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ABSTRACT

The problem of the determination of the subcritical
aeroelastic response and flutter instability of nonlinear

two-dimensional lifting surfaces in an incompressible
flow-field via Volterra series approach is addressed.

The related aeroelastic governing equations are based
upon the inclusion of structural nonlinearities, of the
linear unsteady aerodynamics and consideration of an

arbitrary time-dependent external pressure pulse.

Unsteady aeroelastic nonlinear kernels are
determined, and based on these, frequency and time
histories of the subcritical aeroelastic response are

obtained, and in this context the influence of
geometric nonlinearities is emphasized. Conclusions

and results displaying the implications of the
considered effects are supplied.

NOMENCLATURE

a Dimensionless elastic axis position measured
from the midchord, positive aft

c Chord length of 2-D lifting surface, 2b

chi,c_, Kh,,Ko_ Damping and stiffness coefficients in

plunging and pitching (i=1,2,3 linear,

quadratic, cubic), respectively

CLc_ Lift-curve slope

C(k )_ F(k), G(k)Theodorsen's function and its real and

imaginary counterparts, respectively

h,_ Plunging displacement and its dimensionless

counterpart, (h/b), respectively

h., H,, n-th order Volterra kernel in time, and its

Laplace transformed counterpart, respectively
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1o, r_ Mass moment of inertia per unit wingspan and

the dimensionless radius of gyration,

(10/mb2 )1,.., respectively

l.,m,, Dimensionless aerodynamic lift and moment,

(L,,b/mU _ ) and (34 ,,b 2/1_ U _ ), respectively

L,, M, Total lift and moment per unit span

L_,l b Overpressure signature of the N-wave shock

pulse and its dimensionless counterpart,

(L,,b/mU _ ), respectively

m,/.t Airfoil mass per unit length and reduced mass

ratio, (m/izpb 2), respectively

N Load factor, l+h'/g

P,,,ga Peak reflected pressure amplitude and its

p 2dimensionless counterpart, (,,b/mU_),

respectively
r Shock pulse length factor

sj, ,.T Laplace transform variable and Laplace

operator, respectively, sj = ik j ;i 2 = -1

S_, X_ Static unbalance about the elastic axis and its

dimensionless counterpart, Sa/mb,

respectively

t, z o , "rTime variables and dimensionless counterpart,

(U j/b), respectively

tp,'Ep Positive phase duration, measured from the

time of the arrival of the pulse, and its

dimensionless value, respectively
TF Transfer function

Uoo, V Freestream speed and its dimensionless

counterpart, (U_/bog_ )

x(t) Time-dependent external pulse (traveling gusts

and wake blast waves)

y(t) Response of the considered degree of freedom

(pitch o_and/or plunge h)

a Twist angle about the pitch axis

(,,,(,_ Structural damping ratios in plunging

(c,,/2mmh), and pitching (c_/21_o9a),
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respectively
p Air density

_(z), _(r)Wagner and Ki,issner's functions in the time

domain, respectively

09, k Circular and reduced frequencies, (wb/U),

respectively

coh,to= Uncoupled frequencies in plunging and

pitching, (K,,/m) ''2 and (K_/I_) _'2,

respectively

_" Plunging-pitching frequency ratio, (coh/_o,, )

Superscript
^

( ) Variables in Laplace transformed space

(), (.) Derivatives with respect to the time t, and the

dimensionless time z, respectively

INTRODUCTION

t is a well-known fact that within the linearized
approach of the aeroelasticity discipline, it is possible

to obtain the divergence and the flutter instability

boundaries, and also to get the linearized subcritical
aeroelastic response of flying vehicle exposed to time-

dependent external pulses. On the other hand, in
addition to the above mentioned items, the nonlinear

approach of the problem can provide important
information about the nature of the instability boundary,

i.e. benign or catastrophic one, and on the influence of
the considered nonlinearities on the subcritical

aeroelastic response. In other words, such an approach
gives the possibility of determining in what conditions

the flutter speed can be exceeded without the occurrence
of a catastrophic failure of the lifting surfaces, in which
case the flutter is benign, as well as the conditions in
which undamped oscillations may appear at velocities

below the flutter velocity, in which case the flutter is

catastrophic. Due to the strong implications of various
nonlinearities on the highly flexible lifting surfaces,
their related aeroelastic phenomena cannot longer be

analyzed solely within the standard linearized
aeroelasticity theory• Aircraft wing structures often
exhibit nonlinearities, which affect their aeroelastic

behavior and performance characteristics and flutter
boundaries. In order to investigate the aeroelastic

behavior of the aircraft in the subcritical flight speed
range, and in the vicinity of the flutter boundary, the

aeroelastic governing equations have to be considered in
nonlinear form.

This investigation concerns the time and frequency
formulations of nonlinear two-dimensional lifting

surfaces exposed to an incompressible flow field and
subjected to an external pressure pulse 13.

Based on Volterra's functional series approach 48

important information about the effects of nonlinearities

on either the aeroelastic response in the subcritical flight

speed regime, and their implication on the benign or
catastrophic character of the flutter boundary are

supplied.
The advantage of the technique based on Volterra's
series and indicial function (Lomax 9, Bisplinghoff t°
Marzocca et al. TM) consists, among others, on the

possibility to investigate, within a rigorous theoretical

basis, the aeroelastic systems featuring a wide class of
structural nonlinearities.

First of all, based upon the first order Volterra kernel
the study of the aeroelastic stability of the systems can

be carried out. Moreover, this methodology can
encompass the case of an arbitrary number of degrees of

freedom and at the same time is conceptually clearer,
computationally simpler and can provide more accurate

and realistic results as compared to the conventional
techniques used in nonlinear aeroelastic systems based

on perturbation and multiple scale methods.
Toward the end of determining the nonlinear unsteady

aeroelastic kernels, the harmonic probing algorithm,
referred to as the method of growing exponentials
advanced by Bedrosian and Rice 13, and the

multidimensional Laplace transtbrm will be used.
In addition to the aeroelastic response and determination

of the flutter instability boundary, Volterra Series will
be used to study the conditions rendering the flutter
boundary a benign or a catastrophic one (Librescu1415).

Moreover, when the closed-loop dynamic response of

actively controlled lilting surface is analyzed, also the
feedback control forces and moments will be included

(Librescu Is, Librescu and Gern 16, Librescu and Na 17,

Van Trees iS, Chua and Nglg).

The Volterra's series approach provides a firm basis of
nonlinear subcritical aeroelastic response, in the sense

that it supplies an explicit relationship between the input
(any kind of time-dependent external pulses, i.e. blast

load, sonic-boom, gust loads) and its response.
With the so-called Volterra Kernel identification

scheme the modeling of an aeroelastic system using this

approach becomes feasible. However, this methodology
requires determination for each specific flight

conditions of the appropriate nonlinear kernel of the
Volterra's series. For this reason, in order to define the

appropriate aerodynamic loads, the recent interest in the
modeling of unsteady nonlinear aerodynamics by this
approach has been focused on the identification of
Volterra's kernels in the time domain (Silva2°-23), and in

the frequency domain (Marzocca at al. 12, Tromp and
Jenkins24).
A number of fundamental contributions related with

Volterra's series, developed by outstanding
mathematicians (Volterra 4, Wiener s) and used mainly in
electrical engineering 68, are already available.
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Theoriginal studies on functional series by Volterra 4,

have been continued in the works by Volterra himself,

of those of famous physicists and mathematicians as
Rugh 6, Schetzen 7, Boyd 8. These concepts have been

used in nonlinear system theory, in general, and in the
modeling of nonlinear aeroelastic systems, in particular
(SilvaZ°). Very few applications of this method have

been done in the aeroelasticity discipline.
Originally, the method of Volterra series and Volterra

kernel identification were developed to identify the
nonlinear behavior in electrical circuits. In the aerospace

field, the fundamental contributions were brought by
Silva, who has shown that the method is also applicable

to aeroelastic systems (aerodynamic reactions and
forced structural model).

Silva's pioneering work 2°-23, in this area has opened a

very promising way of modeling and approaching
nonlinear aeroelastic systems.

BASIC CONCEPTS AND LIMITATIONS
OF THIS APPROACH

Having in view the fact that for nonlinear systems the

superposition principle is not applicable, and having in
view the different types of responses induced by

unsteady aerodynamic loads and the external excitation,
a combination of transfer functions is used. These

transfer functions for the nonlinear aeroelastic systems
and the time-histories response in time and frequency

domains are determined by taking the multi-dimensional
Laplace transform of the Volterra kernels of the related

aeroelastic system via a Mathematica ® code developed
by these authors 25.

Our approach intended to address the subcritical

response of the nonlinear aeroelastic governing
equations, is based on its exact representation as an

infinite sum of multidimensional convolution integrals,
the first one, (i.e. the linear kernel) being the analogous
to the linear indicial aeroelastic function. The full

nonlinear aeroelastic response will be composed of

additional higher-order contributions. In the frequency
domain, if the nonlinear function governing a system is
'smooth', then for small inputs the system must be
asymptotically linear 6. One of the key issues is to

determine, corresponding to the considered type of
structural and aerodynamic nonlinearities, the pertinent
Volterra's kernels. When also the active control is

implemented the corresponding Volterra's kernel should
also be derived.

THE THEORY

In an attempt to make the paper as self-contained as
possible, several elements associated with Volterra's

series as applied to aeroelastic system, as well as with
the indicial functions will be supplied here.

Indicial Theory and Aerodynamic Loads
Using the aerodynamic indicial functions

corresponding to transient aerodynamic reaction to a
step pulse, the aerodynamic forces and moments

induced in any maneuver and any flight regime can be
determined. Aerodynamic forces and moments acting
on a rapidly maneuvering aircraft are, in general,
nonlinear functions of the motion variables, their time

rate of change, and the history of the maneuvering
(Tobak & ChapmanZ6). However, in this study, the

linear aerodynamic theory is adopted.

Once the response of the system to a step change in one
of the disturbing variables (i.e. the indicial response) is

known, the indicial method permits the determination of

the response of a system to an arbitrary schedule of
disturbances. There is a critical value of the flight speed
above which the steady motion becomes unstable. In a

nonlinear aeroelastic system the flutter phenomenon

corresponds to the instability known as the Hopf
bifurcation, resulting in finite amplitude oscillations, in
the case of supercritical Hopf bifurcation, and in

oscillations with increasing amplitudes, even if the
system operates before reaching the flutter speed, in the
case of the subcritical Hopf bifurcation z729.

We need to mention that a nonlinear indicial theory 3°,

asserts that the response of a nonlinear system to an
arbitrary input can be constructed by integrating a

nonlinear functional, that involves the knowledge of the

time-dependent input and the kernel response. Whereas,
within the linear indicial theory the linear kernel or
linear impulse response can be convolved with the input

to predict the output of a linear system, the nonlinear
indicial theory constitutes a generalization of this
concept. It can also be shown that the traditional

Volterra-Wiener theory of nonlinear systems constitutes

a subset of nonlinear indicial theory. It should also be
mentioned that the nonlinear unsteady aerodynamics

valid throughout the subsonic incompressible/
compressible, transonic and supersonic flight speed
regimes can be used and determined via the use of
nonlinear indicial functions 3_ in conjunction with the

Volterra's series approach.

Volterra Functional Series Theory
As it was shown (Rugh 6, Schetzen 7) within Volterra's

series approach the full response in the time domain,
y(t), of the nonlinear systems with memory can be cast
as"

y(t)= _'_ y, (t), (1)
,t=0

where, y_ (t) is expressed as:
k

(2)
k time.g i=l

By a change of variables, it is possible to express Eq.
(2) in contracted form as:
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k

y,(t)= ;;;f_h,(r,,z2,...r,)l-lx(t-z,)d L" (3)
k time_ i-I

It is assumed that x(t)= 0 for z < 0 implying that the

system is causal.
With this restriction, all the integrals in the subsequent

discussions are different from zero over the time range

(0,oo). Restricting the development of Eq. (3) to the

first three terms one obtains:

y(t)= f h_(z,)x(t-z,)dz,

+ff (z,, h

+-.- .(4)

On the other hand, the response of the system can be

expressed also in the frequency domain.
The Volterra series is essentially a polynomial

approximation of the system, extension of Taylor series
to systems with memory, while Volterra's kernels

h i (s i) are a direct extension of the impulse response

concept of the linear system theory to multiple
dimensions (Volterra 5, Rugh 6, Schetzen 7, Boyd8).

Consequently, a multidimensional analogue of the
impulse response can be used to characterize a nonlinear
system (Silva2°-z3).

Having in view that the aeroelastic systems memory is
not infinite and, at the same time, the time-dependent

external excitations, such as impulse, gust, blast and
sonic-boom pressure signatures are non persistent but

their effect will diminish as time unfolds, it is possible
to characterize a nonlinear aeroelastic system via
Volterra series. This fact is reflected in the

interpretation of the Volterra kernels as higher order

impulse response functions, i.e. h(rl,...,z,,)--->0 as

"I'I,.-.,T n ---_ oo.

We will use the definition of the nonlinear transfer

function or higher-order impulse response functions
namely:

e ..... e-S_..... e ........ dr tdr2.., dr, ,(5)

as well as of its inverted counterpart:

e_:'e ....... e':"dslds2...ds,. (6)

Once the Volterra's kernels are known the response of

the nonlinear aeroelastic system can fully be identified.
As demonstrate in the Schetzen works v, without loss of

generality, the kernels will be taken as symmetric.

If we focalize the attention on the linear system, the

Laplace transform _ of the first term of Eq. (4) yields

the familiar Laplace domain expression Y(s)= H(s)X (s)

where Y(s_H(s_X(s) are the Laplace transforms of

y(z), h(z), x(z), respectively, and H (s) is the transfer

function of the system; either the first transfer function

or the first kernel in time h(_') encode all the

information about the aeroelastic system, that is, of
course, exact only for the linear system. Moreover, as is

well known, if the system is linear, i.e. superposition
principle holds valid, and is time invariant, the external

load is uniquely related to the response by a convolution
integral. With the use of functional series, i.e. the
Volterra series, this functional representation can be

extended to nonlinear systems. The comparison between

the prediction of the linear aeroelastic responses of 2-D
lifting surface in incompressible flow field based on the

Voiterra's series approach (using Theodorsen's
function) and on the exact solution, based on

convolution integrals (using Wagner's function) is
presented in Fig. 1.

ooTs [_ ¢''"

• _ !! _. Linear Response via Convolution Integral

t!', >-. /.L,....

fi', ! i : i', / I 't !i I!
°Uit irk: 'lllltltiiti/ 

I _1 il /j / I! !, '/ !_ i_ W 2_-,z- -"

t !I !i 1 i/ .l._.-_--" • I

y(t)

o 2 4 6 I_ Io

Time [sec]

Fig. 1 Aeroelastic response time-history of lifting
surface in incompressible flight speed regime to Dirac
delta impulse, as represented in inset. Comparison of

prediction of responses based on the first Volterra
kernel and the exact solution.

The excellent agreement of these two predictions shown
here, assess both the accuracy of the aeroelastic model

and also the power of the methodology that combines
Volterra's series and indicial function.

MATHEMATICAL FORMULATION

General theory for 2-D lifting surfaces
including structural nonlinearities

The aeroelastic governing equation of motion for 1
and 2 DOF including structural nonlinearities that

include the damping and the stiffnesses can be analyzed
in the following way. Two systems will be analyzed

here: a 1 DOF lifting surface (i.e. plunging only) and a 2
DOF lifting surface featuring structural and

aerodynamic coupling in plunging h and pitching a. As

American Institute of Aeronautics and Astronautics



previouslymentioned,the unsteadyaerodynamicis
consideredlinear.A harmonictimedependentexternal
concentratedloadisalsoapplied.Thisconfigurationfor
example,canbeconsideredtocorrespondto anengine
mountedonanaircraftwing.Asa result,a harmonic
typeloadingduetotheengineoscillationshastoimpact
themotionofthewing.
As a characteristicof this approach,the tramfer

functions of the system would exist and be the same for
any excitations 3z-33,(namely for random, sine, impulse).
This is due to the fact that transfer functions are a

characteristic of the system itself and are independent of

the input to the system.
As a reminder, the validity of this method is based on

the use of continuous polynomial type nonlinearities.
For nonlinear ordinary differential systems, there are in

general, an infinite number of Volterra kernels. In
practice, one can handle only a finite number of terms in
the series, which leads to the problem of truncation

accuracy. However, Wiener suggest that the first terms
of the series may be sufficient to represent the output of

a nonlinear system if the nonlinearities are not too

strong.
The use of the multidimensional Laplace transform as a
function of several variables is a tool useful in

stationary nonlinear system theory. The multivariable
convolutions can be represented in terms of products of

Laplace transforms.
It is well known that the nonlinear aeroelastic systems

cannot be described by a simple transfer function for
two main reasons: a) the response has different trends as

compared to the unsteady aerodynamic loads and the
external excitation and, b) in the nonlinear case the

superposition principle is not applicable. It is also well
known that any time-dependent external excitation, i.e.

periodic or otherwise, can be represented, to an arbitrary
degree of accuracy, by a sum of sinusoidal waves 31. In
this context, if the external load is expressed in term of

multiple sinusoidal form (for example traveling gust
loads) this is easily convertible in the exponential form,
i.e.:

u(t) = A COS(C0At) + B COS(tORt)

¢:*u(t)=A( esA'+e .... )+B( e'w+e .... ). (7)

For clarity of exposition, it is convenient to adopt this
approach for a system with one degree of freedom
(1 DOF). These results have more general bearing and

can be extended for systems with multi-degree of
freedom (MDOF). In fact, by using the classical

approach of the one dimensional frequency response
function, it is possible to derive an analytical form of
the multi - dimensional frequency response

characteristics of nonlinear systems. The systems based

on 1 DOF (plunging h) and 2 DOF, pitching o_ and
plunging h, will be considered in the next sections.

Pure Plunging Airfoil

The nonlinear equation of motion of an airfoil
featuring plunging motion can be expressed as:

n . J

mh'(t)+ Z(c,,jh(t) +k,,sh(t)S)-L,,(t)=Lb(t) - (8)
/=1

where kja, cj,i, m are the stiffness, damping and mass

parameters, respectively.
In Eq. (8) the related unsteady aerodynamic lift is

represented as a function of the plunging degree of
freedom h, only:

L,,(z)=_CLaPU_S__ (_(z_ro)h,dz,, --_' pCL, U.h2 • . (9)

The non-circulatory component present in Eq. (9) has

been represented in term of convolution integral of the
indicial Wagner's function.

In order to explain how this methodology works, let us
to determine, in terms of Volterra series, how a system

responds to a harmonic or periodic time-dependent load.
Let consider a periodic external excitation in the form:

Lb(t)=_Xse_J ' . (10)
j=l

As is well known, the information acquired by the case

of the response to a harmonically time-dependent load
can be used to obtain the response to any time-

dependent excitation. In fact, considering the case of a
concentrated load arbitrarily located in the x, y plane of

the wing, we have:

u(x,y,t)=AS(x-xo,y-yo)e '°_ , (!1)

where 8(.), Xo, Yo, A, co denote Dirac's distribution,

location of the load, its amplitude and excitation
frequency, respectively. Once determined the transfer

function (labeled as TF) corresponding to a given

excitation frequency, its counterpart in the time domain

can be obtained as the inverse Laplace transform 2C-_:

rF(x, ,,,t)=Z -I{TF(x "_,s)}= 1--_-[_'+-TF(x y,s)e_'ds
.... 2hi a_,-i_ '

In addition to the direct role in the determining of the
response, the transfer function TF has then the role in

determining the response to arbitrary time-dependent
external excitations.

The general procedure to identify the aeroelastic kernels

of various order 1,_), is to consider a general input in

the form of Eq. (I0) and to equate coefficients of

XtX2...X,e I_,÷-_........ )'. As an example, the first

aeroelastic Volterra's kernels that describes the linear

system in the aeroelastic governing equations, obtained
by neglecting the nonlinear terms, is obtained by

considering the input load as Lb(t)= X_e'" (which in

dimensionless form is expressed as t_(t)= (b/mU 2.)Xle _'' );

the response of the system is postulated in the form

h(t)=H,(sl)X,e'_,'+h.o.t. Substituting h(t) and its

5
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derivativesin thegoverningequationof motion,one
determinesthecoefficientof X,e s'' .

In a linear aeroelastic system, the system is completely

characterized by a transfer function Hds_) that contains

the aerodynamic term as follow:

H,(s,)=(k,,, +ms,2+C,_l s, +s,pCc,_bU=C[-is,b/U= ]

I 2 2 )-I+TpCz_s, b , .(12)

Herein the Theodorsen's function C, connected with the

Wagner's indicial function 4_(r) via the Laplace's

transform as C(- is)=s_ @('r)e-_dr, has been included

in the formulation. The terms underscored by the solid

line correspond to the unsteady aerodynamic loads
component (circulatory term), while the dotted line
identifies the terms corresponding to the effect of the

added mass. When the aerodynamic loads are neglected
and for s = ico, this result coincides with that of the

linear FRF, derived via the conventional Modal

Analysis.
For purely mechanical systems, in the frequency

domain, the response analyses via Volterra series have

been carried out by several authors. In the present study
an alternative procedure, based on the multivariable
kernel transforms referred to as Higher-order Transfer

Functions (HTFs) is pursued. The two above mentioned
approaches can be correlated each other, and this is

shown also in this work. Assuming zero initial
condition, the frequency response functions (FRFs) are
obtained from the transfer functions TFs, by replacing

the Laplace transform variable s with jco where co is the
frequency of the excitation, (Worden et al.33).

In the present nonlinear aeroelastic system, toward the
estimation of higher order frequency response functions

(HO FRFs) that are defined as the multi-dimensional
Fourier Transform (MDFF) of the Volterra's kernels, a

sequence of transfer functions are employed. The
concept of higher order of FRFs, independent of the

input to the system, defined from the Volterra series,
will also be included.

By the use of the linear frequency-response-function

H_(s_) the behavior of the linear system is easily

determined. It will be necessary to find a complete set

of Volterra kernel transforms H,,(s_,s2,...s,) for

nonlinear systems and for this, in practice, we will use a

convergent truncated series.
However, probing the system with a single harmonic
yields only the information about the value of the

transfer functions terms on the diagonal line of the plane
s_, s2, in the Laplace transformed space, where Sl = s2.
However, in order to obtain information elsewhere in

this space, one should use multi-frequency excitations.
In the same way, the second order Volterra Kernel can

be determined applying a load depending on two

different frequencies expressed as: L_(t)= X,e" + X2e""'.

In this case we can express the plunging response in the
form:

h(t)= H, (s,)X,e"" + H, (s2)X2e '_'

+ H2(s,,s , )X,2e 2`'' + Hz(+2,+ 2 )X_e 2`"

+ Hz(s,,s2)XtX2e _''*.'_ + H2(sz,st)X2Xte ('`÷`')t

+ h.o.t. .(l 3)

Substituting Eq. (13) in Eq. (8) and equating the terms

containing XlX2e(S|+S2)t the second order aeroelastic

Volterra Kernel in the Laplace transformed space is
obtained:

Hz(s,,s2)=-Cs, s2c,,: +k,,2)H,(s,)H,Cs2)H,(s, +s2),(14)

where:

H,(s, + s2)= (kh, +(s, + s2)2m+c_,(s, + s2)

+ (s,+ s )pc obu.c[- i(s,+ ]
I+2PCLa(S , +s2)2b2) -' , (15)

is the first order Volterra Kernel in the Laplace

transformed space at the frequency col+ o)2. Following
the same steps, applying the load

L_(t)= X_e""+ X2e '2' + X3e'", equating the terms in the

form X_X2X3e I',+',+'_' ; remembering that

H,(s, + s,.)=(k, +(s, + s2)2n,+c,(st + s2)

+(s, + sz)pCL, bU. C[-i(s , + ,2)b/U.]

+#pbZCL,(s, +s2)2_ _ , (16)

n,(s, +s, +s_)= (k, +(s, +s, +s3)Zm+c,(s, +s z +s.)

+(s, +s 2+s_)pCL=bU.C[-i(s, +s 2 +,,)b/U.]

+ pb C o(s, ,(17)
the expressions for the third order Volterra Kernel in the

Laplace transformed space can be cast as.'

H3(s,,s2,s3) = 2- (n.(s.X3H.(s.)..G + s.s )
+ 2Hz(s,.s2Xk,,." +c..(s, + s2)%))

+2(n,(s2)n,(.,,,s,Xk,,+c,,.,,(s,+ ,,))
- n, (.,; (.,:,.,,X/,,2+ +s,))))/
(H,(s, +s: +,%)) .(18)

Notice that the constants khz and ch2 multiply the

whole expression for H2, and this term vanishes if the

quadratic term is absent in the aeroelastic governing
equation of motion. As one of the general properties of
Volterra's series, if all nonlinear terms in the equation

of motion for the system are odd powers ofx and y, then
the associated Volterra series have no even-order

kernels. As a consequence it will possess no even-order
TFs. It is also a general property of systems that all

higher-order TFs can be expressed in terms of H_. The

expressions are function of the system and can be
obtained using the harmonic probing algorithm.

6

American Institute of Aeronautics and Astronautics



Plungina-Pitchiw, Airfoil

The governing aeroelastic system of an airfoil

featuring plunging - twisting coupled motion, exposed
to a harmonic time dependent external excitation is:

(19)
j=l

n )sj;+1oa+Z(c a (20)
j=l

Following the steps adopted for I DOF, applying a load

depending on one frequency Lh =Xle'", and

expressing the plunging and pitching displacements in
terms of transfer functions as:

..2..hi .2.,,, X?H;(s,,s,.,h)e3,,,,(21)h(t)=XlH_(s,)eh' +AlrtzV;i,slje +

a(t)= X,H_' (.h)e'" + X2H;(s,.s, )e2'' + X_H'[(s,,s,,s, )e-_'',(22)

the relative kernels and the aeroelastic responses can be
determined.

The aeroelastic governing system including the blast
pressure signatures can be expressed in the Laplace

transformed space as:

s _ + z,,,s ot+ 2_, -'_-s_ +(-_) _

+±s=__aa)+lsa=a(,) , (23)
/J ,u

(Z=/r2 )d_ + s=a +(i¢./V)sa +a/v =

_,2 )11 r_ L

1 l as2( _ '_ (1 "_1 1 1 1 1 : . (24)-a_)+l---a l_---sdt +---i---s d=0
r_ 11 L,2 )r. Il 8 r_ 11

Herein 0=ag(.), so _" =ag(¢(t)) and a =3g(a(t))

Following the same steps, applying the loads

Lb(t)=X,e',' +X2e'; and L,,(t)=X,e',' +Xze',' +X3e',',

equating the terms in the forms X_X2e (',+'_ and

XIX2X3e (s,+s2+s,)sthe expressions for the second and third

order Volterra Kernel in the Laplace transformed space
can be obtained.

Generalization to Multi Degrees
of Freedoms Systems (M-DOFs)

The method shown for I-DOF and 2-DOF lifting

surface can be extended to systems featuring multi
degrees of freedoms, in general, and to a 3-D aircraft
wing, in particular.

The method of deriving the n-th order nonlinear
aeroelastic transfer functions is based upon the fact that
when the aeroelastic system described by the response

y(t) (expressed via Volterra series), is excited by a set of
k unit amplitude exponentials at the arbitrary

frequencies Sl, s2 ..... Sk, the output will contain
exponential components of the form:

. _ _ )e(.............. _ (25),.(,)=ZZH,,(,,,.s,.,...,,,
It=l hi=|

The presence of nonlinearities causes harmonic
excitations and sums of harmonics to appear in the

response of the aeroelastic system. Due to the nonlinear
formulation, different frequencies can be expected as
well.

From the energetic point of view, we can observe that

H_(s_) produces a single frequency output in response

to the simple input e'". However, because the system is

nonlinear, H2(s_,s2) takes into account the terms that

produce an output energy corresponding to the sum of

frequencies co, +o) 2 , or in other words to the input

e ('+_,)' . Similarly, the third order nonlinear aeroelastic

kernel, will inject a mix of three input frequencies into
the total system output.

RESULTS AND DISCUSSIONS

To assess the versatility and provide a validation of this

methodology, a comparison of the predictions of the

aeroelastic response of nonlinear 2-D lifting surface
using three approximations are shown in Figs. 2.

/ \ , .___

o ___ First Approximation _\ ,_-

--._ Second Approximation '_ ]
........... Third Approximation \ _'/ 1

-0a _ Exact Response (Num. Int.) \ _1 / ..... t

0 I_ I I.$ 2 2_ 3

(a) Time [sec]

oJ / _" \ ---- First Approximation
/ --._ Second Approximation

" \ ........... Third Approximation
l :", _ i Exact Response (Num. Int.)

y(t) oa _\:""'/",.-,

0 I l 3 4 $ 6

(b) Time [see]

Fig. 2 Convergence study involving the first three

kernels and comparison with the "exact" nonlinear
aeroelastic response to (a) I-COSINE gust pulse and (b)

to triangular blast load, as shown in the inset
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Theexcellentagreementof the predictions, assess both

the accuracy of the aeroelastic model and also the power
of the methodology based on the Volterra series and

indicial function approach. The first, the second and the
third approximations of the aeroelastic response to the

two loads 1-COSINE gust load and triangular blast load
are plotted for different parameters, together with the

"exact" response of the aeroelastic system as obtained
through digital-computer solution of the nonlinear
aeroelastic governing equations. Both figures reveal the

rapid convergence of the approximation. The
parameters in use for the simulations, unless otherwise

specified, are chosen as: (m = 1;a = -0.2;ch_ = 10;

(kh]= 104;Cal = 10;kal = 104;ch2= 10;kh2= 107;c_2 : 10;kaz = 107;

b=l;p=O.125;U= =0.4U,-;CL, , =2n). For the 2-D lifting

surface encompassing pure plunging, the first three
aeroelastic kernels in magnitude and phase are depicted

in Fig. 3 as a function of the frequency, considering that

oJ =coj =oJ z =¢o3, i.e. the representation is given along

the diagonal of the plane coj,o92. As is clearly seen, a

reduced influence on the response of the third kernel is

experienced.

Magnitude [10^3]

i

61

o_

,2

, :, ,,
\

2| ,a i_ i,• 121

Frequency, a_=_=cos=t.t_ [Hz]

Ph_e ldepl

iii

nio

.io

-iio

-iso

Frequency, _=¢t_=O_s=_ [Hz]

Fig. 3 First three aeroelastic kernels

of 2-D lifting surface, pure plunging motion

In Figs. 4 the Volterra's kernels for the lifting surface
featuring plunging - pitching coupled motions are

depicted. Also in this case in the plots include the
magnitude and phase for the kernels in plunging

H i and pitching Hff, in which i identifies the order of

the kernel.

Aert.llul_yl4em - Vdl#r_ K*rndll

¸¸¸¸¸¸¸¸¸¸¸¸il _ ti ._

J _ N lm

_mt_

Fig. 4 First two aeroelastic kernels of 2-D lifting
surface, plunging - pitching coupled motions

e

.l\'_lt\ "I \_l\ t

Fig. 5 3-D and contour plots of second
order aeroelastic kernel

i1_ _ illll

_/i,'_+ . :': -7,

. tm "

Pill It, [i_1_l_l ) lllel I

_lldlllc Ril,,l_l_,ll

Pill IIiIIi _111! liltl

Fig. 6 3-D and contour plots of third
order aeroelastic kernel
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A 3-Dplotsof themagnitudeandphaseof thesecond
orderkernelvs.thetwofrequencieso91 and CO 2 are

displayed in Fig. 5. The contour plots reveals the

symmetry of this kernel respect to the diagonal

represented by to_ = to2. In a 3-D plot, the third order

Volterra kernel for the case in which CO3 = CO1 are

depicted in Figs. 6.

Response in Time and Frequency Domains

Determination of subcritical aeroelastic response to any
time-dependent externally applied load is useful in the
design of wing structures and of the associated feedback

control systems. In certain types of nonlinear analysis
we are only interested in the special case considering of

T, = z2 ..... z,, = _ 34. This case can be represented as:

g (r)- h,, (r, ,v2 ,..._,, ]_,=,2=...... =. (26)

This has a corresponding Laplace transform G(s) (so

called associated transform) in the single-dimensional

Laplace transform space: G(s)=_ [g(v)]. The response

in time can be obtained from H(s_,Sz,...,s,, ) to find

G(s) first and evaluate the single dimensional inverse

Laplace transform g(r).

This approach is called association of variable 34. The

nonlinear aeroelastic response in the time domain is
depicted in Figs. 7 for a 2-D lifting surface featuring the

plunging degree of freedom. In this figure the first plot
represents the linear impulse response that corresponds

to the convolution integral for the linear analysis. The
other three plots represent the components of the

response due to the second and the third order kernels
and the total response as a combination of the three

partial responses. The aeroelastic response will be
presented and validated. The influence of the linear and

nonlinear stiffness and the damping coefficients on the

response, not displayed in this paper, reveals that, an
increase in the damping coefficient contributes to the
decrease of the response amplitude.

An increase of the nonlinear damping or of the stiffness
coefficients contributes to the decrease of the magnitude

of the kernels and consequently, of the response
amplitude. This shows that the nonlinearities in the

stiffness and damping play a beneficial role on the
subcritical aeroelastic response 15

Figure 8 highlights the effect of the speed parameter V

(=-U/b _,) on the lifting surfaces subjected to sonic-

boom pressure signature as shown in the inset.

NonlinearAeroelasficRespor_es- Time Domain

yt (o

Line ar I mpulseKesp onsewith one k_=T_/

20 40 60 80 100

"rime IsecJ

0.03

0.02

0.01

y_(0 0

-0.01

- 0.02

- 0.03

Impulse Kesp ormet _On d Ord_," Kex"n_

20 40 60 80 100

Time ,I_l

y_(O

0.01

0,005

0

-0.005

-0.01

Impul_Respomm Third Ord_- Kem_

y(O

0.075

0.05

0.025

0

-0.025

- 0,05

-0.075

Nonl_earlmpu_eRe_ onset (t) _y i (0 +ya (D+ y_ ( 0

It=to

20 40 60 00 100 0 20 40 60 80 100

Time J'sec] Time ,[secJ

Fig. '7 Time-history of the nonlinear aeroelastic response
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y(t)

o

-03

-I

.i " i

It.. , ",4 ! .. ." ,, • '
f\_ _ ...... _ :', .'. ,, .. ,' ;

y\:
/\L"_p___,_ A\"_C_-_,&, _,J.=_ L_\; !: \'. !.

_." <(/\ JII ,\/. kl ,' ".j , _. , _o' ;
_...,q . . . . '. .... .

' .. .,, .- ..,
-- V=0,4V v _. '-V=I,OV,_'

/k./,' ---- V 0 6 V r V 1 2 V_

,., -'- V=0,SV I.

_i 60 _ IOO

'rimeIsec]

Fig. 8 Influence of the flight speed on the nonlinear

aeroelastic response to a sonic-boom, as shown in the

inset (zp = 15 sec; r = 2), evaluated with three kernels.

Moreover, this approach can be extended as to include

also active control capabilities. In spite of this, few of
these potentialities have been explored yet.
Comparisons of results carried out via Volterra series in

conjunction with indicial functions approach and

classical approach have been provided in Fig. 1 for the
linearized model. It should also be stressed that

aerodynamic indicial functions (for incompressible/
compressible flow fields 31) considered in conjunction

with Volterra's series approach can be used as a
powerful analytical tool for developing unsteady

aerodynamic models and a unified nonlinear aeroelastic

model. To the best of the authors' knowledge, with the
exception of this paper, the problem of the aeroelastic

response of lifting surfaces to external pulses via
Voiterra's series and indicial function approach was not
yet addressed in the literature.
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triangular pulse that corresponds to an explosive pulse is

obtained. It becomes apparent that the amplitude of the

response time-history (that have been evaluated for
practical use with three kernels) increases with the

increase of V. Moreover, in a certain range of speeds,

as time unfolds, a decay of the amplitude is
experienced, which reflects the fact that in this case the
subcritical response is involved. However, for the

dimensionless speed parameter V greater then the

flutter speed (this one was determined using the

linearized aeroelastic system), the response becomes
unbounded implying that the occurrence of the flutter
instability is impending. Also in this case the nonlinear

stiffness and damping coefficients play a beneficial role
on the subcritical aeroelastic response.

CONCLUSIONS

Several issues that concern the nonlinear aeroelastic

response via Volterra's series approach have been
presented. It was also shown that, the method based on
Volterra series opens large opportunities to approach in

an unified and efficient way problems of nonlinear
aeroelastic response and flutter. In addition, following

the same approach, the character of the instability
boundary, i.e. benign or catastrophic will also be
addressed. This analysis will be done by using the

concept of the first Liapunov quantity as developed by
Bautin 35.
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