜎𝑒−+𝜎ℎ𝑜𝑙𝑒             (3) 
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Fig. 7. DC polarization of (a) LLZO_NV and (b) LLZO_V samples. 

Over-treating LLZO pellets will induce strong electronic conductivity and eventually lead to 

short circuit as reported previously.18-21 Fig. S2 (a) shows the color difference between pellets 

that experienced 5 and 8 voltammetric cycles. The color of 8-cycles sample is deeper than the 

other one. Fig. S2 (b) is the I-V profile of 8th voltammetric cycle. The current increases quickly 

at -3 V and later saturates the instrument. This has been widely attributed to Li dendrite 

formation. Li0 form and propagate through the voids present within the LLZO pellet.43 Since 

oxygen drift was discovered through XPS, LLZO may also share the similar mechanism on 

electronic conductivity increment as in the oxygen conductor ZrO2 through the formation of 

oxygen vacancies, oxygen evolution or Zr reduction. In the first 5 voltammetric cycles, the redox 

reaction of crystal framework did occur but the dendrites are less interconnected, hence induces 

slight electronic conductivity. In the following cycles, the dendrite network develops rapidly 

(results in deeper color) and the electronic conductivity eventually surpasses ionic conductivity. 

Nevertheless, as long as the cycle number is carefully chosen, the electrochemical property of 

LLZO can be optimized with the voltammetric treatment. 
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 The viability of the LLZO_V sample for use as a solid-state battery is demonstrated in a half-

cell, with Fig. 8(a) showing the electrochemical test results for the 1st cycle. The current density 

was increased from 0.07 mA/cm2 to 0.21 mA/cm2 (0.1 C) to reactivate the LLZO_V pellet 

following a slight performance drop experienced during long period storage. After the first 

activation loop, the test results for the cell operating without an activation procedure between the 

second and 20th cycles are shown in Fig. 8(b).  

 

Fig. 8. The (a) 1st and (b) 2nd–20th charge–discharge data for the all solid-state cells. 

The capacity slowly increased before the 8th cycle and decreased after that. The polarization 

between the charge and discharge curves also reached a minimum in the 8th cycle. The curves 

before the 20th cycle highly resemble that for the standard NCM532 coin cell (Fig. S3), with 

significant polarization occurring. The conductivity of the LLZO pellet increased in the first few 

cycles, but the cell decayed later on. This phenomenon probably occurred because of the 

formation of a SEI in the NCM532 slurry. The noisy cycle profile is due to poor interfacial 

contact and sluggish Li ion transport between Li metal and the surface of LLZO. Although the 

cell only reached one-third of the theoretical capacity of NCM532, a thinner LLZO pellet, binder 
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that are more compatible with NCM532, and modification of interface such as coating gold or 

ALD alumina are expected to improve the performance of the all solid-state cells further.44 

4. Conclusions 

The voltammetric treatment of Li | LLZO | Li is found to enhance the conductivity of LLZO 

while not inducing strong electronic conduction to describe in previous works. Structural and 

electrochemical characterization of the LLZO before and after voltammetric treatment reveals a 

Li-ion conduction that increases by a factor of almost 3, whereas the activation energy for the Li-

ion diffusion correspondingly decreases from 0.32 eV to 0.26 eV. Neutron powder diffraction 

and X-ray photoelectron spectroscopy reveal that the combination of increased Li content and 

the local rearrangement of oxygen induce lower defect oxygen that underpins this conductivity 

enhancement. An all-solid-state battery using LLZO following voltammetric treatment was 

demonstrated to be viable. This work has demonstrated a cheap and relatively simple alternative 

to enhance the conductivity of LLZO compared to other current doping methods. Our approach 

has given an introductory understanding of conductivity enhancement in all solid state batteries. 

Further studies like in-situ NPD can be implemented to monitor the real nature of atomic 

arrangements during cycling of batteries.  
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Fig. 1. Rietveld refinement profiles for LLZO using XRD data 
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Fig. 2. The I-V profiles of cyclic voltammetry with Li | LLZO | Li cell. 
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Fig. 3. EIS data and fitting results for LLZO samples in (a), (b) Li | LLZO | Li and (c), (d) Au | 

LLZO | Au cells. (a), (c) LLZO_NV; (b), (d) LLZO_V; (e) Arrhenius plots of LLZO_NV and 

LLZO_V. 
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Fig. 4. Rietveld refinement profiles for LLZO using neutron powder diffraction data (a) before 

voltammetric treatment and (b) after voltammetric treatment. 
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Fig. 5. XPS data and deconvoluted Zr 3d spectra for (a) LLZO_NV and (b) LLZO_V, La 3d 

spectra for (c) LLZO_NV and (d) LLZO_V, and O 1s spectra for (e) LLZO_NV and (f) 

LLZO_V 
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Fig. 6. XANES data at the (a) La L3 and (c) Zr K edge and first derivative of data at the (b) La 

L3 and (d) Zr K edge 
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Fig. 7. DC polarization of (a) LLZO_NV and (b) LLZO_V samples. 
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Fig. 8. The (a) 1st and (b) 2nd–20th charge–discharge data for the all solid-state cells. 
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Table S1. XRD Rietveld refinement results for LLZO_NV 

 x y z Fraction Uiso (Ǻ2) 

La 0.125 0 0.25 1 0.0108(6) 

Zr 0 0 0 1.00(1) 0.00075(7) 

O 0.9724(3) 0.0551(6) 0.1487(4) 0.92(2) 0.0107(4) 

Li(24d) 0.375 0 0.25 0.22 0.021 

Li(96h) 0.094 0.685 0.585 0.36 0.021 

Al(24d) 0.375 0 0.25 0.06 0.01 

GOF: 1.77 

Rp: 8.24% 

Rwp: 10.36% 

Space group: 𝐼𝑎3̅𝑑 

Unit Cell Dimension: 12.96278(6) Å 

Volume: 2178.18(1) Å2 
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Table S2 (a). NPD Rietveld refinement results for LLZO_NV 

 x y z Fraction  Uiso (Ǻ2) 

La 0.125 0 0.25 1 0.004(1) 

Zr 0 0 0 1.05(3) 0.005(2) 

O 0.9684(3) 0.0544(2) 0.1503(2) 1.00(1) 0.0067(6) 

Li(24d) 0.375 0 0.25 0.22(4) 0.021 

Li(96h) 0.094(3) 0.686(2) 0.585(2) 0.36(2) 0.021 

Al(24d) 0.375 0 0.25 0.06 0.01 
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GOF: 1.97 

Rp: 5.78% 

Rwp: 7.79% 

Space group: 𝐼𝑎3̅𝑑 

Unit Cell: 12.9616(4) Å 

Volume: 2177.57(6) Å2 

 

Table S2(b). NPD Rietveld refinement results for LLZO_V 

 x y z Fraction  Uiso (Ǻ2) 

La 0.125 0 0.25 1 0.010(1) 

Zr 0 0 0 1.03(3) 0.006(1) 

O 0.9686(3) 0.0538(2) 0.1502(2) 1.001(9) 0.0106(6) 

Li(24d) 0.375 0 0.25 0.25(4) 0.021 

Li(96h) 0.096(2) 0.684(2) 0.583(3) 0.40(2) 0.021 

Al(24d) 0.375 0 0.25 0.06 0.01 

GOF: 2.15 

Rp: 5.76% 

Rwp: 7.48% 

Space group: 𝐼𝑎3̅𝑑 

Unit Cell: 12.9620(4) Å 

Volume: 2177.80(7) Å2 
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Table S3 (a). XPS deconvolution results for LLZO_NV. 

La 3d5/2 3d5/2 L bonding 3d5/2 L anti-

bonding 

3d3/2 

Area 14799 9777 9777 9866 

FWHM 2.3 2.2 3.6 2.3 

Position 833.2 837.8 835.3 850.0 

La 3d3/2 L 

bonding 

3d3/2 L anti-bonding 3d5/2 plasmon 3d3/2 plasmon 

Area 6518 6518 8316 5543 

FWHM 2.2 3.6 5.5 5.5 

Position 854.6 852.1 847.0 863.8 

Zr 3d5/2 3d3/2 

Area 7574 5049 

FWHM 1.9 1.9 

Position 180.8 183.2 

O 1s oxide lattice 1s defected 

Area 7284 7442 

FWHM 1.7 2.7 

Position 528.5  529.9 
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Table S3 (b). XPS deconvolution results for LLZO_V. 

La 3d5/2 3d5/2 L bd 3d5/2 L anti 3d3/2 

Area 16279 10139 10139 10853 

FWHM 2.0 1.9 3.3 2.0 

Position 833.7 838.3 836.1 850.5 

La 3d3/2 L bonding 3d3/2 L anti-
bonding 

3d5/2 plasmon 3d3/2 plasmon 

Area 6759 6759 10100 6734 

FWHM 1.9 3.3 5.9 5.9 

Position 855.1 852.9 847.5 864.3 

Zr 3d5/2 3d3/2 

Area 7708 5319 

FWHM 1.6 1.6 

Position 181.4 183.8 
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O 1s oxide 1s defect 

Area 11783 2879 

FWHM 1.80573 1.71506 

Position 529.3 531.2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. (a) LLZO_NV pellets (left) and LLZO_V pellets (right). (b) Cross-section of 

LLZO_V pellet. 

(a)                                                      (b) 
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Figure S2. (a) Photograph of pellets after 5th and 8th cycles (b) The 8th cycle I-V profile of an 

over-treated LLZO pellet 

(a) 

 

(b) 
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Figure S3. Charge–discharge test results for of the NMC coin cell 
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