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Some fractional stochastic systems of integral equations are studied. The fractional sto-

chastic Skorohod integrals are also studied. The existence and uniquness of the consid-

ered stochastic fractional systems are established. An application of the fractional Black-

Scholes is considered.

1. Introduction

We assume that a probability space (Ω,η,P) is given, where Ω denotes the space C(R+,

Rk) equipped with the topology of uniform convergence on compact sets, η the Borel

σ-field of Ω, and P a probability measure on Ω.

Let {Wt(ω)= ω(t), t ≥ 0} be a Wiener process. For any t ≥ 0, we define ηt = σ{ω(s);

s < t}∨Z, where Z denotes the class of the elements in ηt which have zero P-measure.

Pardoux and Protter discussed the existence and uniqueness of the solution of the

stochastic integral equation of the form

Xt = X0 +

∫ t

0
F
(

t,s,Xs
)

ds+
k
∑

i=1

∫ t

0
Gi
(

Ht; t,s,Xs
)

dW i
s , (1.1)

whose solution {Xt} should be Rd-valued and ηt adapted process; {Ht} is an Rp-valued

(see [16]). It is supposed that F maps {t,s; 0≤ s < t}×Rd into Rd and Gi (i= 1,2, . . . ,k)

maps Rp×{t,s; 0≤ s < t}×Rd into Rd.

In the present work, we study the existence, uniqueness, and continuity of the solution

of the fractional stochastic integral equation of the form

Xt = X0 + I
β
t F
(

t,s,Xs
)

+
k
∑

i=1

W
β
t Gi
(

Ht; t,s,Xs
)

, (1.2)

where 0 < β < 1, I
β
t F(t,s,Xs), the fractional integral of F(t,s,Xs), is defined by (see [22])

I
β
t F
(

t,s,Xs
)

=
1

Γ(β)

∫ t

0

F
(

t,s,Xs
)

(t− s)1−β ds. (1.3)
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The fractional Wiener process W
β
t Gi(Ht; t,s,Xs) of Gi(Ht; t,s,Xs) is defined by (see [7])

W
β
t Gi

(

Ht; t,s,Xs
)

=
1

Γ
(

(β+ 1)/2
)

∫ t

0

Gi
(

Ht; t,s,Xs
)

(t− s)(1−β)/2 dW i
s . (1.4)

Stochastic Volterra equations have been studied in several papers (see [2, 3, 4, 6, 16, 17,

18]). In this work, we will use the Skorohod integral (see [9, 10, 11, 12, 13, 14, 15, 19, 20])

to interpret (1.2) as in [16] since the integrands in the stochastic integrals are not adapted;

therefore we cannot use, as usual, the Ito integral to interpret the equation. In Section 2,

we state some results concerning the Skorohod integral, which will be used later together

with the precise interpretation of (1.2). In Sections 3 and 4, we prove the existence and

uniqueness of a solution to (1.2) in two steps. In Section 5, we establish, under additional

assumptions, the existence of almost surely (a.s.) continuous modification of the solution

process. In Section 6, we show the continuity of the solution of (1.2).

Equation (1.2) has many important financial applications. These systems arise if we

consider the fractional analog of a portfolio (see [1]). The fractional Black-Scholes market

consists of a bank account or a bond and a stock. The price process At of the bond at time

t is given by

At = exp

{
∫ t

0
r(s)ds

}

, (1.5)

where r(s)≥ 0, s∈ [0, t], is the interest rate. A portfolio is a pair (ut,vt) of random vari-

ables for fixed t ∈ [0,T]. The price Xt of the stock could be governed by a fractional

Volterra equation of the form

Xt = X0 +
1

Γ(β)

∫ t

0

µ(s)Xs

(t− s)1−β ds+
1

Γ
(

(β+ 1)/2
)

∫ t

0

σ(s)Xs

(t− s)(1−β)/2 dWs. (1.6)

Here the drift µ≥ 0 and volatility σ > 0 are continuous functions on [0,T]. The numbers

ut and vt are the bond and stock units, respectively (held by an investor). Hence, the

corresponding value process is

Vt = utAt + vtXt . (1.7)

The process Vt could be governed by the equation

Vt =V0 +
1

Γ(β)

∫ t

0

r(s)Asus
(t− s)1−β ds+

1

Γ(β)

∫ t

0

µ(s)Xsvs
(t− s)1−β ds

+
1

Γ
(

(1−β)/2
)

∫ t

0

σ(s)vsXs

(t− s)(1−β)/2 dWs.

(1.8)



Mahmoud M. El-Borai et al. 455

2. The Skorohod integral

We will now define the Skorohod integral. Most of this section is a review of some basic

notations and a few results from [4, 16].

Let, again, Ω= C(R+,Rk), let η be its Borel field, and let P denote Wiener measure on

(Ω,η),

Wt(ω)= ω(t). (2.1)

Let η0
t = σ{Ws; 0 ≤ s < t} and ηt = η0

t ∨Z, where Z denotes the class of sets which have

zero P-measure of η.

For h∈ L2(R+;Rk), we denote the Wiener integral by

W(h)=

∫ T

0

(

h(t),dWt
)

. (2.2)

LetA denote the dense subset of L2(Ω,η,P) consisting of those classes of random variables

of the form

F = f
(

W
(

h1

)

, . . . ,W
(

hn
))

, (2.3)

where n ∈ N (N denotes the set of nonnegative integers), f ∈ C∞b (Rn), h1, . . . ,hn ∈
L2(R+;Rk); C∞b is the set of infinitely differentiable functions on [0,b] whose derivatives

of any order are null at b. If F has the form (2.3), we define its derivative in the direction

i as the process {Di
tF; t ≥ 0} defined by

Di
tF =

n
∑

k=1

∂ f

∂xk

(

W
(

h1

)

, . . . ,W
(

hn
))

hik(t). (2.4)

DF will stand for the k-dimensional process {DtF = (D1
t F, . . . ,Dk

t F); t ≥ 0}.

Proposition 2.1. The differential operators Di, i= 1, . . . ,k, are unbounded closable opera-

tors from L2(Ω) into L2(Ω×R+).

Let D1,2
i be the closure of A with respect to the norm

‖F‖i,1,2 = ‖F‖2 +‖ · ‖DiF
∥

∥

L2(R+)

∥

∥

2, (2.5)

where ‖F‖2 = (E(F2))1/2, E(X) is the mathematical expectation of X , and

‖g‖2
L2(R+) =

∫∞

0
g2(t)dt. (2.6)

Similarly, the domain D1,2 =
⋂k

i=1D
1,2
i is the closure of A with respect to the norm (see

[10])

‖F‖1,2 = ‖F‖2 +
k
∑

i=1

‖ · ‖DiF
∥

∥

L2(R+)

∥

∥

2. (2.7)
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We identify Di and D with their closed extensions (D1,2 is the domain of D : L2(Ω)→

L2(Ω×R+;Rk)).

We denote by D1,2
i,loc the set of measurable F’s which are such that there exists a sequence

{(Ωn,Fn); n∈N} ⊂ η×D1,2
i with the two properties

(i) Ωn ↑Ω a.s., n→∞,

(ii) Fn|Ωn = F|Ωn , n∈N.

For F ∈D1,2
i,loc, we define without ambiguity Di

tF =Di
tFn on Ωn×R+ for all n∈N; D1,2

loc is

defined similarly.

For i = 1, . . . ,k, we define δi, the Skorohod integral with respect to W i
t , as the adjoint

of Di, that is, Domδi (the set of adapted processes for the Skorohod integral) is the set of

u∈ L2(Ω×R+) which are such that there exists a constant c with

∣

∣

∣

∣

E

∫∞

0
Di

tFut dt

∣

∣

∣

∣

≤ c‖F‖2, ∀F ∈ A. (2.8)

If u∈Domδi, δi(u) is defined as the unique element of L2(Ω) which satisfies

E
(

δi(u)F
)

= E

∫∞

0
Di

tFut dt, ∀F ∈A. (2.9)

Let L1,2
i = L2(R+;D1,2

i ). We have that L1,2
i ⊂Domδi, and, for u∈ L1,2

i ,

E
[

δi(u)2
]

= E

∫∞

0
u2
t dt+E

∫∞

0

∫∞

0
Di

sutD
i
tusdsdt. (2.10)

Note that if u∈ L2
loc(R+;D1,2

i ), then u1[0,T] ∈ L1,2
i for any T > 0 and we can write

∫ T

0
utdW

i
t = δi

(

u1[0,T]

)

. (2.11)

The Skorohod integral is a local operation on L2
loc(R+;D1,2

i ) in the sense that if u,v ∈

L2
loc(R+;D1,2

i ), then
∫ t

0 usdW
i
s =

∫ t
0 vsdW

i
s a.s. on {ω; us(ω)= vs(ω), for almost all s < t}.

Let L1,2
i,loc denote the set of measurable processes u which are such that, for any T > 0,

there exists a sequence

{(

Ω
T
n ,uTn

)

; n∈N
}

⊂ η×L1,2
i (2.12)

such that

(i) ΩT
n ↑Ω a.s., as n→∞,

(ii) u= uTndP×dt a.e. on ΩT
n × [0,T], n∈N.
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For u∈ L1,2
i,loc, we can define its Skorohod integral with respect to W i

t by

∫ t

0
usdW

i
s =

∫ t

0
uTn,sdW

i
s on Ω

T
n × [0,T]. (2.13)

Finally, L1,2 =
⋂k

i=1L
1,2
i , and L1,2

loc is defined similarly as L1,2
i,loc.

We now introduce the particular class of integrands which we will use below.

Let u : R+×Ω×RP →R satisfy the following.

(i) For all x ∈Rp, (t,ω)→ (t,ω,x) is ηt progressively measurable.

(ii) For all (t,ω)∈R+×Ω, u(t,ω,·)∈ C1(Rp).

(iii) For some increasing function φ : R+→R+, |u(t,ω,x)|+|u′(t,ω,x)|≤φ(|x|) for

all (t,ω,x)∈R+×Ω×Rp, where u′(t,x) stands for the gradient (∂u/∂x)(t,x).

Let θ be a p-dimensional random vector such that

(iv) θ j ∈D1,2
i

⋂

L∞(Ω), j = 1, . . . , p.

We fix T > 0 and consider

I i(x)=

∫ T

0

u(t,x)

(T − t)(1−β)/2 dW
i
t , 0 < β < 1. (2.14)

Define, moreover, vt = u(t,θ).

Under conditions (i), (ii), (iii), and (iv), the following proposition holds.

It is proved in [10] that

∫ T

0
u(t,θ)dW i

t =

∫ T

0
u(t,x)dW i

t |x=θ −

∫ T

0
u′(t,θ)Di

tθdt. (2.15)

The same relation is proved in [16] under slightly different conditions. Equation (2.15) is

used to define the Skorohod integral
∫ T

0 u(t,θ)dW i
t .

Proposition 2.2. The random field {I i(x); x ∈Rp} defined above possesses an a.s. continu-

ous modification so that the random variable I i(θ) can be defined, v ∈Domδi (see [10, 16]).

Condition (iv) can be replaced by (iv′): θ j ∈D1,2
i,loc, j = 1, . . . , p.

Under conditions (i), (ii), (iii), and (iv′), v ∈ (Domδi)loc in the sense that there exists

a sequence {(Ωn,vn); n∈N} ⊂ η×Domδi such that Ωn ↑Ω a.s. and vn|Ωn = v|Ωn.

Indeed, let {(Ω′
n,θn)} be a localizing sequence for θ in (D1,2

i )p, and let {ψn; n∈N} ⊂

C∞c (Rp;Rp) satisfy ψn(x)= x whenever |x| ≤ n.

Define vn(t) = u(t,ψn(θn)), Ωn =Ω′
n

⋂

{|θ| ≤ n}; then {(Ωn,vn); n ∈ N} satisfies the

above conditions.

It is then natural to define, for every ǫ>0, the Skorohod integral
∫ T−ǫ

0 (vt/(T − t)(1−β)/2)

dW i
t by formula (2.15) and the latter coincides with

∫ T−ǫ
0 (vn(t)/(T − t)(1−β)/2)dW i

t on Ωn.

It is clear that limǫ→0

∫ T−ǫ
0 (vt/(T − t)(1−β)/2)dW i

t exists in the mean by using the norm

‖ · ‖2.
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3. Statement of the problem: interpretation of (1.2)

Our aim is to study the equation

Xt = X0 + a

∫ t

0

F
(

t,s,Xs
)

(t− s)1−β ds+ b
k
∑

i=1

∫ t

0

Gi
(

Ht; t,s,Xs
)

(t− s)(1−β)/2 dW i
s ,

0 < β < 1, a=
1

Γ(β)
, b =

1

Γ
(

(β+ 1)/2
) .

(3.1)

We define D = {(t,s)∈R2
+; 0≤ s < t}.

The coefficients F and G are given as follows: F : D×Rd →Rd is measurable and, for

each (s,x)∈R+×Rd, F(·,s,x) is ηt progressively measurable on Ω× [s,+∞).

For i= 1, . . . ,k, Gi : Rp×D×Rd →Rd is measurable, for each (h, t,x), Gi(h; t,·,x) is ηs
progressively measurable on Ω× [0, t], and for each (ω, t,s,x), Gi(·; t,s,x) is of class C1.

{Ht} is a given progressively measurable p-dimensional process. It will follow from these

hypotheses that we will be able to construct a progressively measurable solution {Xt}.

Therefore, for each t, the process {Gi(h; t,s,Xs); s ∈ [0,T]} is of the form vs = u(s,θ)

with u(s,h)=Gi(h; t,s,Xs) and θ =Ht. We will impose below conditions on G, {Ht}, and

the solution {Xt} so as to satisfy requirements (i), (ii), (iii), and (iv′) of Section 2.

In particular, we will consider only nonanticipating solutions. Therefore, the stochastic

integrals in (3.1) will be interpreted according to (2.15), that is,

∫ t

0

Gi
(

Ht; t,s,Xs
)

(t− s)(1−β)/2 dW i
s =

∫ t

0

Gi
(

h; t,s,Xs
)

(t− s)(1−β)/2 dW
i
s|h=Ht −

∫ t

0

G′i
(

Ht; t,s,Xs
)

(t− s)(1−β)/2 Di
sHt ds. (3.2)

In other words, we can rewrite (3.1) as

Xt = X0 +

∫ t

0
F̃
(

t,s,Xs
)

ds+ b
k
∑

i=1

∫ t

0

Gi
(

h; t,s,Xs
)

(t− s)(1−β)/2 dW
i
s|h=Ht , (3.3)

where

F̃(t,s,x)= a
F(t,s,x)

(t− s)1−β − b
k
∑

i=1

G′i
(

Ht; t,s,x
)

Di
sHt

(t− s)(1−β)/2 , (3.4)

and the stochastic integrals are now the usual Itô integrals.

We will show below that (3.3) makes sense for any progressively measurable process X
which satisfies X ∈

⋂

t>0L
q(0, t) a.s., for some q > p. We will find such a solution to (3.3);

it will then follow from (3.2) that it is a solution to (3.1). Similarly, uniqueness for (3.1)

in the above class will follow from uniqueness for (3.3) in that class.

4. Existence and uniqueness under strong hypotheses

We formulate a set of further hypotheses (those stated in Section 3 are assumed to hold

throughout the paper) under which we will establish a first result of the existence and

uniqueness of a solution of (1.2).
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Let B be an open bounded subset of Rp, K > 0, and q > p such that

(H1) X0 ∈ Lq(Ω,η0,P;Rd),

(H2) P(Ht ∈ B,∀t ≥ 0)= 1,

(H3) H ∈ (L1,2)p, |DsHt| ≤ K a.s., 0≤ s < t,
(H4) |F(t,s,x)|+

∑k
i=1 |Gi(h; t,s,x)|+

∑k
i=1 |G

′
i (h; t,s,x)| ≤ K(1 + |x|), for any 0≤ s < t,

h∈ B, x ∈Rd,

(H5) |F(t,s,x) − F(t,s, y)| +
∑k

i=1 |Gi(h; t,s,x) − Gi(h; t,s, y)| +
∑k

i=1 |G
′
i (h; t,s,x)

−G′i (h; t,s, y)| ≤ K|x− y|, for any 0≤ s < t, h∈ B, and x, y ∈Rd a.s.

Note that q will be a fixed real number such that q > p, and L
q
prog(Ω× (0, t)) will

stand for the space Lq(Ω× (0, t),ξt,P × λ), where ξt denotes the σ-algebra of progres-

sively measurable subsets of Ω× (0, t) and λ denotes the Lebesgue measure on (0, t), and

set 1−β = α/q, 0 < α < 1.

Lemma 4.1. Let X ∈
⋂

t>0L
q
prog(Ω× (0, t)), where q > p, and suppose that (H.4) is in force.

Then for any T ≥ t > 0 and i∈ {1, . . . ,k}, the random field

{
∫ t

0

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s ; h∈ B
}

(4.1)

possesses an a.s. continuous modification.

Proof. Using Burkholder-Gundy and Hölder’s inequalities together with (H.4), we obtain

E

(

∣

∣

∣

∣

∫ t

0

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s −

∫ t

0

Gi
(

k; t,s,Xs
)

(t− s)α/2q
dW i

s

∣

∣

∣

∣

q
)

≤ c1E

∫ t

0

∣

∣Gi
(

h; t,s,Xs
)

−Gi
(

k; t,s,Xs
)
∣

∣

q

(t− s)α/2
ds

≤ c1K
q|h− k|q

∫ t

0

E
(

1 +
∣

∣Xs

∣

∣

q)

(t− s)α/2
ds

≤ c2K
q|h− k|q

∫ t

0
(t− s)−α/2ds

≤ c3|h− k|qt1−α/2,

(4.2)

where c1, c2, and c3 are positive constants. The result now follows from the multidimen-

sional generalization of Kolmogrov’s lemma (see [1, 8]).

We can now assume that, for fixed t, the random field (4.1) is a.s. continuous in h,

provided X ∈ L
q
prog(Ω× (0, t)).

From X ∈
⋂

t>0L
q
prog(Ω× (0, t)), define

It(X ,h)= b
k
∑

i=1

∫ t

0

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s , h∈R
p, t > 0,

Jt(X)=

∫ t

0
F̃
(

t,s,Xs
)

ds+ It
(

X ,Ht
)

.

(4.3)

�
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Lemma 4.2. For any t > 0, there is a constant c > 0 such that

E
(
∣

∣Jt(X)
∣

∣

q)
≤ c
(
∫ t

0
E
(

1 +
∣

∣Xs

∣

∣

q)
{

1

(t− s)α
+

1

(t− s)α/2

}

ds
)

, 0 < α < 1. (4.4)

Proof.

∣

∣

∣

∣

∫ t

0
F̃
(

t,s,Xs
)

ds

∣

∣

∣

∣

q

≤ c

∫ t

0

∣

∣F
(

t,s,Xs
)
∣

∣

q

(t− s)α
+

k
∑

i=1

∣

∣G′i
(

h; t,s,Xs
)

|
q
h=Ht

∣

∣Di
sHt

∣

∣

q

(t− s)α/2
ds

≤ c̃

∫ t

0

(

1 +
∣

∣Xs

∣

∣

q)
{

1

(t− s)α
+

1

(t− s)α/2

}

ds,

(4.5)

where we have used (H.2), (H.3), and (H.4).

∣

∣It
(

X ,Ht
)
∣

∣≤ sup
h∈B

∣

∣It(X ,h)
∣

∣ (4.6)

(c, c̃ are positive constants).

It is easy to show, using, in particular, (H4) and Lebesgue’s dominated convergence

theorem, that the mapping

h−→ It(X ,h) (4.7)

from Rp into Lq(Ω) is differentiable and that

∂It(X ,h)

∂h j
= b

∫ t

0

∂

∂h j

k
∑

i=1

(

Gi
(

h; t,s,Xs
)

(t− s)α/2q

)

dW i
s . (4.8)

Since q > p, we can infer from Sobolev’s embedding theorem (see [13]) that

E

(

sup
h∈B

∣

∣It(X ,h)
∣

∣

q

)

≤ cE

∫

B

(

∣

∣It(X ,h)
∣

∣

q
+

p
∑

j=1

∣

∣

∣

∣

∂It
∂h j

(X ,h)

∣

∣

∣

∣

q
)

dh. (4.9)

It then follows from the Burkholder-Gundy inequality that

E

(

sup
h∈B

∣

∣It(X ,h)
∣

∣

q

)

≤ cE

∫

B

∫ t

0

k
∑

i=1

(
∣

∣Gi
(

h; t,s,Xs
)
∣

∣

q

(t− s)α/2
+

p
∑

j=1

∣

∣

∣

∣

∂

∂h j

Gi
(

h; t,s,Xs
)

(t− s)α/2q

∣

∣

∣

∣

q
)

dsdh

≤ c
(∫

B
dh
)(

E

∫ t

0

(

1 +
∣

∣Xs

∣

∣

q)

(t− s)α/2
ds
)

≤ c̃
{
∫ t

0

E
(

1 +
∣

∣Xs

∣

∣

q)

(t− s)α/2
ds
}

,

(4.10)

where we have used (H4) and B is bounded. From (4.5) and (4.10), the proof is complete.

�

A similar argument, using (H5) instead of (H4), yields the following lemma.
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Lemma 4.3. For any 0 < t ≤ T , there exists a constant c > 0 such that

E
(
∣

∣Jt(X)− Jt(Y)
∣

∣

q)
≤ c
{
∫ t

0
E
∣

∣Xs−Ys

∣

∣

q
{

1

(t− s)α
+

1

(t− s)α/2

}

ds
}

. (4.11)

We are now in a position to prove the main result of this section.

Theorem 4.4. Under conditions (H.1), (H.2), (H.3), (H.4), and (H.5), there exists a unique

element X ∈
⋂

t>0L
q
prog(Ω× (0, t)), which solves (3.1). Moreover, if τ is a stopping time,

uniqueness holds on the random interval [0,τ].

Proof. Equation (3.1) can be rewritten as

Xt = X0 + Jt(X), t ≥ 0. (4.12)

Uniqueness. Let X ,Y ∈
⋂

t>0L
q
prog(Ω× (0, t)) and let τ be a stopping time such that

Xt = X0 + Jt(X), Yt = X0 + Jt(Y), 0≤ t ≤ τ. (4.13)

From Lemma 4.3,

E
(
∣

∣Xt −Yt

∣

∣

q)
= E

(
∣

∣Jt(X)− Jt(Y)
∣

∣

q)

≤ c

∫ t

0
E
∣

∣Xs−Ys

∣

∣

q
{

1

(t− s)α
+

1

(t− s)α/2

}

ds.
(4.14)

Set (E|Xt −Yt|
q)= γt. It is easy to see that

γt ≤ 2cη(t)

∫ t

0

γs
(t− s)α

ds, (4.15)

where η(t)=Max(1, tα) and c is a positive constant. Thus, (see [5, 21])

γt ≤
M2
(

Γ(t−α)
)2

Γ
(

2(1−α)
)

∫ t

0

γs
(t− s)2α−1

ds, (4.16)

and, by a classical argument, we get

γt ≤
Mn
(

Γ(t−α)
)n

Γ
(

n(1−α)
)

∫ t

0

γs
(t− s)nα−(n−1)

ds, (4.17)

where M = 2cη(T). Thus for sufficiently large n, n > 1/(1−α), we get, from (4.17),

γt ≤
Kn

Γ
(

n(1−α)
)

∫ t

0
γsds, (4.18)

where K is a positive constant.

Taking the limit as n→∞, we find that (4.18) leads to γt = 0.

To prove the existence, we define a sequence {Xn
t , 0≤ t ≤ T , n= 0,1,2, . . .} as follows:

Xo
t = Xo, Xn+1

t = Xo + Jt
(

Xn
)

, T ≤ t ≤ 0. (4.19)
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Using Lemma 4.2, we can see that

Xn ∈
⋂

t>0

L
q
prog
(

Ω× [0,T]
)

. (4.20)

It then follows from Lemma 4.3 that

gn+1(t)≤ 2cη(t)

∫ t

0

gn(s)

(t− s)α
ds, (4.21)

where

gn+1(t)= E
(
∣

∣Xn+1
t −Xn

t

∣

∣

q)
. (4.22)

By using a similar argument, we can write

gn ≤
Kn

Γ
(

n(1−α)
)

∫ t

0
go(s)ds. (4.23)

The last estimation implies that Xn is a Cauchy sequence in L
q
prog(Ω× [0,T]). Then there

exists X such that Xn → X in
⋂

t>0L
q
prog(Ω× [0,T]), and again using Lemma 4.3, we can

pass to the limit in (4.20), yielding that X solves (4.12). �

5. An existence and uniqueness result under weaker assumptions

We formulate a new set of weaker hypotheses.

(H1′) X0 is η0 measurable.

(H2′) H ∈ (L1,2
loc)p,{Ht} is a progressively measurable process which can be localized in

(L1,2)p by a progressively measurable sequence.

We assume that there exists an increasing progressively measurable process {Ut, t ≥ 0}

with values in R+ such that

(H3′) |Ht|+
∑k

i=1 |D
i
sHt| ≤Ut a.s., 0≤ s < t.

Finally, we suppose that for any N > 0, there exists an increasing progressively measur-

able process {VN
t ; t ≥ 0} with values in R+ such that

(H4′) |F(t,s,x)|+
∑k

i=1 |Gi(h; t,s,x)|+
∑k

i=1 |G
′
i (h; t,s,x)| ≤ VN

t (1+|x|), for all |h|≤N ,

0≤ s < t, and x ∈Rd;

(H5′) |F(t,s,x) − F(t,s, y)| +
∑k

i=1 |Gi(h; t,s,x) − Gi(h; t,s, y)| +
∑k

i=1 |G
′
i (h; t,s,x)

−G′i (h; t,s, y)| ≤VN
t |x− y|, for all |h| ≤N , 0≤ s < t, x, y ∈Rd.

Let, again, q be a fixed real number, with q > p, and set 1−β = α/q, 0 < α < 1. We have

the following theorem.

Theorem 5.1. Equation (3.1) has a unique solution in the class of progressively measurable

processes which satisfy

X ∈
⋂

t>0

Lq(0, t) a.s. (5.1)
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Proof. (a) We first see how (3.1) makes sense if X ∈
⋂

t>0L
q(0, t) a.s.

That is, we have to show that for fixed t > 0,

{
∫ t

0

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s ; h∈R
P
}

(5.2)

is a well-defined random field which possesses an a.s. continuous version.

For that sake, we define

τn = inf

{

t;

∫ t

0

∣

∣Xs

∣

∣

q

(t− s)α
ds≥ n or VN

t ≥ n
}

. (5.3)

The argument of Lemma 4.1 can be used to show that

h−→

∫ t∧τn

0

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s (5.4)

possesses an a.s. continuous modification on {|h| ≤ N}. Since this is true for any n and

N , and ∪n{τn ≥ t} =Ω a.s., the result follows.

(b) Existence: we want to show existence on an arbitrary interval [0,T] (T will be fixed

below).

Let {Hn; n∈N} denote a progressively measurable localizing sequence for H in (L1,2)p

on [0,T]. Since, from (H.3′), supt≤T |Ht| is a.s. finite, we can and do assume, without loss

of generality, that

∣

∣Hn
t (ω)

∣

∣≤ n, ∀(t,ω)∈ [0,T]×Ω. (5.5)

Note that Ht(ω) =Hn
t (ω) a.s. on ΩT

n , for all t ∈ [0,T], where ΩT
n ↑Ω a.s. as n→∞. We,

moreover, define Xn
0 = X01{|X0|≤n}, Sn = inf{t; sups<t |DsH

n
t |∨Vn

t ≥ n}. We consider the

equation

Xn
t = Xn

0 +

∫ t

0
F̃n
(

t,s,Xn
s

)

ds+ b
k
∑

i=1

∫ t

0

Gn
i

(

h; t,s,Xn
s

)

(t− s)α/2q
dW i

s|h=Hn
t
, (5.6)

where

F̃n(t,s,x)= 1[0,Sn](s)

[

a
F(t,s,x)

(t− s)α/q
− b

k
∑

i=1

G′i
(

Hn
t ; t,s,x

)

Di
sH

n
t

(t− s)α/2q

]

,

Gn
i (h; t,s,x)= 1[0,Sn](s)Gi(h; t,s,x).

(5.7)

It is easy to see that theorem (4.15) applies to (5.6).

Define

S̄n(ω)=











Sn(ω)∧ inf

{

t ≤ T ;

∫ t

0

∣

∣Hs(ω)−Hn
s (ω)

∣

∣ds > 0

}

if
∣

∣X0(ω)
∣

∣ < n,

0 otherwise.
(5.8)
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S̄n is a stopping time, and it follows from the uniqueness part of Theorem 4.4 that if

m> n,

Xm
t = Xn

t on
[

0, S̄n
]

a.s. (5.9)

Since, moreover, {S̄n = T} ↑Ω a.s., we can define the process {Xt} on [0,T] by Xt = Xn
t

on [0, S̄n], for all n∈N.

Clearly, X ∈ Lq(0,T) a.s. and solves (3.1) on [0,T]. Since T is arbitrary, the existence

is proved.

(c) Uniqueness: it suffices to prove uniqueness on an arbitrary interval [0,T]. Let

{X̄t, t ∈ [0,T]} be a progressively measurable process such that X̄ ∈ Lq(0,T) a.s. and

X̄ solves (3.1). It suffices to show that X̄ coincides with the solution we have just con-

structed.

Let

S̃n(ω)= S̄(ω)∧ inf

{

t ≤ T ;

∫ t

0

∣

∣X̄s(ω)
∣

∣

q

(t− s)α
ds > n

}

,

X̃n
t = X̄t∧S̃n ;

(5.10)

S̃n ∈ Lq(Ω× [0,T]) and it solves (5.6) with Sn replaced by S̃n.

Then

X̃n
t (ω)= Xt(ω)ℓ×P a.e. on

[

0, S̃n
]

, (5.11)

where ℓ is the Lebesgue measure on the real line.

The result follows from the fact that {S̃n ≥ T} ↑Ω a.s.

Note that the above solution satisfies, in fact, X ∈
⋂

q>1

⋂

t>0L
q(0, t) a.s. �

6. Continuity of the solution

We want to give additional conditions under which the solution of (3.1) is an a.s. contin-

uous process.

(H6) For all (s,x)∈R+×Rd, t→ F(t,s,x)/(t− s)α/q is a.s. continuous on (s,+∞).

(H7) {Ht; t ≥ 0} is a.s. continuous.

(H8) For all i∈ {1, . . . ,k}, s∈R+, t→Di
sHt is a.s. continuous on (s,+∞).

(H9) For all (s,x) ∈ R+ ×Rd, i ∈ {1, . . . ,k}, (t,h)→ G′i (h; t,s,x)/(t− s)α/2q is a.s. con-

tinuous on (s,+∞)×RP .

We also suppose that there exist δ > 0, ℓ > 0 such that for all N > 0, |h| ≤ N , 0 ≤ s <
t∧ r, x ∈Rd, |t− r| ≤ 1.

(H10) There exists an increasing process {VN
t ; t ≥ 0} such that

∣

∣Gi(h; t,s,x)−Gi(h;r,s,x)
∣

∣≤VN
t |t− r|δ

(

1 + |x|ℓ
)

. (6.1)

Theorem 6.1. Under conditions (H1′), (H2′), (H3′), (H4′), (H5′) and (H6), (H7), (H8),

(H9), (H10), the unique solution of (3.1) (which is progressively measurable and belongs a.s.

to
⋂

q>1

⋂

t>0L
q(0, t)) has a.s. continuous modification.
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Proof. We need to show only that whenever X ∈
⋂

q>1

⋂

t>0L
q(0, t) a.s., {Jt(X); t > 0} has

an a.s. continuous modification.

(a) We first show that t→
∫ t

0 F̃(t,s,Xs)ds is a.s. continuous.

Note that (H.6), (H.7), (H.8), and (H.9) imply that for all (s,x)∈R+×Rd, t→ F̃(t,s,x)

is a.s. continuous on (s,+∞).

Moreover, from (H.2′), (H.3′), (H.4′), and the fact that X ∈
⋂

q>1

⋂

t>0L
q(0, t) a.s. for

any T > 0, there exists a process {ZT
s ; s∈ [0,T]} such that

∣

∣F
(

t,s,Xs
)
∣

∣≤ ZT
s ,

∣

∣G′i
(

Ht; t,s,Xs
)

Di
sHt

∣

∣≤ ZT
s , 0≤ s < t ≤ T a.s.,

∫ t

0
ZT
s

{

1

(t− s)α/2q
+

1

(t− s)α/q

}

ds <∞ a.s.
(6.2)

Let first {tn; n∈N} be a sequence such that tn < t for any n and tn→ t as n→∞; then

∫ t

0
F̃
(

t,s,Xs
)

ds−

∫ tn

0
F̃
(

tn,s,Xs
)

ds=

∫ t

tn
F̃
(

t,s,Xs
)

ds+

∫ tn

0

[

F̃
(

t,s,Xs
)

− F̃
(

tn,s,Xs
)]

ds,

∣

∣

∣

∣

∫ t

tn
F̃
(

t,s,Xs
)

ds

∣

∣

∣

∣

≤

∫ t

tn
ZT
s

{

1

(t− s)α/2q
+

1

(t− s)α/q

}

ds,

(6.3)

and the latter tends a.s. to 0 as n→∞.

∣

∣

∣

∣

∫ tn

0

[

F̃
(

t,s,Xs
)

− F̃
(

tn,s,Xs
)]

ds

∣

∣

∣

∣

≤

∫ t

0

∣

∣F̃
(

t,s,Xs
)

− F̃
(

tn,s,Xs
)
∣

∣ds (6.4)

which tends to 0 as n→∞. A similar argument gives the same result when tn > t, tn→ t.
(b) We next show that t → It(X ,Ht) possesses an a.s. continuous modification. This

follows from (H.7) and

(t,h)−→ It(X ,h) (6.5)

has an a.s. continuous modification.

By localization, it suffices to prove (6.5) under assumptions (H.2), (H.3), (H.4), (H.5)

and (H.6), (H.7), (H.8), (H.9), (H.10), with VN
t (ω) in (H.10) replaced by a constant K ,

and in case X0 ∈
⋂

q>1L
q(Ω;Rd).

It then suffices to show that under the above hypotheses, there exists C,q > 0 such that

for any h,k ∈RP , the numbers t,r will be positive. Suppose, to fix the ideas, that 0≤ r < t;
then

It(X ,h)− Ir(X ,k)=

∫ t

r

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s +

∫ r

0

[

Gi
(

h; t,s,Xs
)

(t− s)α/2q
−
Gi
(

h;r,s,Xs
)

(r− s)α/2q

]

dW i
s

+

∫ r

0

[

Gi
(

h; t,s,Xs
)

(r− s)α/2q
−
Gi
(

k;r,s,Xs
)

(r− s)α/2q

]

dW i
s .

(6.6)



466 Volterra equations with fractional stochastic integrals

It follows from the Burkholder-Gundy inequality that

E
(
∣

∣

∣

∣

∫ t

r

Gi
(

h; t,s,Xs
)

(t− s)α/2q
dW i

s

∣

∣

∣

∣

q)

≤ cq

k
∑

i=1

E

[

(
∫ t

r

∣

∣Gi
(

h; t,s,Xs
)
∣

∣

2

(t− s)α/q
ds
)q/2

]

≤ cq(t− r)(q−2)/2
k
∑

i=1

E

∫ t

r

∣

∣Gi
(

h; t,s,Xs
)
∣

∣

q

(t− s)α/2
ds

≤ cq(t− r)(q−2)/2

∫ t

r

E
(

1 +
∣

∣Xs

∣

∣

q)

(t− s)α/2
ds

≤ Cq(t− r)(q−2)/2(t− r)1−α/2.

(6.7)

From (H4), for Gi, we deduce, as in Lemma 4.1, that

E

(

∣

∣

∣

∣

∫ r

0

[

Gi
(

h;r,s,Xs
)

−Gi
(

k;r,s,Xs
)

(r− s)α/2q

]

dW i
s

∣

∣

∣

∣

q
)

≤ cq(h− k)q
∫ r

0

E
(

1 +
∣

∣Xs

∣

∣

q)

(r− s)α/2
ds≤ Cq(h− k)qr1−α/2.

(6.8)

From (H.10) and the fact that

X ∈
⋂

q>1

⋂

t>0

Lq
(

Ω× (0, t)
)

,

E

(

∣

∣

∣

∣

∫ r

0

[

Gi
(

h; t,s,Xs
)

(t− s)α/2q
−
Gi
(

h;r,s,Xs
)

(r− s)α/2q

]

dW i
s

∣

∣

∣

∣

q
)

= E

(

∣

∣

∣

∣

∫ r

0

(

1

(r− s)α/2q
[

Gi
(

h; t,s,Xs
)

−Gi
(

h;r,s,Xs
)]

+Gi
(

h; t,s,Xs
)

[

1

(t− s)α/2q
−

1

(r− s)α/2q

])

dW i
s

∣

∣

∣

∣

q
)

≤ E

(

cq

∫ r

0

(
∣

∣Gi
(

h; t,s,Xs
)

−Gi
(

h;r,s,Xs
)
∣

∣

q

(r− s)α

+
∣

∣Gi
(

h; t,s,Xs
)
∣

∣

q(
(r− s)−α/2q− (t− s)−α/2q

)q

)

ds

)

≤ cqK
q
(∫ r

0

(

|t− r|δq

(r− s)α
E
(

1 +
∣

∣Xs

∣

∣

qℓ
)

)

ds

+

∫ r

0

(

E
(

1 +
∣

∣Xs

∣

∣

q)(
(r− s)−α/2− (t− s)−α/2

))

ds
)

≤ c̃q

[

|t− r|δq
∫ r

0
(r− s)−α/2ds+

∫ r

0

(

(r− s)−α/2− (t− s)−α/2
)

ds
]

≤ Cq
(

|t− r|δqr1−α/2 +
(

r1−α/2 + (t− r)1−α/2− t1−α/2
))

(6.9)
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which from the above estimate yields

E
(
∣

∣It(X ,h)− Ir(X ,k)
∣

∣

q)

≤ Cq
[

|t− r|1−α/2 + |t− r|(q−α)/2

+ r1−α/2
(

|t− r|δq + |h− k|q
)

+
(

r1−α/2− t1−α/2
)]

;

(6.10)

this completes the proof. �
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