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Volterra Filter Equalization: A Fixed Point Approach
Robert D. Nowak, Member, IEEE, and Barry D. Van Veen, Member, IEEE

Abstract—One important application of Volterra filters is the
equalization of nonlinear systems. Under certain conditions, this
problem can be posed as a fixed point problem involving a
contraction mapping. In this paper, we generalize the previously
studied local inverse problem to a very broad class of equaliza-
tion problems. We also demonstrate that subspace information
regarding the response behavior of the Volterra filters can be
incorporated to improve the theoretical analysis of equalization
algorithms. To this end, a new “windowed” signal norm is
introduced. Using this norm, we show that the class of allowable
inputs is increased and the upper bounds on the convergence rate
are improved when subspace information is exploited.

I. INTRODUCTION

I
N THIS PAPER, we consider the following problem.

Equalization Problem Statement

Given a physical system, modeled by a known digital

filter and a desired system modeled by a known digital

filter , construct an equalizer such that composed

with approximates the desired filter .

Note that we assume that both and are known, and

the task at hand is to design an equalizing filter . In practice,

is modeled or identified from input and output observations

or prior knowledge of system characteristics. The desired filter

might be specified by a desired performance criterion. For

example, if is a nonlinear system, then may be specified

as the linear component of . In this case, the equalizer

effectively “linearizes” the system .

This problem is well studied for the special case when

and are linear. In this paper, the equalization problem

is considered in the case where and/or are nonlinear.

Specifically, we consider the case in which and are

digital Volterra filters [14]. Volterra filters are appropriate

mathematical models for a wide variety of mildly nonlin-

ear physical systems [4], [10], [11], [12], [18]. Due to the

nonlinearities involved, the solution to the problem above

is, in general, only local. That is, performs the desired

equalization for a restricted class of inputs.
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Nonlinear system equalization has been studied by others

from both a theoretical and applied perspective. An elegant

theory for local polynomial (Volterra) system inversion was

pioneered in [8] and [17] and the references therein. The

mathematical underpinning of this theory is based on contrac-

tion mappings and was formulated in a general Banach space

setting. This theory exploits the fact that if the nonlinearities

are sufficiently “mild” (i.e., the nonlinear component of the

system is contractive), then the local inverse is easily con-

structed. Note that contractiveness is sufficient to guarantee

a local inverse but is not necessary in general. These ideas

are also related to the Schetzen’s notion of a “ th-order

inverse” described in [19]. The local inverse discussed in these

references is a special case of the general equalization problem

treated here.

Several researchers have addressed equalization applications

in which and/or are Volterra filters. In [6] and [7],

nonlinear distortions in audio loudspeakers are reduced using

Volterra filter predistortion. In [18], the restoration of optical

signals degraded by bilinear transformations is accomplished

using Volterra filters. The equalization schemes of [6], [7],

and [18] are based on a contraction mapping type approach;

however, these papers do not rigorously address the issue of

convergence for their equalization schemes.

Nonlinearities also arise in many communication problems.

Volterra filter-based channel equalization algorithms have been

studied in [2], [4], and [12], and echo cancellation is treated

in [1] and [10]. In these applications, the equalizer is typically

based on an adaptive Volterra filter aimed at minimizing

the mean-square equalization error. There is no guarantee

of convergence to an optimal equalization scheme in these

cases. In addition, the structure of the adaptive filter is often

derived in an ad hoc fashion. The focus in this paper is on

nonadaptive equalization; however, many of the theoretical

principles studied in this paper have application to adaptive

cases as well.

The paper is organized as follows. In Section II, we define

prefiltering and postfiltering equalization problems. Next, in

Section III, we generalize previous work to include a wide

variety of “equalization” problems, including the special case

of local inversion. This generalization identifies the subtle

issues, that have not been previously recognized, that dis-

tinguish prefilter and postfilter equalization problems. We

also present the material from a digital signal processing

perspective while remaining true to the underlying functional

analysis tools required for the theory. A general realization of

the equalization filter in terms of a cascade of simple, repeated,

digital Volterra filter structures that are easily implemented

is developed in Section IV. In Section V, we examine the
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Fig. 1. Volterra prefilter equalizer.

crucial issue of choosing a signal norm in which to formulate

the equalization problem. It turns out that different choices of

signal norm can lead to very different theoretical performance

limits. We develop a new signal norm that allows subspace

information regarding response behavior of the Volterra fil-

ters to be incorporated into the analysis. In Section VI,

the incorporation of subspace information into the equalizer

analysis is discussed. In certain cases, this produces signif-

icant improvements in the theoretical performance bounds

of the equalization algorithms, as is proved in Section VII.

Specifically, the class of allowable inputs is increased, and the

upper bounds on the convergence rate are improved using this

information. Section VIII includes several numerical examples

demonstrating these results. Conclusions are given in Section

IX.

II. VOLTERRA FILTER EQUALIZATION

Let the space of bi-infinite real-valued sequences be denoted

by . An th-order Volterra filter is a polynomial mapping

. If is the input to ,

then the output sequence is given by

(1)

In the equation above, are called the Volterra kernels

of . Notice that if , then is linear. Additionally,

it is often convenient to write , where is

the th-order homogeneous component of . To simplify the

presentation, an operator notation (e.g., ) is utilized, rather

then the explicit expression of the output as in (1).

Assume that models the physical system and that the

desired system is also modeled as a Volterra filter. Two

specific problems are studied in this paper. The first problem

is prefiltering equalization. Assume that we have an input .

The goal is to construct a Volterra filter so that the output

of the filter in response to the prefiltered input

approximates the output of the ideal filter in response to .

That is, . is called a prefilter

equalizer. The prefiltering problem is depicted in Fig. 1 and

is formally stated as follows:

1) Given , and the input , construct a Volterra

filter such that . Note that

is dependent on both and .

Special cases of this problem are inversion and linearization

(i.e., or , respectively). Applications include

loudspeaker linearization [6], [7] and channel equalization [4],

[10], [12].

The second problem is postfiltering equalization. Assume

that the output in response to an unknown input

is observed. The goal is to construct a Volterra filter

so that . is called a postfilter equalizer

Fig. 2. Volterra postfilter equalizer.

and depends on both and . Applications include sensor

linearization and image restoration [18]. The postfiltering

problem is depicted in Fig. 2 and is formally stated as follows:

2) Given , , and the output , construct a

Volterra filter such that

.

Note that due to the nonlinear nature of and , in general,

the prefilter and postfilter are different.

III. SOLVING THE EQUALIZATION PROBLEM

VIA THE CONTRACTION MAPPING THEOREM

The prefilter and postfilter equalization problems are ap-

proached as fixed point problems. In general, the fixed point

cannot be solved for directly. However, under certain condi-

tions, the fixed point solution may be obtained by invoking the

classical contraction mapping theorem (CMT). This is closely

related to the approaches followed in [8] and [17]. Before

going into the problem formulation, we briefly discuss the

similarities and differences between the work in this paper

and that of the previous papers.

Halme et al. [8] consider the special case of the local

inverse for polynomial operators on general Banach spaces,

emphasizing a special construction of the local inverse. This

special construction is quite different from the successive

approximation construction used for the equalizers studied

in this paper. The successive approximation method has two

distinct advantages over the construction of Halme et al.:

Theoretical upper bounds on the convergence rate of the

successive approximation method are easily obtained, and

the implementation complexity of the Volterra filter equalizer

derived from the successive approximation scheme is generally

much less. Halme et al. apply their results to solve certain types

of nonlinear differential equations and to determine sufficient

conditions for BIBO stability of related systems.

The results surveyed by Prenter in [17] and the references

therein are closer in spirit to the analysis carried out here

but, again, are restricted to the special case of a local inverse.

Prenter utilizes the method of successive approximation and

derives conditions similar to Halme et al. for the local inverse.

Prenter works with the sequence spaces and , and

hence, the analysis is closer to the digital signal processing

approach taken here. The survey [17] does not discuss possible

applications of the results.

In this section, we generalize the local inverse problem to

the equalization problem at hand, and we treat the subtleties

regarding the difference between the prefilter and postfilter

equalization. In addition, we employ a signal processing

perspective as much as possible.

A. Fixed Point Formulation of Equalization Problem

In this section, we derive a fixed point equation that de-

scribes both the prefilter and postfilter equalization. To do this,

we need to make the following standard assumption [8], [17]:
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A1) , which is the linear component of the filter , is

invertible.

For the prefilter equalization, we desire

(2)

Applying to both sides of (2), we have

(3)

Now, let , and rearrange (3) as

(4)

Hence, the prefilter equalization problem corresponds to the

fixed point problem in described by (4). In the next section,

it is shown how the fixed point can be computed using the

method of successive approximation. This process of solving

for leads naturally to a Volterra filter realization for the

prefilter equalizer .

The postfilter problem is approached as follows. Using the

observed output , first compute the unknown input

. This step is an inversion problem. Next, apply the desired

system to . If denotes the postinverse of , then

the postfilter equalizer is given by . The

inverse problem is formulated as a fixed point equation similar

to the prefiltering problem considered above. A neccessary

condition that is an inverse is

(5)

Equation (5) simply requires that the output of in response

to must equal the original output . Applying

to both sides of (5), we have

(6)

Now, let , and rearrange (6) as

(7)

Under certain conditions to be established shortly, the solution

of the equation above satisfies . Hence, by computing

the fixed point of (7), the filter is inverted. Using the

method of successive approximation to obtain and then

applying to leads, naturally, to a Volterra filter realization

for the postfilter equalizer .

Note that both the prefilter equalization (4) and the postfilter

inversion (7) are represented by the following fixed point

equation:

(8)

In the prefilter equalization, , and

. A fixed point of satisfies

or equivalently (9)

For postfilter equalization, and

. The fixed point of then satisfies

or equivalently (10)

Conditions are established in the next section under which the

fixed point is unique, and therefore, . Hence, solving

the fixed point equation produces the unknown input , and

subsequently, the desired output can be produced.

B. Solving the Fixed Point Equation via the CMT

One common method for characterizing solutions to fixed

point problems is the contraction mapping theorem (CMT).

Under certain conditions, the mapping in (8) is a contraction

mapping, and the fixed point can be found by the method

of successive approximation.

Definition: Let be a subset of a normed space , and let

be a transformation mapping into . Then, is said to be

a contraction mapping if there exists an such that

(11)

Contraction Mapping Theorem (CMT) [13], [21]: If is

a contraction mapping on a closed subset of a Banach

space, there is a unique vector satisfying .

Furthermore, can be obtained by the method of successive

approximation, starting from an arbitrary initial vector in . If

is arbitrary, and satisfies (11) for some ,

then the sequence , which is defined by the recursion

, converges in norm to . Moreover

(12)

In order to apply the CMT to the equalization problem, the

problem must be formulated on a complete, normed vector

space (Banach space). Many choices of norm are possible.

For example, any of the sequence norms may be chosen.

For the moment, assume that we have selected a norm denoted

. Define the normed vector space of sequences

(13)

and assume that is complete. In addition, we let

denote the homogeneous components1 of the Volterra filter

. We assume the homogeneous operators

of are bounded, i.e., , and

1The homogeneous components of the composition are

easily obtained from and . Details are found in [8, Appendix
C]; also see [20].



380 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

assume that . Details on computing bounds on

these operator norms are discussed in Section V.

For the equalization problem at hand, we must confirm

that the mapping is a contraction mapping. This is a

relatively straightforward exercise and basically follows the

developments in [8] and [17]. The details are found in [15].

Here, we state the main result.

First, define the contraction factor

(14)

and the polynomial

(15)

The condition ensures that maps into

, where is the ball of radius about the origin in .

The following theorem summarizes the conditions that

establish the contractiveness of the equalizer. Similar results

were previously derived for the special case of a local inverse

in [8], [9], [16], and [17].

Theorem 1: Let be the unique positive number satisfying

If there exists such that

(16)

then is a contraction mapping on , and there exists a

unique satisfying . Moreover, the sequence

defined by the recursion converges in

norm to for any initial and

(17)

In the postfilter equalization problem, if , then

by the uniqueness of the fixed point.

In practice, the operator norms needed for the previous

analysis are not easily computed. However, upper bounds on

the operator norms are easily obtained (see Section V), and the

statement of Theorem 1 remains the same when the norms are

replaced with upper bounds [16]. Note that the condition (16)

differs from similar conditions in [8], [17] because we consider

the general equalization problem rather than the special case

of a local inverse. Second, we have explicitly addressed both

the prefilter and postfilter equalization problems.

IV. REALIZING THE EQUALIZATION USING VOLTERRA FILTERS

The method of successive approximation used to solve the

fixed point equation (8) produces an explicit construction for

the equalizing filter. The equalizer is itself a Volterra filter, and

here, we define its general structure. Specifically, under certain

assumptions, the -fold iteration of the contraction mapping is

realized as a cascade of Volterra filters. In addition to

the linear component invertibiltity assumption A1, for practical

applications, we also assume finite memories.

A2. and in (8) are finite memory Volterra filters.

Under A2, the signals and are realized as

(18)

(19)

In general, the memory lengths of the different kernels

above may vary. For simplicity, we assume every kernel to

have the same memory length . However, note that and

may have different orders and respectively.

The -fold iteration of the contraction mapping is realized

by the following equation:

(20)

A simple choice of initialization is . The -fold

equalization (20) is represented in the block diagram of Fig. 3.

There are a total of Volterra filter blocks in the

-fold equalizer.

V. CHOOSING A NORM

As mentioned previously, the equalization problem may be

formulated using a variety of norms. In particular, any of the

norms can be used. There are several reasons to carefully

consider different norms. First of all, recall that to guarantee

the contractiveness of the equalizer, we have the condition

where the radius bounds the norm of the signals involved.

To compute , we need the operator norms . The

operator norms are induced by the choice of signal norm.

In practice, these induced norms cannot be computed, and

we must replace the norms with computable upper bounds.

The upper bounds may be tighter or looser, depending on

the underlying signal norm involved. Hence, formulating the

equalization problem under different signal norms produces

different signal restrictions, which are necessary to guarantee

the contractiveness.

A second aspect of the theoretical analysis that is affected

by the choice of norm is the condition that guarantees that the
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Fig. 3. -fold Volterra equalizer.

equalizer maps into :

This condition can be viewed in two ways. First, given an

, what class of signals can be handled within this

framework? Alternatively, given , what is the minimum

value of so that the condition above is satsified? This

can then be used to determine whether or not the mapping

is contractive by computing . Either way, the choice

of signal norm determines and the upper bounds for

the operator norms . Because the theoretical equalizer

performance depends on these quantities in a complicated

nonlinear manner, it is not clear which norm will provide the

most meaningful and/or illuminating results.

In this section, we briefly discuss some of the benefits

and limitations of different norms and propose a new norm

that provides a reasonable compromise between the various

choices, and that, in many cases, provides improved theoretical

performance limits.

A. The and Norms

Bounds on the operator norms for and , respectively, are

(21)

(22)

where denotes the -dimensional Fourier transform of the

kernel . Derivation of the operator bound is found in [17].

The bound, which appears to be new, is easily obtained

using standard Fourier analysis. Note that if has finite

support (i.e., finite memory), then is a continuous function

on a compact set and, therefore, is bounded. This implies that

the operator norm is finite.

The disadvantage of the and norms is they are

global measures of the signal over all time. Hence, as the

signal duration increases, the total energy may increase, and

consequently, so does the signal norm. The conditions of

Theorem 1 that must be satisfied so that the CMT is applicable

place severe restrictions on the norms of signals involved. This

limits the utility of the and norms in the equalization

problem.

B. The Norm

The signal norm measures the maximum amplitude

of the signal and, hence, does not suffer from some of the

limitations of the and norms. In this case, the operator

norm is bounded in terms of the kernel by

(23)

This bound is easily obtained, and the details are found in

[17]. A limitation of the norm is that it is difficult to

incorporate information regarding the response characteristic

of the operator into the analysis. In Sections VI and

VII, response information is used to improve the theoretical

performance limits. To do this, however, we need to introduce

a new “window” norm that is a compromise between the

norm and the norm.

C. The Norm

For

(24)

where , and is the

Euclidean norm. It is easily verified that is a valid

norm, and it can also be shown that the normed space

(25)

is complete.2 The norm has the attractive property that it

only involves an length window of the signal and, hence,

is local like the norm. In fact, . However,

unlike the norm and like the and norms, for ,

the norm does reflect some of the temporal behavior of

the signal. In fact, . This norm is

also ideally suited to incorporate information regarding the

response characteristics of the Volterra filters into the analysis.

An upper bound for the operator norm is given below.

The upper bound follows using standard results from Kro-

necker product theory, and the details may be found in [15].

Define the kernel matrix

where

...
...

(26)

2The completeness of this space is essentially established in the same
manner as the completeness of is established. A proof showing that
is complete is given in [13, p. 37].
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and let be the largest singular value of the matrix . The

operator norm induced by the signal norm is bounded as

(27)

VI. INCORPORATING SUBSPACE INFORMATION INTO THE CMT

The predicted performance limits obtained from the basic

CMT analysis of the Volterra equalization problem can be

improved in many cases by incorporating subspace informa-

tion regarding the Volterra filter into the analysis. If we

assume that the nonlinear Volterra filter only responds to a

subspace of the full input space, the class of allowable input

signals is increased, and the bounds on the convergence rate

are improved. Subspace response conditions such as this are

often met or nearly approximated in many practical problems.

A simple example that illustrates this subspace effect is the

following cascade system. Consider a quadratic system defined

by a linear FIR filter with vectorized impulse response

followed by a squaring operation. If

is the input to this system, then the output is given by

(28)

If we define the orthogonal projection matrix ,

then it is easy to see that

(29)

Hence, the output in response to is equal to the output

in response to , which is the projection of the input

vector onto the space spanned by the filter vector . While

this is a trivial example, the idea extends to more complicated

situations. The point is that the nonlinear filter only responds

to a particular subspace and produces zero output in response

to inputs outside this subspace. We say that such a filter is

subspace limited.

More general Volterra filters may also be subspace lim-

ited. Typically, the subspace cannot be determined by simple

inspection as in the example above. However, the kernel ap-

proximation and decomposition results developed in [14] allow

such subspaces to be extracted from arbitrary Volterra kernels.

We have shown in previous work [14] that a homogeneous

Volterra filter operator is subspace limited if and only if the

kernel matrix, as defined in (26), is low rank. Theorem 2

in [14] provides a method for determining the subspace for

a given low-rank kernel. Efficient implementations for low-

rank kernels are also discussed in [14]. These implementations

are also useful for reducing the computational complexity of

equalizers.

VII. IMPROVEMENTS IN THEORETICAL

ANALYSIS FOR SUBSPACE-LIMITED FILTERS

In this section, we develop the theoretical analysis of the

equalization problem under the assumption that the kernels

of the Volterra filter are low rank and, hence, are sub-

space limited. The norm provides a convenient and

practical framework for exploiting the subspace limited be-

havior of Volterra filters. To simplify the notation, for any

signal , let , where

.

For the purpose of analysis, we interpret the th-order

homogeneous filter as a multilinear operator and write

(30)

to reflect the output’s dependence on only the past terms

of the input sequences . In addition, let be an

rank orthogonal projection matrix, and define

the seminorm3

(31)

Note that because is an orthogonal projection matrix, for

every

(32)

As in Section III, , and we write

. Let be the rectangular kernel matrix

defined according to (26) using the th-order kernel of .

The induced operator norm is bounded, according to (27)

where is the largest singular value . For convenience,

we denote this upper bound on the operator norm by

(33)

The following lemma characterizes a subspace limited Volterra

filter in terms of the kernel matrices and will be

used in the subsequent analysis.

Lemma 2: Let be an rank orthogonal

projection matrix. If for any unitarily invariant matrix norm

then for every set of signals

(34)

Furthermore

(35)

Lemma 2 follow easily from previous results regarding low-

rank kernel matrices established in [14], and the details are

given in [15]. Before stating the convergence results for a

subspace limited equalizer, define the contraction factor

and let

With this notation in place, we state the following theorem.

3A seminorm satisfies all properties of a norm except that its value may be
zero for nonzero signals [13].
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Theorem 2: Let be the unique positive number satisfying

. If for some orthogonal projection matrix

i) ,

ii) there exists such that ,

then there exists a unique

satisfying , or equivalently, . Furthermore,

the sequence defined by converges in

norm to for any and

The proof of Theorem 2 is very similar to the proof of

Theorem 1. The only difference is that Lemma 2 and (32) are

used in some of the steps in a straightforward way. Again, the

details can be found in [15].

Comparing the statements of Theorems 1 and 2, the obvious

question arises. What do we gain by exploiting the subspace

limited condition? There are two distinct improvements gained

by incorporating prior knowledge of subspace limited behav-

ior:

• guaranteed equalizer convergence for a larger set of input

signals ,

• tighter bounds on the rate of convergence.

In the appendix, we discuss the details of these two points

and establish that by exploiting prior information (the subspace

limited behavior of ) we are able to guarantee equalizer

convergence for a larger class of problems. We also show that

incorporation of prior information results in tighter bounds on

the error performance of the equalizer in all cases.

VIII. NUMERICAL EXAMPLES

In this section we examine two numerical examples that

demonstrate the equalization methods and, in particular, high-

light the use of Theorem 2. In the first example, we simulate

a signal recovery problem that is posed as a postfilter equal-

ization. The second example illustrates a prefilter equalization

scheme.

Both examples assume that we have a Volterra filter model

of the physical system that is to be equalized. This Volterra

filter explicity defines the equalizing filter as established in

Section IV. The equalization filter used in our simulations is

implemented as the cascade Volterra filter structure depicted

in Fig. 3. In practice, the Volterra filter model of the physical

system would first be identified or deduced by other means.

A. Example 1: Postfilter Equalizer

In this example, we consider the following problem. A

sinusoidal process

(36)

is the input to a nonlinear system given by the cascade

of a linear FIR filter with impulse response

followed by the memoryless

nonlinear saturation characteristic depicted by the solid

Fig. 4. Saturation nonlinearity.

curve in Fig. 4. The saturation characteristic is defined by the

cubic polynomial

(37)

where, in this case, . The dotted line in Fig. 4

shows the linear component of this nonlinearity for compari-

son. For this example, assume that the input is unknown and

that the nonlinear system is known. The goal is to recover the

original input using only the observed output . In this case,

because of the simple form of the nonlinear system, we could

directly recover . However, to illustrate the

methods of this paper, we apply the CMT.

Using the notation developed in Sections II and III, the

nonlinear system is given by

(38)

where is a linear FIR filter whose impulse response is

and where is a

cubic Volterra filter whose 3-D kernel is given

(39)

where denotes the th element of . The best linear

filtering solution to this problem is to filter the output with

the inverse of the linear FIR filter . In this case, an approx-

imate linear inverse filter has the impulse response .

Applying the inverse to the observed output produces a

signal , where, again, we are using the

notation previously developed for the postfilter equalization

(see Section III). The true input and the residual error of the

linear inverse filtering are shown in Fig. 5. The maximum

amplitude of the residual error is roughly 5% of the input

amplitude, and a better estimate of the original input may be

obtained using nonlinear processing.

We will formulate the problem using the and norms.4

The norm is convenient for this case because the cubic

filter has a memory length of 5. The contraction

mapping in this case is

4Note that due to the periodicity of the input signal, the signals involved are
not finite energy signals, and hence, the and norms are not applicable.
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Fig. 5. Original input and linear equalizer error.

Initializing the contraction at gives the linear inverse

solution. That is, . The hope is that by

iterating the mapping to obtain , , and

so on, better and better approximations to the original input

are obtained.

First, we will examine the formulation. To theoretically

guarantee the convergence of the iteration, the conditions of

Theorem 1 must be satisfied. The upper bound (23) on induced

norm of the cubic filter is .

Next, solving for , the positive number satisfying

(40)

produces . Substituting into the expression for

produces . Unfortunately, in this problem

(recall ), and hence, Theorem

1 cannot be applied.

Next, we formulate the problem using the norm. The up-

per bound (27) for the induced operator norm is

, which, in this case, leads to .

However, , and again, the conditions of

Theorem 1 are not met!

Fortunately, the fact that is subspace limited can

be exploited, and Theorem 2 can be successfully applied.

To see this, first consider the SVD of the kernel matrix

corresponding to . In this case, the singular

values are . Because

the kernel matrix is rank 2, we can deduce that the cubic filter

is subspace limited. Letting be the orthogonal projection

onto the subspace spanned by the two right singular vectors

corresponding to the two nonzero singular values of , we

have for all unitarily invariant matrix norms.

Therefore, Lemma 2 is satisfied. Using this projection and the

corresponding seminorm , we have ,

and since , Theorem 2 may be applied! In

fact, solving for the that satisfies and

substituting the solution into the expression for the theoretical

contraction factor produces

(41)

which is an upper bound on the convergence rate in this

case. Table I shows the theoretical and actual convergence

behavior of this equalizer in the norm sense. Recall that

is the output of the linear equalizer, and for ,

TABLE I
POSTFILTER EQUALIZER CONVERGENCE

Actual 0.0653 0.0092 0.0014 0.0002

Theory 0.0653 0.0279 0.0156 0.0098

Fig. 6. Errors of linear and Volterra equalizers.

. The actual computation of the -

fold equalization is performed using the cascade Volterra filter

structure depicted in Fig. 3. That is, is simply the output

of the equalizing filter pictured in Fig. 3 in response to the

input signal .

Notice that the theory does overbound the actual perfor-

mance. For example, the theoretical bound on the error

is a factor of 3 larger than the actual error. However,

the theoretical bounds may provide guidelines that allow one

to quantify the tradeoff between equalizer complexity and

performance. The residual errors of the linear equalizer ,

one iteration Volterra equalizer , and two iteration

Volterra equalizer are depicted in Fig. 6.

The theory, even when subspace information is incorpo-

rated, does not guarantee equalizer convergence for saturations

much more severe than the one in the previous example.

However, in practice, much more demanding problems can

be tackled using the successive approximation approach. As

an example, consider the same nonlinear system structure with

a more severe saturation characteristic

(42)

This saturation is depicted in Fig. 7. Computing the necessary

Volterra filters and implementing the equalizer, we obtain the

following actual convergence behavior shown in Table II.

It appears that the equalizer is converging; however, this

convergence cannot be theoretically guaranteed using any of

the norms discussed in this paper. This example demonstrates

the limitations of the existing theory. For this case, the residual

errors of the linear equalizer , one iteration Volterra

equalizer , and four iteration Volterra equalizer ,

are depicted in Fig. 8.

B. Example 2: Prefilter Equalizer

In this example, we consider the following equalization

problem. A pulse input , which is shown in Fig. 9, is applied
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Fig. 7. Severe saturation nonlinearity.

TABLE II
POSTFILTER EQUALIZER CONVERGENCE

Actual 0.1562 0.0796 0.0493 0.0338

Fig. 8. Errors of linear and Volterra equalizers—Severe saturation.

to a nonlinear filter defined by

(43)

where is a quadratic Volterra filter with memory .

The output is also shown in Fig. 9. The quadratic kernel

associated with is given by the outer product of the vector

with itself and is designed to represent a lowpass quadratic

effect. The kernel is depicted in Fig. 10. The goal is to pre-

distort the input pulse so that the output of the nonlinear filter

is the desired pulse . We will analyze this equalization

problem using both the and norms. The contraction

mapping in this case is

(44)

First, we analyze the equalization using the norm. The

upper bound (23) on the induced norm of the quadratic

filter is . Next, solving for , the positive

number satisfying

(45)

Fig. 9. Input and output of quadratic system.

Fig. 10. Quadratic filter kernel.

produces . Substituting into the expression for

produces . For the unit amplitude pulse

input, we have . Hence, , and

Theorem 1 cannot be applied. In addition, although this signal

is of finite duration, working with the or norm fails to

guarantee convergence as well.

If we formulate the problem using the norm and

incorporate the exploit the fact that is subspace limited,

then the following bounds on the convergence are obtained.

First, let be the square kernel matrix associated with the

quadratic filter . In this case, the kernel matrix is rank with

single nonzero singular value 0.05. Let denote the projection

onto the subspace spanned by the associated singular vector.

Using the norm, we compute . The

subspace seminorm of the input is and

comparing this with shows that Theorem 2 may be

applied. Solving for the that satisfies and

substituting the solution into the expression for the theoretical

contraction factor produces

(46)

which is an upper bound on the convergence rate in this case.

The output errors with no equalization, one iteration of the

Volterra equalizer, and two iterations of the Volterra equalizer

are depicted in Fig. 11. Table III shows the theoretical and

actual convergence of behavior of this equalizer in the

norm sense. In this case, , which is the original input,

and for .

Theoretically, convergence cannot be guaranteed if the gain

of quadratic component is increased. However, as in the

postfiltering example, the actual performance limits are less
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Fig. 11. Errors of Volterra equalizers.

TABLE III
PREFILTER EQUALIZER CONVERGENCE

Actual 0.1892 0.0281 0.0030 0.0003

Theory 0.1892 0.0892 0.0520 0.0333

Fig. 12. Input and output—Strong quadratic nonlinearity.

restrictive. The same problem is simulated again, this time with

the singular value of equal to 0.2, which is four times larger

than the previous case. The input and output of this system

are shown in Fig. 12. Table IV demonstrates that the first few

iterations of the equalizer are tending toward a fixed point.

Fig. 13 shows the original output error with no equalization,

the error using one iteration of the Volterra prefilter equalizer,

and the error using four iterations of the equalizer. It is clear

from Fig. 13 that the equalizer is accomplishing the desired

filtering.

IX. CONCLUSION

Theoretical convergence of a large class of nonlinear equal-

ization problems is examined. The systems and equalizers

studied here are modeled as Volterra filters, and the equal-

ization problem is formulated as a fixed point problem. Con-

ditions under which the fixed point equation is a contraction

mapping are established. The method of successive approxi-

mation results in an equalizer that can be realized as a cascade

of simple, repeated, Volterra filters.

To guarantee convergence of the equalizers, constraints on

the norms of the involved signals are obtained in terms of

the operator norms of the associated Volterra filters. The

Fig. 13. Errors of Volterra equalizers—Strong quadratic nonlinearity.

TABLE IV
PREFILTER EQUALIZER CONVERGENCE

Actual 0.7570 0.4286 0.2181 0.0958

convergence analysis and resulting bounds on the rates of

convergence depend on these norms in a complicated and

nonlinear manner. Hence, formulating the problem under

different norms may produce quite different theoretical bounds

on the convergence behavior. The benefits and limitations

of various signal norms are discussed, and the “window”

norm is introduced. We demonstrate how knowledge

that the Volterra filter only responds to a subspace of the

full input signal space can be incorporated to improve the

theoretical analysis of equalization algorithms. Theoretical

analysis exploiting subspace information and the norm

indicates that the class of allowable inputs and the upper

bounds on the convergence rate are improved.

Several examples of prefilter and postfilter equalization

problems are presented. In two cases, it is shown that con-

vergence is guaranteed using subspace information and the

norm when formulations based on traditional signal norms

fail to guarantee convergence. Other simulations show that the

theoretical analysis is overly conservative in many cases. This

suggests that further study is still needed to better understand

the nonlinear equalization problem.

Our experience has led us to the following practical guide-

lines. First, the and are most useful in practice since

the and norms often fail to guarantee convergence as

the signal duration increases. It is important to note, however,

that for finite duration signals all norms are equivalent, and

hence, convergence in one norm will guarantee convergence

in other senses. In practice, one may simply implement the

equalizing filter described in Section IV and evaluate the

performance. As the examples demonstrated, the equalizers

often work very well even when the convergence cannot be

absolutely guaranteed. In practice, it may not be possible to

guarantee convergence; however, the analysis presented here

leads to equalization filters that may provide very good results.

There are several avenues for future work here. First, the

initial work exploiting subspace information may be expanded

and improved. In addition, such information may be useful

in equalization schemes that are not based on a contraction
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mapping approach. For example, subspace information may

be used to improve the performance of adaptive Volterra

equalizers based on mean-square error criteria. Another very

important open problem is the issue of noise. In real systems,

noise is usually present. Our analysis here is a purely deter-

ministic approach, and it is crucial to incorporate the effects of

noise for many problems of practical interest. We are currently

addressing these and other issues in ongoing work.

APPENDIX A

IMPROVEMENTS OBTAINED VIA SUBSPACE-LIMITED ANALYSIS

As mentioned in Section VII, there are two distinct improve-

ments gained by incorporating prior knowledge of subspace

limited behavior.

First, the subspace limited condition (assumption i) in

Theorem 2) increases the set of for which the problem can

be solved (via CMT). To see this, notice that ii) in Theorem

2 requires an satisfying , whereas the

corresponding condition in Theorem 1 requires to satisfy

. Since and since

is increasing on , it follows that a larger class of signals

is admissible under the subspace limited assumption. In other

words, if , then but not

necessarily vice versa.

Second, for fixed , incorporating the subspace limited

assumption can improve the bound on the convergence rate.

To see this, consider the following argument. Recall that is

the unique positive number satisfying . It is also

easily verified that on on ,

and . Hence, is the maximum of on

. Let be defined as the positive real number for which

. If , then Theorems 1 and 2 hold.

If , then Theorem 1 does not apply, and Theorem 2

applies if and only if . Define .

With this notation in place, take to be arbitrary,

and define to be the unique number in

solving . We interpret the number

as the smallest feasible of Theorem 2 with .

In the following theorem, we consider the contraction factor

as a function of .

Theorem 3: is an increasing function of on

. Furthermore, if , then

.

Proof: To prove the first statement, recall that

on and . Hence, as

increases, so does . Therefore, is strictly increasing

on . Then, note that on . It follows

that is increasing on .

To prove the second statement, notice that by rearranging

, we have

It follows that has a power series representation

, where for all . Now,

, where for all . Now, we proceed

by contradiction. Suppose or,

equivalently,

Multiplying both sides by , we have

This implies , which in turn

implies that since , and hence, we have a

contradiction.

The significance of Theorem 3 is this: Assume that

satisfies the hypothesis of Theorem 1. If, in addition, is

subspace limited, in the sense of i) in Theorem 2, and if

, then the upper bound on the contraction

factor is decreased by at least a factor of compared with

the standard CMT bound without incorporating the subspace

limited condition.

Two other observations can be deduced from Theorem 3.

First, if , then we have one-step convergence

(i.e., take to be any signal satisfying , e.g.,

.) Second, with a slight modification of Theorem

3, if , then

for . In particular,

if , which is an th-order homogeneous filter, then

.
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