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Abstract

In this paper we present a novel face classification sys-

tem where we represent face images as a spatial arrange-

ment of image patches, and seek a smooth non-linear func-

tional mapping for the corresponding patches such that in

the range space, patches of the same face are close to one

another, while patches from different faces are far apart,

in L2 sense. We accomplish this using Volterra kernels,

which can generate successively better approximations to

any smooth non-linear functional. During learning, for

each set of corresponding patches we recover a Volterra

kernel by minimizing a goodness functional defined over

the range space of the sought functional. We show that

for our definition of the goodness functional, which mini-

mizes the ratio between intra-class distances and inter-class

distances, the problem of generating Volterra approxima-

tions, to any order, can be posed as a generalized eigen-

value problem. During testing, each patch from the test im-

age that is classified independently, casts a vote towards

image classification and the class with the maximum votes

is chosen as the winner. We demonstrate the effectiveness

of the proposed technique in recognizing faces by extensive

experiments on Yale, CMU PIE and Extended Yale B bench-

mark face datasets and show that our technique consistently

outperforms the state-of-the-art in learning based face dis-

crimination.

1. Prologue

World events, specially in the last decade, have lead to

an increased interest in the field of biometrics based person

identification. Face recognition in particular, has attracted

prolific research in the computer vision and pattern recogni-

tion community. Even though impressive strides have been

made towards providing an ultimate solution to this prob-

lem, significant and interesting problems remain.

If we try to organize the epitome of literature present in

this field, a dichotomy of approaches emerges. The first
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class of these tries to capture the physical processes of im-

age formation under various scene parameter variations like

illumination (e.g. Generic ABRDF [3]), pose (e.g. Mor-

phable Models[5]), expression(e.g. Geometry-Texture [16])

etc. In contrast, the second class of approaches invokes

mathematical and statistical tools to capture the structure of

the oft-invisible relations among the numbers that make up

the face images. These techniques explore the intrinsic data

geometry assuming images to be either vectors (e.g. Eigen-

faces [17], Fisherfaces [4], Laplacianfaces [13], orthogo-

nal Laplacianfaces (OLAP) [7], Locality Preserving Projec-

tions [11], Kernel Locality Preserving Projections with Side

Information (KLPPSI) [2], MLASSO [18], Kernel Ridge

Regression (KRR) [1]), or higher dimensional tensors (e.g.

Tensor Subspace Analysis [12], 2-Dimensional Linear Dis-

criminant Analysis [24], Orthogonal Rank One Tensor Pro-

jection (ORO) [14], Tensor Average Neighborhood Margin

Maximization (TANMM) [23], Correlation Tensor Analysis

(CTA) [10], Spectral Regression [6], Regularized Discrimi-

nant Analysis [6], Smooth LDA [8]).

A major advantage of the techniques in the first class

comes from their being generative in nature. This property

allows these methods to accomplish tasks like face relight-

ing (e.g. [3]) or novel pose generation or complete 3D im-

age reconstruction (e.g. [5]) in addition to recognition. At

the same time, methods in the first class tend to demand

more side information from the data as compared to the

second class of methods (e.g. [3] requires illumination di-

rection for the training set, [5] requires facial feature points

for initialization etc). The second class of methods are in

a sense more versatile as they can be seamlessly applied to

a variety of different image sets without any significant re-

quirement of side information.

The method that we propose in this paper loosely falls

into the second category of techniques. We seek a mapping

of face image patches such that in the range space, discrimi-

nation among different classes is easier. We choose Volterra

kernels to accomplish this because it allows us to system-

atically build progressively better approximations to such

a mapping. Furthermore, Volterra kernels can be learnt in

a data driven fashion which relieves us from being predis-
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Figure 1. Structure of A
1

i and A
2

i for an image of size 5 × 5 and kernel of size 3 × 3. In the first row, 9 neighborhoods of the image Ii are

highlighted. For first order approximation, each of of these neighborhoods become a row in A
1

i . For the second order case, we take all the

second order combinations of pixel values in each neighborhood and use them as the first 81 (b4) elements of a row in A
2

i . The remaining

9 (b2) elements are simply the pixel values. Rows are numbered to show which neighborhood they correspond to.

posed towards any fixed kernel form (e.g. Gaussian, Radial

Basis Function etc). The face images in the range space are

called Volterrafaces in this paper.

2. Volterra Kernel Approximations

From signal processing theory we know that a linear

translation invariant (LTI) functional ℑ : H → H, which

maps the function x(t) to the function y(t), can be com-

pletely described by a function h(t) as

ℑ(x(t)) = y(t) = x(t)⊗h(t) =

∫
∞

−∞

h(τ)x(t−τ)dτ. (1)

Volterra theory generalizes this concept and states that any

non-linear translation invariant functional ℵ : H → H,

which maps the function x(t) to the function y(t), can be

described by a sequence of functions hn(·) as

ℑ(x(t)) = y(t) =

∞∑
n=1

yn(t) (2)

where yn(t) =

∫
∞

−∞

· · ·

∫
∞

−∞

hn(τ1, . . . , τn)x(t−τ1) . . . x(t−τn)dτ1 · · · dτn

(3)

Here hn(τ1, . . . , τn) are called the Volterra Kernels of the

functional. It must be noted that the above equation can be

seamlessly generalized to 2 dimensional functions, I(u, v),
which for instance, can be images. It should be noted that

eq. (1) is just a special case of the more general eq. (3) if

the first order terms are the only ones taken into account.

Since we are interested in computing using this theory,

we would be using the following discrete form of eq. (3).

yn(m) =

∞∑
q1=−∞

· · ·
∞∑

qn=−∞

hn(q1, . . . , qn)x(m− q1) . . . x(m− qn).

(4)

The infinite series form in eq. (4) does not lend itself well

for practical implementations. Further, for a given applica-

tion, only the first few terms may give the desired approxi-

mation of the functional. Thus, we need a truncated form of

the Volterra series, which is denoted in this paper by

ℑp(x(m)) =

p∑
n=1

yn(m) = x(m) ⊗p h(m) (5)

where p denotes the maximal order of the terms taken into

account for the approximation. Note that in this truncated

Volterra series representation, h(m) is a placeholder for all

the different orders of the kernels.

In general, given a set of input functions I, we are in-

terested in finding a functional ℵ, such that ℵ(I) has some

desired property. This desired property can be captured by

defining a goodness functional on the range space of ℵ. In

cases when the explicit equation relating the input set I to

ℵ(I) is known, various techniques like the harmonic input

method, direct expansion etc. ([9]) can be used to com-

pute kernels of the unknown functional. In the absence of

such an explicit relation, we propose that the Volterra ker-

nels be learnt from the data using the goodness functional.

The translation invariance property of the Volterra kernels

ensures that if the images are translated by a fixed amount

in the domain, the mapped images are also translated by

the same amount, and hence the Volterra kernel mapping is

stable.

In this framework, the problem of pattern classification

can be posed as follows. Given a set of input data I = {gi}
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where i = 1 . . . N , a set of classes C = {ck} where

k = 1 . . . K, and a mapping which associates each gi to

a class ck, find a functional such that in the range space,

the data ℵ(I) is easily classifiable. Here the goodness func-

tional could be a measure of the separability of classes in

the range space. Once the Volterra kernels have been deter-

mined, a new data point can be classified using the learnt

functional. ℵ(I) can be approximated to an appropriate ac-

curacy based on computational efficiency and the classifica-

tion accuracy constraints.

3. Kernel computation as Generalized Eigen-

value problem

For the specific task of image classification, we define

the problem as follows. Given a set of input images (2D

functions) I, a training set, where each image belongs to a

particular class ck ∈ C, compute the Volterra kernels for

the unknown functional N which map the images in such

a manner that the goodness functional O is minimized in

the range space of N . Functional O measures the depar-

ture from the complete separability of the data in the range

space. In this paper we seek a functional N that maps all

the images from the same class in a manner such that the

intraclass L2 distance is minimized while the interclass L2

distance is maximized. Once N has been determined, a

new image can be classified using any of the methods like

the Nearest Centroid Classifier, Nearest Neighbor Classi-

fiers etc. in the mapped space. With this observation, we

define the goodness functional O as,

O(I) =

∑
ck∈C

∑
i,j∈ck

‖N (Ii) −N (Ij)‖
2

∑
ck∈C

∑
m∈ck,n/∈ck

‖N (Im) −N (In)‖2
(6)

where the numerator measures the aggregate intraclass dis-

tance for all the classes and the denominator measures the

aggregate distance of class ck from all other classes in C.

Equation (6) can be further expanded as

Ok(I) =

∑
ck∈C

∑
i,j∈ck

‖Ii ⊗p K − Ij ⊗p K‖2

∑
ck∈C

∑
m∈ck,n/∈ck

‖In ⊗p K − Im ⊗p K‖2

(7)

where K, like h(t) in eq. (5), is a placeholder for all the

different orders of the convolution kernels.

At this juncture we make the linear nature of convolution

explicit by converting the convolution operation to multi-

plication. This conversion to an explicit linear transforma-

tional form can be done in many ways, but as the convolu-

tion kernel is the unknown in our setup, we wish to keep it

as a vector and thus we transform the image Ii into a new

representation A
p
i such that

Figure 2. Training images from each class are stacked up and di-

vided into equal sized patches. Corresponding patches from each

class are then used to learn Volterra kernels by minimizing intra-

class distance over interclass distance. We end up with one Volerra

kernel per group of spatially corresponding patches.

Ii ⊗p K = A
p
i · K (8)

where K is the vectorized form of the 2D masks represented

by K.

The exact form of A
p
i depends on the order of the convo-

lutions p. In Section 5 we have presented results for up to

the second order approximations and thus the structure of

A
p
i is explained for only up to second order, but it should be

noted that the recognition framework using volterra kernels

that we propose is very general and the structure of A
p
i for

any order can be analogously derived.

3.1. First Order Approximation

For an image Ii of size m × n pixels and a first order

kernel K1 of size b × b, the transformed matrix A
p
i has di-

mensions mn × b2. It is built by taking neighborhoods of

b × b dimensions at each pixel in Ii, vectorizing and then

stacking them one on top of the other. This procedure is il-

lustrated for an image of size 5× 5 and kernel of size 3× 3
in Figure 1. Border pixels can be ignored or taken into ac-

count during convolution by padding the image with zeros

without affecting the performance significantly.

Substituting the above defined representation for convo-

lution in eq. (7), we obtain

O(I) =

∑
ck∈C

∑
i,j∈ck

‖Ap
i · K1 − A

p
j · K1‖

2

∑
ck∈C

∑
m∈ck,n/∈ck

‖Ap
n · K1 − Am

i · K1‖
2
.

(9)

This can be written as

O(I) =
K

T

1 SWK1

K
T

1 SBK1

(10)

where SW =
∑

ck∈C

∑
i,j∈ck

(Ap
i − A

p
j )

T (Ap
i − A

p
j ) and

SB =
∑

ck∈C

∑
m∈ck,n/∈ck

(Ap
i − A

p
j )

T (Ap
i − A

p
j ).
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Here SW and SB are symmetric matrices of dimensions

b2 × b2. Seeking the minimum of eq. (10) leads to solving

the generalized eigenvalue problem and thus the minimum

of O(I) is given by the minimum eigenvalue of SB
−1

SW

and it is attained when K1 equals the corresponding eigen-

vector.

3.2. Second Order Approximation

The second order approximation of the sought functional

contains two terms

y(m) =

∞∑
q1=−∞

h1(q1)x(m − q1) +

∞∑
q1=−∞

∞∑
q2=−∞

h2(q1, q2)x(m − q1)x(m − q2)

(11)

The first term in eq. (11) corresponds to a weighted sum

of the first order terms, x(m − q1), while the second term

corresponds to a weighted sum of the second order terms,

x(m − q1)x(m − q2). For an image Ii of size m × n pix-

els and kernels of size b × b, the transformed matrix A2
i

for the second order approximation in eq. (8) has dimen-

sions mn × (b4 + b2) and the kernel vector that multiplies

it, K2, has dimensions (b4 + b2) × 1. A2
i is built by taking

a neighborhood of size b × b at each pixel in Ii, generat-

ing all second degree combinations from the neighborhood,

vectorizing them, concatenating the first degree terms and

then stacking them one on top of the other. K2 is formed

by concatenating vectorized second and first order kernels.

The structure of A2
i for a 5 × 5 image and 3 × 3 kernels

is illustrated in Figure 1. It must noted that the problem is

still linear in the variables being solved for and in fact by

use of this formulation we have ensured that regardless of

the order of the approximation, the problem is linear in the

coefficients of the Volterra convolution kernels.

With this definition of A2
i we proceed like the first or-

der approximation to obtain analogous equations (9) and

(10) with the difference being that the matrices SB and

SW now have dimensions (b4 + b2) × (b4 + b2). Here

we must point out an important modification to the struc-

ture of A2
i which allows us to reduce the size of the matri-

ces. The second order convolution kernels in the Volterra

series are required to be symmetrical ([9]) and this symme-

try also manifests itself into the structure of A2
i . By allow-

ing only unique entries in A2
i we can reduce the dimensions

of A2
i to mn × b4+3b2

2
and the dimensions of the matrices

SB and SW to b4+3b2

2
× b4+3b2

2
. Now as in the first order

approximation, the minimum of Ok(I) is given by the mini-

mum eigenvalue of SB
−1

SW, which it is attained when K2

equals the corresponding eigenvector.

Figure 3. Testing involves dividing the test image according to the

scheme used while training. Each patch is then mapped to the

range space by the corresponding Volterra kernel where it is clas-

sified using a Nearest Neighbor classifier. After being individually

classified, each patch from the test image casts a vote towards the

parent image classification. The class with the maximum votes

wins.

4. Training and Testing Algorithms

The mapping developed in the previous section can be

made more expressive if the image is divided into smaller

patches and each patch is allowed to be independently

mapped to its own discriminative space. This allows us

to infer separate kernels for different regions of the face.

Further, if each constituent patch casts a vote towards the

parent image classification, it introduces robustness to the

overall image classification. Thus we adopt a patch based

framework for the face recognition task. Note that we do

not ignore or select certain patches, as explored in [22].

Training (Fig. 2) in the proposed framework involves

learning a volterra kernel from the corresponding patches

of the training images. Testing (Fig. 3) in our framework

involves two stages. The first stage classifies each patch us-

ing the mapping framework described in the previous sec-

tion and a nearest neighbor classifier. In the second stage,

each patch casts a vote towards the parent image classifica-

tion and the class with maximum votes wins. In the case

of a tie, we classify the image using a run-off among the

tied classes. As the number of cases with ties are small, a

simpler strategy of using a coin toss to break the tie also

showed comparable results.

If the kernel size is k × k, the number of patches is p of

size s×s, the training set size is t and the number of classes

is c, the training complexity is O(pt2c2s6 + pk6). For test-

ing 1 image, the complexity is O(pct). Since the kernel size

is a small constant (3 or 5), the eigenvalue problem can be

assumed to take a constant time & thus the training com-

plexity becomes O(pt2c2s6).
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Method Yale A CMU PIE Ext. Yale B

2008 CVPR, An et al. (KLPPSI) [2] - 5 10 20 30 5 10 20 30

2008 CVPR, Pham et al. (MLASSO) [18] - 2 3 4 2 3 4

2008 CVPR, Shan et al. (UVF) [20] 2 - 8 - -

2008 TIP, Fu et al. (CTA) [10] - 5 10 15 20 5 10 20 30

2008 TIP, Fu et al. (Lap,Eig,Fis) [10] - - 5 10 20 30

2007 CVPR, An et al. (KRR) [1] - 5 10 20 30 5 10 20 30

2007 CVPR, Hua et al. (ORO) [14] 5 30 20

2007 CVPR, Cai et al. (S-LDA) [8] 2 3 4 5 - -

2007 CVPR, Wang et al. (TANMM) [23] 2 3 4 5 10 20 -

2007 ICCV, Cai et al. (SR, RDA) [6] - 30 40 10 20 30 40

2006 TIP, Cai et al. (OLAP) [7] 2 3 4 5 5 10 20 30 -

2006 TIP, Cai et al. (Lap,Eig,Fis) [7] 2 3 4 5 5 10 20 30 -

Table 1. State-of-the-art methods with which we compare our tech-

nique, along with the training set sizes used in their experiments.

4.1. Parameter Selection

Like any other learning algorithm, there are parameters

that need to be set before using this method. But unlike

most state-of-the-art algorithms where parameters are cho-

sen from a large discrete or continuously varying domain

(e.g. initialization and λ in [18], parameter α ∈ [0, 1] in [8],

dimensionality D in [20], reduced dimensionality in TSA

[12], 2D-LDA [24] , energy threshold in [19] etc.), Volterra

discriminant analysis has a smaller discrete set of param-

eter choices. We use one of the widely used ([8],[1]) and

accepted methods, cross validation, for parameter selection.

Foremost is the selection of the patch size, and for this,

starting with the whole face image we define a quad-tree of

sub-images. We progressively go down the tree stopping

at the level beyond which there is no improvement in the

recognition rates as computed using cross validation. Em-

pirically we found that a patch size of 8× 8 pixels provides

the best results in all cases. Next, we allow patches to be

overlapping or non-overlapping. The Volterra kernel size

can be of size 3 × 3 or 5 × 5 pixels (anything bigger than

this severely over-fits a patch of size 8×8). Lastly, the order

of the kernel can be quadratic or linear.

In this paper we have presented results for both quadratic

and linear kernels. The rest of the parameters were set using

a 20-fold leave-one-out cross validation on the training set.

It can be noted from the results presented in the next section

that the best parameter configuration is fairly consistent not

only within a particular database but also across databases.

5. Experiments

In order to evaluate our technique and compare it with

existing state-of-the-art methods in learning based face

recognition, we have identified 11 recent (Table 1) pub-

lications which present the best results on the benchmark

databases using very similar (to that in [7]) experimental

setups. All of these are embedding methods mentioned in

the prologue with the exception of [20] which builds on the

concept of Universal Visual Features (UVF). In our study,

we present results on Yale A, CMU PIE and Extended Yale

B benchmark face databases partly because they are some

of the most popular databases which makes a comparative

study easy. In addition to the recent methods we also pro-

vide comparisons with the traditional baseline methods -

Eigenfaces, Fisherfaces and Laplacianfaces. Table. 1 lists

these methods along with the number of training images

used by them on the above mentioned databases in their

experiments. We have presented our results for the whole

range of training set sizes so that comparisons with a maxi-

mum number of techniques can be made.

For the Yale A 1 face database we used 11 images each

of the 15 individuals with a total of 165 images. For the

CMU PIE database ([21]) we used all 170 images (ex-

cept a few corrupted images) from 5 near frontal poses

(C05,C07,C09,C27,C29) for each of the 68 subjects. For

the Extended Yale B database ([15]) we used 64 (except for

a few corrupted images) images each (frontal pose) of 38

individuals present in the database. Note that the methods

in Table. 1 used the same subset of images. We obtained the

data from the website of the authors of [8] 2. These images

were manually aligned (two eyes were aligned at the same

position) and cropped to extract faces, with 256 gray value

levels per pixel.

The results (average recognition error rates) on the Yale

A, the CMU PIE and the Extended Yale B databases are

presented in Table. 1(a), Table. 1(b) and Table. 1(c), re-

spectively. Rows titled Train Set Size indicate the number

of training images used and the rows below them list the

rates reported by various state-of-the-art and our method

(Volterrafaces). Each experiment was repeated 10 times for

10 random choices of the training set. All images other than

the training set were used for testing. Specific experimental

setup used for Volterrafaces is mentioned below each ta-

ble. We have reported results with both linear and quadratic

masks for the sake of completeness. Best results for a par-

ticular training set size are highlighted in bold.

5.1. Discussion

It can be noted that our proposed method (Volterrafaces)

consistently outperforms the state-of-the-art and traditional

methods on all the three benchmark datasets. On all

the three databases, linear masks outperform the quadratic

masks but in most cases quadratic masks also provided bet-

ter performance than the existing methods. For the compet-

ing methods we have reported the error rates as mentioned

in the original publications (listed next to the method names

in the tables). Since we want to present only the best results

reported by the competing methods, some of the entries in

the tables are left empty because no results for those train-

ing set sizes were reported in the original publications.

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html
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(a) Yale A

Train Set Size 2 3 4 5

S-LDA [8] 42.4 27.7 22.2 18.3

S-LDA [8] (updated) 37.5 25.5 19.3 14.7

UVF [20] 27.11 17.38 11.71 8.16

TANMM [23] 44.69 29.57 18.44 -

OLAP [7] 44.3 29.9 22.7 17.9

Eigenfaces [7] 56.5 51.1 47.8 45.2

Fisherfaces [7] 54.3 35.5 27.3 22.5

Laplacianfaces [7] 43.5 31.5 25.4 21.7

Volterrafaces (Linear) 15.70 12.33 9.47 6.11

Volterrafaces (Quad) 22.15 13.36 15.78 10.19

Train Set Size 6 7 8 9

S-LDA [8] (updated) 12.3 10.3 8.7 -

UVF [20] 6.27 5.07 3.82 -

Volterrafaces (Linear) 5.78 3.96 2.61 1.43

Volterrafaces (Quad) 10.04 9.66 9.49 8.74

(b) CMU PIE

Train Set Size 5 10 20 30

KLPPSI [2] 27.88 12.32 5.48 3.62

KRR [1] 26.4 13.1 5.97 4.02

ORO [14] - - - 6.4

TANMM [23] 26.98 17.22 5.68 -

SR [6] - - - 6.1

OLAP [7] 21.4 11.4 6.51 4.83

Eigenfaces [7] 69.9 55.7 38.1 27.9

Fisherfaces [7] 31.5 22.4 15.4 7.77

Laplacianfaces [7] 30.8 21.1 14.1 7.13

Volterrafaces (Linear) 20.26 10.24 4.94 2.85

Volterrafaces (Quad) 25.29 11.94 5.45 4.60

Train Set Size 2 3 4 40

SR [6] - - - 5.2

MLASSO [18] 54.0 43.0 34.0 -

Volterrafaces (Linear) 43.0 36.30 23.98 2.37

Volterrafaces (Quad) 50.48 39.66 32.67 3.04

(c) Extended Yale B

Train Set Size 5 10 20 30

ORO [14] - - - 9.0

SR [6] - 12.0 4.7 2.0

RDA [6] - 11.6 4.2 1.8

KLPPSI [2] 24.74 9.93 3.15 1.39

KRR [1] 23.9 11.04 3.67 1.43

CTA [10] 16.99 7.60 4.96 2.94

Eigenfaces [10] 54.73 36.06 31.22 27.71

Fisherfaces [10] 37.56 18.91 16.87 14.94

Laplacianfaces [10] 34.08 18.03 30.26 20.20

Volterrafaces (Linear) 6.35 2.67 0.90 0.42

Volterrafaces (Quad) 13.0 3.98 1.27 0.58

Train Set Size 2 3 4 40

MLASSO [18] 58.0 54.0 50.0 -

SR [6] - - - 1.0

RDA [6] - - - 0.9

Volterrafaces (Linear) 26.23 18.23 9.33 0.34

Volterrafaces (Quad) 40.81 20.47 14.42 0.43

Table 2. Yale A Training set size: 2-9, Linear kernel size: 5 × 5, Quadratic kernel size: 3 × 3, overlapping patches size: 8 × 8, images

size: 64 × 64. CMU PIE: Training set size: 2-9, Linear kernel size: 5 × 5, Quadratic kernel size: 3 × 3, overlapping patches size: 8 × 8,

images size: 32 × 32. Extended Yale B, Training set size: 2-5, 5, 10, 20, 30 & 40 Linear kernel size: 3 × 3, Quadratic kernel size: 3 × 3,

non-overlapping patches size: 8 × 8, images size: 32 × 32. For other methods, best results as reported in the respective papers are used.

6. Conclusion

We have introduced the use of Volterra kernel approxi-

mations for image recognition functionals in this paper. The

kernel learning is driven by the training data, based on a

goodness functional defined in the range space of the recog-

nition functional. It is shown that for a goodness functional

that tries to minimize intraclass distances while maximizing

interclass distances, the kernel computation reduces to the

generalized eigenvalue problem which translates to a very

efficient computation of kernels for any order of approxi-

mation of the functional. Effectiveness of this technique for

face recognition is demonstrated by experiments on three

benchmark databases and the results are compared to tradi-

tional as well as the state of the art techniques in discrim-

inant analysis for faces. From the results presented in this

paper it can be concluded that Volterra kernel approxima-

tions show great promise for applications in image recogni-

tion tasks.
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