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Abstract

We study congestion periods in a finite fluid buffer when the net input rate depends
upon a recurrent Markov process; congestion occurs when the buffer content is equal
to the buffer capacity. Similarly to O’Reilly and Palmowski (2013), we consider the
duration of congestion periods as well as the associated volume of lost information.
While these quantities are characterized by their Laplace transforms in that paper, we
presently derive their distributions in a typical stationary busy period of the buffer. Our
goal is to compute the exact expression of the loss probability in the system, which is
usually approximated by the probability that the occupancy of the infinite buffer is greater
than the buffer capacity under consideration. Moreover, by using general results of the
theory of Markovian arrival processes, we show that the duration of congestion and the
volume of lost information have phase-type distributions.
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1. Introduction

A key performance metric for characterizing statistical multiplexing in packet networks is
the volume of information lost during congestion periods of the network. This is a global per-
formance measure reflecting congestion phenomena occurring on each transmission link of the
network when performing statistical multiplexing in order to optimize network utilization. As
a matter of fact, several packet flows are statistically multiplexed on the same transmission link
which is generally equipped with a buffer to store packets when the arrival rate is momentarily
greater than the link transmission capacity. This is intended to prevent, as much as possible, the
loss of packets from the transmission link. However, such a buffer must have a finite capacity
and packets can be transmitted in bursts, causing transient overflow of transmission links. Such
phenomena are becoming more and more frequent in the Internet since new versions of the
transmission control protocol (TCP) are ever more aggressive for the network and the slow-
start mechanism is sometimes disabled, leading to the transmission of bulk of data at very high
rates.

In this paper we consider a single transmission link equipped with a buffer of finite capacity.
To model the arrival of packets, a usual approximation consists of ignoring the discrete nature
of packets and assuming that a continuous amount of fluid arrives at the buffer (fluid flow
approximation). Let χ(t) denote the input rate at time t and let �(t) be the net input rate
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at time t (i.e. the difference between the instantaneous arrival and server rates). The link is
congested at time t when �(t) > 0 and the buffer capacity (denoted by x) is reached. Denoting
by X(t) the volume of information in the buffer at time t , the fraction of lost information is the
long-run ratio

πloss = lim
t→∞

∫ t

0 �(s) 1{X(s)=x} ds∫ t

0 χ(s) ds
,

where 1A denotes the characteristic function of the set A. (Note that we can have X(t) = x

only if �t ≥ 0.) When the process (�(t)) is stationary and ergodic, the above equation can be
written as

πloss = E(� 1{X=x})
E(χ)

, (1)

where χ , �, and X denote the input rate, the net input rate, and the buffer occupancy in the
stationary regime, respectively.

The major difficulty for estimating the quantity πloss is the computation of the joint prob-
ability distribution of the couple (�, X). One classical approach consists of approximating
the quantity πloss by the buffer overshoot probability P{X∞ > x}, where X∞ is the buffer
occupancy when the buffer capacity is infinite and the system is stable (i.e. E(�) < 0). For
large x, large deviations techniques can be used to approximate this latter probability.

In this paper we study the quantity πloss defined by (1) by considering congestion periods
on a link equipped with a finite buffer. For this purpose, we develop a method of computing
the quantity πloss when the input process is modulated by a Markov process. More specifically,
we assume that the input rate is of the form χϕ(t), where the phase process (ϕ(t)) is a Markov
process with a finite state space S and χ is some real-valued function from S → R. We
specifically establish the law of the volume of fluid lost during an overflow period (i.e. a time
period during which the occupancy of the buffer is x) as well as the duration of such a period.

The model considered is a stochastic fluid model and in particular a Markov modulated fluid
queue. These models have been widely used in several domains of system performance evalua-
tion such as manufacturing systems, communication networks, risk processes in insurance, and
environmental problems; see, for example, [6] and the references therein. The transient and
stationary behaviors of these models have been extensively studied and numerous performance
metrics with their corresponding numerical algorithms have been proposed and derived in the
literature; see [8] for a long list of references on the subject.

Hitting probabilities for stochastic fluid models have been analyzed in [2], [4], and [6]; the
relevant algorithms have been developed in [3] and [5]. In [14], the authors studied these hitting
probabilities together with the maximum peak and the minimum buffer level observed within
a busy period of the queue. Here, we extend the analysis provided in [14] by considering the
loss of fluid occurring in finite buffer fluid queues. It is worth noting that the authors of [10]
considered similar performance metrics via the use of Laplace transforms. The key difference
with that paper is that we compute the distribution of the random variables under consideration
instead of their Laplace transforms. In particular, we compute the joint distributions of the
congestion durations and the lost volumes in successive congestion periods in the same busy
period. Finally, we prove that the total congestion duration and lost volume in a typical stationary
busy period have phase type distributions.

The organization of this paper is as follows. In Section 2 we describe the model under
consideration. In Section 3 we compute the distribution of the duration and the volume of lost
information of the first congestion event; we also study the state by which the successive idle
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and busy periods start. In Section 4 we compute the joint distribution of all the loss periods in
a busy period and the joint distribution of all the loss volumes in a busy period. These results
are used in Section 5 to compute the total length of congestion periods and the total volume
of information lost in a busy period. This enables us to compute the loss ratio πloss. Some
concluding remarks are presented in Section 6.

2. Model description

2.1. Notation

We consider a fluid queue with a finite buffer of capacity denoted by x. The input and service
rates are controlled by a homogeneous Markov process ϕ = (ϕ(t), t ≥ 0) on the finite state
space S with infinitesimal generator T and initial probability distribution α. Let X(t) denote
the amount of fluid in the buffer at time t . The process ((X(t), ϕ(t)), t ≥ 0) forms a Markov
process having a pair of continuous and discrete states.

Let χi be the input rate and ηi be the service rate of the queue when the Markov process ϕ

is in state i. We denote by ri the net input rate of state i, i.e. ri = χi − ηi and we define the
diagonal matrix of net input rates R = diag(ri, i ∈ S). We denote by S0, S− and S+ the subsets
of states i ∈ S such that ri = 0, ri < 0 and ri > 0, respectively. In the same way, we denote
by R0, R−, and R+ the diagonal matrices R0 = diag(ri, i ∈ S0), R− = diag(−ri, i ∈ S−),
and R+ = diag(ri, i ∈ S+). We clearly have R0 = 0, the null matrix. The numbers of states
in S0, S+, and S− are denoted by n0, n−, and n+, respectively. We have �(t) = rϕ(t).

By using this partition of states, we decompose the transition matrix T as

T =
⎛
⎝T−− T−0 T−+

T0− T00 T0+
T+− T+0 T++

⎞
⎠ .

We suppose that the Markov chain (ϕ(t)) has a stationary regime and that E(rϕ(t)) < 0 so that
the busy periods of the queue have a finite mean value.

2.2. Congestion metrics

Assume that the buffer is initially empty (X(0) = 0) and that ϕ(0) ∈ S+, so that a busy
period starts at time 0. For u ∈ [0, x], let θ(u) be the first positive time at which the fluid
reaches level u, i.e. θ(u) = inf{t > 0 | X(t) = u}.

Let us characterize congestion by the distribution of the two random variables:

• the total time τ(x) during which the buffer is full in a busy period;

• the total quantity of fluid V (x) lost in a busy period.

The random variables τ(x) and V (x) are formally defined by

τ(x) =
∫ θ(0)

0
1{X(t)=x} dt, V (x) =

∫ θ(0)

0
rϕ(t) 1{X(t)=x} dt.

Note that X(t) = x implies that ϕ(t) ∈ S+ ∪ S0 and when ϕ(t) ∈ S0, rϕ(t) = 0.
We consider the successive periods when the buffer capacity x is reached by process (X(t)).

We denote by K the number of such periods occurring during a busy period of the buffer.
Clearly, K is an integer-valued random variable and if K = 0, which means that process never
reaches level x during the busy period, then we have V (x) = 0. We thus consider the case
when K ≥ 1.
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Figure 1: A typical busy period.

For every k ≥ 1, we denote by γk the kth instant at which X(γk) = x and X(γ −
k ) < x. We

also denote by τk(x) the duration of the kth period during which the fluid level is equal to x.
More precisely, if we set γ0 = 0 and τ0(x) = 0, we have, for every k ≥ 1,

γk = inf{t ∈ (γk−1 + τk−1(x), θ(0)) | X(t) = x},
τk(x) = inf{t > γk | X(t) < x} − γk.

We have γ1 = θ(x). In addition, γk also depends on x but we do not mention this dependence
to simplify the notation. When K ≥ 1, for k ∈ {1, . . . , K}, we denote by Vk(x) the volume of
fluid lost during period τk(x). This volume is easily expressed as

Vk(x) =
∫ τk(x)+γk

γk

rϕ(t) dt

and, we have

τ(x) =
K∑

k=1

τk(x), V (x) =
K∑

k=1

Vk(x).

The above variables are shown in Figure 1 for the K = 3 case. To simplify the figure, we
have chosen the nonzero effective input rates equal to −1 or 1. In Figure 1, the successive
volumes of fluid lost during the busy period is shown above the dotted line at X(t) = x.

Note that, for every k ≥ 1 and for every j ∈ S+, we have

ϕ(γk) = j �⇒ ϕ(γk) ∈ S+ ⇐⇒ K ≥ k. (2)

2.3. Reduction of the state space

Let us introduce the (n− + n+, n− + n+) matrix

Q =
(

Q−− Q−+
Q+− Q++

)
,

where Q−− = R−1− (T−− − T−0T
−1
00 T0−), Q−+ = R−1− (T−+ − T−0T

−1
00 T0+), Q+− =

R−1+ (T+− − T+0T
−1
00 T0−), and Q++ = R−1+ (T++ − T+0T

−1
00 T0+). As shown in [4] and [12],

when considering quantities such as hitting probabilities and accumulated rewards during
sojourn times in S+ ∪ S0, the fluid queue with parameters (T , R) is equivalent to the fluid
queue with parameters (Q, C), where C is the (n− + n+, n− + n+) matrix

C =
(−I 0

0 I

)
,
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and I is the identity matrix whose dimension is specified by the context of its use. This
transformation was also suggested in [1] and [11].

The distribution of τk(x), given that the phase at time γk is j ∈ S+, is given by

P{τk(x) > t | ϕ(γk) = j} = (eAt1)j ,

where A is the (n+ + n0, n+ + n0) matrix defined by

A =
(

T00 T0+
T+0 T++

)

and 1 is the column vector with all its entries equal to 1, its dimension being defined by the
context. Since j ∈ S+, we only need the entries of eAt1 corresponding to the subset S+, so we
decompose vector eAt1 with respect to subsets S0 and S+, to obtain

eAt1 =
(

(eAt1)0

(eAt1)+
)

.

We then have
P{τk(x) > t | ϕ(γk) = j} = (eAt1)+j .

Now, if we consider the volume of fluid Vk(x) lost during period τk(x), given that the phase
at time γk is j , then Vk(x) can also be seen as the accumulated reward during a sojourn of
Markov chain (ϕ(t)) in subset S0 ∪ S+, starting in state j ∈ S+. Using the results of [12], for
j ∈ S+, we obtain

P{Vk(x) > v | ϕ(γk) = j} = (eQ++v1)j . (3)

Thus, in the following, we will consider a fluid queue driven by a Markov chain (ϕ(t)) with
state space S = S− ∪S+, infinitesimal generator Q and effective input rates given by matrix C,
i.e. equal to −1 or +1.

3. Distributions of τ1(x) and V1(x)

3.1. Matrix differential equation

In order to determine the distribution of τ1(x) and V1(x), we need the distribution of the
Markov chain (ϕ(t)) at time γ1. We introduce, for i ∈ S+ and j ∈ S−,

�i,j (x) = P{ϕ(θ(0)) = j, X(s) < x for 0 ≤ s ≤ θ(0) | ϕ(0) = i, X(0) = 0}
and, for i ∈ S+ and j ∈ S+, Mi,j (x) = P{ϕ(γ1) = j | X(0) = 0, ϕ(0) = i}. Let �(x)

and M(x) denote the matrix with entries �i,j (x) and Mi,j (x), respectively. For all i ∈ S+,∑
j∈S−�i,j (x) is the probability that the process does not hit level x in a busy period starting

from state i and an empty buffer and
∑

j∈S+ Mi,j (x) is the probability of the complementary
event. Hence, for all i ∈ S+,

∑
j∈S− �i,j (x) +∑

j∈S+ Mi,j (x) = 1. This can be written in
matrix form as �(x)1 + M(x)1 = 1, where we recall that the dimension of 1 is given by the
context of its use.

Matrices M(x) and �(x) are related to each other via a differential equation. As shown in
[14, Corollary 3], matrix �(x) satisfies the following integral equation:

�(x) =
∫ x

0
eQ++yQ+−eQ−−y dy +

∫ x

0
eQ++y�(x − y)Q−+�(x − y)eQ−−y dy. (4)
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From [14, Theorem 4], we have the following matrix differential Riccati equation:

boldsymbol� ′(x) = Q++�(x) + �(x)Q−− + �(x)Q−+�(x) + Q+− (5)

with �(0) = 0. Matrix M(x) is then related to �(x) by the following result.

Theorem 1. For every x ≥ 0, we have

M(x) = eQ++x +
∫ x

0
eQ++y�(x − y)Q−+M(x − y) dy, (6)

M ′(x) = (Q++ + �(x)Q−+)M(x). (7)

Proof. The proof of (6) follows the arguments developed in [4] or [14] and (7) is obtained
by differentiating (6).

3.2. Distributions of the random variables

The distributions of τ1(x) and V1(x) are given by the following theorem.

Theorem 2. For every i ∈ S+ and for all v, t ≥ 0, we have

P{V1(x) > v | ϕ(0) = i} = (M(x)eQ++v1)i , (8)

P{τ1(x) > t | ϕ(0) = i} = (M(x)(eAt1)+)i , P{K ≥ 1 | ϕ(0) = i} = (M(x)1)i .

Proof. Using the Markov property, for every i ∈ S+, we obtain

P{τ1(x) > t | ϕ(0) = i} =
∑
j∈S+

P{τ1(x) > t | ϕ(γ1) = j}P{ϕ(γ1) = j | ϕ(0) = i}

=
∑
j∈S+

Mi,j (x)(eAt1)+j

= (M(x)(eAt1)+)i .

The same argument leads to (8). From (2), by definition of Mi,j (x), we obtain

P{K ≥ 1 | ϕ(0) = i} = P{ϕ(γ1) ∈ S+ | ϕ(0) = i} = (M(x)1)i .

In the next section, we study the distributions of the state initiating the successive idle and
busy periods of the buffer.

3.3. Sequences of idle and busy periods

We decompose the initial probability distribution α of Markov chain (ϕ(t)) through the
partition S−, S0, S+, by writing α = (α−, α0, α+). Recall that we suppose that the buffer is
initially empty, i.e. X(0) = 0 with probability 1. For every n ≥ 1, we denote by SIn the state
or the phase by which the nth idle period starts and we denote by SBn the state or the phase by
which the nth busy period starts. We then have SI1 ∈ S− ∪ S0 if α0 = 0, SIn ∈ S− for n ≥ 2,
and SBn ∈ S+. We denote respectively by vn and wn the probability distributions of SIn and
SBn, i.e.

wn = (P{SBn = j}, j ∈ S+), v1 = (P{SI1 = j}, j ∈ S− ∪ S0).
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For n ≥ 2,
vn = (P{SIn = j}, j ∈ S−).

For every i ∈ S+ and j ∈ S−, we denote by �i,j (x) the probability that a busy period ends in
phase j given that it starts in phase i, i.e.

�i,j (x) = P{ϕ(θ(0)) = j | ϕ(0) = i}
and we denote by �(x) the (n+, n−) matrix with components �i,j (x). It was shown in [14] that
�(x) is the unique solution to the matrix differential Riccati equation �′(x) = Q++�(x) +
�(x)Q−− +�(x)Q−+�(x)+Q+− with �(0) = (−Q++)−1Q+−. We remark that for every
x ≥ 0, we have �(x)1 = 1. Using the results of [12], we have

v1 = (α− + α+�(x), α0), w1 = α+ + (α−, α0)(−A′)−1B ′, (9)

where matrices A′ and B ′ are defined by

A′ =
(

T−− T−0
T0− T00

)
, B ′ =

(
T−+
T0+

)
.

Defining Q00 = T00 − T0−T −1−−T−0 and Q0+ = T0+ − T0−T −1−−T−+, we have

(−A′)−1 =
(

(−Q−−)−1R−1− (−Q−−)−1R−1− T−0(−T00)
−1

(−Q00)
−1T0−(−T−−)−1 (−Q00)

−1

)
(10)

and

(−A′)−1B ′ =
(

(−Q−−)−1Q−+
(−Q00)

−1Q0+

)
, (11)

which leads to

w1 = α+ + α−(−Q−−)−1Q−+ + α0(−Q00)
−1Q0+. (12)

In the following theorem, we provide the expressions of vn and wn for n ≥ 2.

Theorem 3. For every n ≥ 2, we have

vn = (α− + α+�(x))Ln−1(x) + α0(−Q00)
−1Q0+�(x)Ln−2(x),

wn = (α+ + α−(−Q−−)−1Q−+ + α0(−Q00)
−1Q0+)Kn−1(x),

where matrices L(x) and K(x) are given by

L(x) = (−Q−−)−1Q−+�(x), K(x) = �(x)(−Q−−)−1Q−+.

Proof. For every j ∈ S−, we have

P{SI2 = j} =
∑

i∈S−∪S0

P{SI1 = i}[(−A′)−1B ′�(x)]i,j ,

which gives, in matrix notation, using (9) and (11),

v2 = v1(−A′)−1B ′�(x)

= (α− + α+�(x))(−Q−−)−1Q−+�(x) + α0(−Q00)
−1Q0+�(x)

= (α− + α+�(x))L(x) + α0(−Q00)
−1Q0+�(x).
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For every n ≥ 3 and j ∈ S−, by homogeneity, we have

P{SIn = j} =
∑
i∈S−

P{SIn−1 = i}[(−A′)−1B ′�(x)]i,j .

Thus, in matrix notation, again using (9) and (11), we obtain

vn = vn−1(−Q−−)−1Q−+�(x) = vn−1L(x).

For n ≥ 2 this leads to vn = v2L
n−2(x), which is the desired result. In the same way, for every

n ≥ 2 and j ∈ S+, using (11), we have

P{SBn = j} =
∑
i∈S+

P{SBn−1 = i}
∑
∈S−

�i,(x)[(−A′)−1B ′],j

=
∑
i∈S+

P{SBn−1 = i}[�(x)(−Q−−)−1Q−+]i,j

=
∑
i∈S+

P{SBn−1 = i}Ki,j (x).

In matrix notation, using (12), we obtain wn = wn−1K(x), i.e. wn = w1K
n−1(x).

The Markov chain (ϕ(t)) being finite and irreducible, matrices L(x) and K(x), which are
stochastic matrices are also irreducible and aperiodic. Thus, we have

lim
n−→∞ vn = π−, lim

n−→∞ wn = π+, (13)

where π− is a row vector of dimension n−, which is the unique solution to the system π− =
π−L(x) with π−1 = 1 and π+ is a row vector of dimension n+, which is the unique solution
to the system π+ = π+K(x) with π+1 = 1.

In what follows we suppose that the queue is in the stationary regime, i.e. the distribu-
tion of ϕ(0) is π+. Thus, we have P{τ1(x) > t} = π+M(x)(eAt1)+, P{V1(x) > v} =
π+M(x)eQ++v1, and P{K ≥ 1} = π+M(x)1. The above result provides the distribution
of the first congestion event. In the next section we compute the characteristics of several
congestion events.

4. Joint distributions of loss periods and loss volumes

In this section we study the joint distribution of the times τk(x) and the joint distribution
of the volumes Vk(x). To deal with these distributions, we need to evaluate the probability
Hi,j (x), starting from level x in phase i ∈ S−, that the phase at the time of the first return to
level x is equal to j , without hitting level 0. This probability can be interpreted as the symmetric
probability of �(x) with respect to levels 0 and x. It is defined, for every i ∈ S− and j ∈ S+,
by

Hi,j (x) = P{ϕ(θ(x)) = j, X(s) > 0 for 0 ≤ s ≤ θ(x) | ϕ(0) = i, X(0) = x}.
Theorem 4. For every x ≥ 0, we have

H (x) =
∫ x

0
eQ−−yQ−+eQ++y dy +

∫ x

0
eQ−−yH (x − y)Q+−H (x − y)eQ++y dy.
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Proof. The proof is quite similar to the proof leading to (4). It can also be seen as a particular
case of the way in which [14, Equation (12)] was obtained since here we do not consider the
paths hitting level 0.

In the same way that we obtained (5), matrix H (x) satisfies H (0) = 0 and

H ′(x) = Q−−H (x) + H (x)Q++ + H (x)Q+−H (x) + Q−+.

Note that, by the homogeneity of ϕ, we also have, for every i ∈ S−, j ∈ S+, and k ≥ 1,

Hi,j (x) = P{ϕ(γk+1) = j | ϕ(γk + τk) = }.
This relation is used to prove the next lemma. We introduce the matrix B defined by

B =
(

T+−
T0−

)
.

Lemma 1. For every k ≥ 1, v ≥ 0, and i, j ∈ S+, we have

P{Vk(x) > v, ϕ(γk+1) = j | ϕ(γk) = i} = (eQ++v(−Q++)−1Q+−H (x))i,j ,

P{τk(x) > t, ϕ(γk+1) = j | ϕ(γk) = i} = ([eAt (−A)−1B]+−H (x))i,j ,

where matrix [eAt (−A)−1B]+− is the block (n+, n−) of matrix eAt (−A)−1B.

Proof. The homogeneity of Markov chain ϕ implies that, for every k ≥ 1,

P{Vk(x) > v, ϕ(γk+1) = j | ϕ(γk) = i} = P{V1(x) > v, ϕ(γ2) = j | ϕ(γ1) = i},
so we set k = 1. Note that the entry (i, ) of matrix eQ++v(−Q++)−1Q+− is (see [12]) the
probability, starting from i ∈ S+, that the accumulated reward during a sojourn of ϕ in S+ ∪S0

is greater than v and that the first state of S− visited after this sojourn is . Conditioning on the
phase at time γ1 + τ1 and using the Markov property, we obtain

P{ϕ(γ2) = j, V1(x) > v | ϕ(γ1) = i}
=
∑
∈S−

P{ϕ(γ2) = j | ϕ(γ1 + τ1) = }P{ϕ(γ1 + τ1) = , V1(x) > v | ϕ(γ1) = i}

=
∑
∈S−

H,j (e
Q++v(−Q++)−1Q+−)i,

= (eQ++v(−Q++)−1Q+−H (x))i,j .

To obtain the second relation, we proceed in the same way noting that the entry (i, ) of matrix
[eAt (−A)−1B]+− is (see [12]) the probability, starting from i ∈ S+, that a sojourn of ϕ in
S+ ∪ S0 is greater than v and that the first state of S− visited after this sojourn is .

We remark that we have the following relations:

[(−A)−1B]+− = (−Q++)−1Q+−, (−Q++)−1Q+−1 = 1.

Theorem 5. For every k ≥ 1 and v1, . . . , vk ≥ 0, we have

P{V1(x) > v1, V2(x) > v2, . . . , Vk(x) > vk}

= π+M(x)

(k−1∏
=1

eQ++v(−Q++)−1Q+−H (x)

)
eQ++vk 1. (14)
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Proof. Note that, by convention, the product is equal to 1 for k = 1. Let us define Fi,j (k),
for every k ≥ 1 and i, j ∈ S+, by

Fi,j (k) = P{V1(x) > v1, . . . , Vk(x) > vk, ϕ(γk+1) = j | ϕ(0) = i}.
Conditioning on ϕ(γk) and using the Markov property, we have

Fi,j (k) =
∑
∈S+

P{V1(x) > v1, . . . , Vk(x) > vk, ϕ(γk+1) = j, ϕ(γk) =  | ϕ(0) = i}

=
∑
∈S+

Fi,(k − 1)P{Vk(x) > vk, ϕ(γk+1) = j | ϕ(γk) = }.

Denoting by F (k) the matrix [Fi,j (k)]i,j∈S+ and using Lemma 1, we obtain

F (k) = F (k − 1)eQ++vk (−Q++)−1Q+−H (x),

and, thus,

F (k) = F (1)

k∏
=2

eQ++v(−Q++)−1Q+−H (x).

Matrix F (1) is obtained in the same way, using the Markov property and Lemma 1, as

Fi,j (1) =
∑
∈S+

P{V1(x) > v1, ϕ(γ2) = j, ϕ(γ1) =  | ϕ(0) = i}

=
∑
∈S+

P{ϕ(γ1) =  | ϕ(0) = i}P{V1(x) > v1, ϕ(γ2) = j | ϕ(γ1) = }

=
∑
∈S+

Mi,(x)[eQ++v1(−Q++)−1Q+−H (x)],j .

Finally, we have

F (k) = M(x)

k∏
=1

eQ++v(−Q++)−1Q+−H (x).

To obtain the joint distribution of V1(x), . . . , Vk(x), we use (3), the previous relation, and the
Markov property, by writing

P{V1(x) > v1, V2(x) > v2, . . . , Vk(x) > vk | ϕ(0) = i}
=
∑
j∈S+

P{V1(x) > v1, . . . , Vk−1(x) > vk−1, ϕ(γk) = j, Vk(x) > vk | ϕ(0) = i}

=
∑
j∈S+

Fi,j (k − 1)P{Vk(x) > vk | ϕ(γk) = j}

=
∑
j∈S+

Fi,j (k − 1)(eQ++vk 1)j

= [F(k − 1)eQ++vk 1]i .
Since the distribution of ϕ(0) is π+, by unconditioning, we obtain

P{V1(x) > v1, V2(x) > v2, . . . , Vk(x) > vk} = π+F (k − 1)eQ++vk 1,

which completes the proof.
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Similar arguments are used to obtain the joint distribution of the τk(x).

Theorem 6. For every k ≥ 1 and t1, . . . , tk ≥ 0, we have

P{τ1(x) > t1, τ2(x) > t2, . . . , τk(x) > tk}

= π+M(x)

(k−1∏
=1

(eAt (−A)−1B)+−H (x)

)
(eAtk 1)+. (15)

Note that the joint distribution of the τk , given by (15), can be written as

P{τ1(x) > t1, . . . , τk(x) > tk} = a(x)

(k−1∏
=1

eAt (−A)−1BR(x)

)
eAtk 1, (16)

where a(x) is the row vector defined by a(x) = (π+M(x) 0), 0 being here the null row
vector of dimension n0, and R(x) is the matrix defined by R(x) = (H (x) 0), 0 being here
the (n−, n0) null matrix.

Corollary 1. For every k ≥ 1 and v, t ≥ 0, we have

P{Vk(x) > v} = π+M(x)((−Q++)−1Q+−H (x))k−1eQ++v1, (17)

P{τk(x) > t} = π+M(x)((−Q++)−1Q+−H (x))k−1(eAt1)+. (18)

Proof. To obtain (17), we use v1 = · · · = vk−1 = 0 and vk = v in (14). To obtain
(18), we use t1 = · · · = tk−1 = 0 and tk = t in (15) and observe that ((−A)−1B)+− =
(−Q++)−1Q+−.

Corollary 2. For every k ≥ 0, we have

P{K > k} = π+M(x)((−Q++)−1Q+−H (x))k1. (19)

Proof. For every k ≥ 0, we have

Vk+1(x) > 0 ⇐⇒ τk+1(x) > 0 ⇐⇒ K > k.

Thus, using either (17) or (18), we have P{K > k} = π+M(x)((−Q++)−1Q+−H (x))k1.

As in the joint distribution of the τk , obtained in (16), the distribution of K , given by (19),
can be written as

P{K > k} = a(x)((−A)−1BR(x))1. (20)

5. Total duration of losses and volume of information lost

In this section we determine the distribution of the total loss duration τ(x) in a busy period
and the distribution of the total volume of information lost V (x) in a busy period. From
Section 2.2, we have

τ(x) =
K∑

k=1

τk(x), V (x) =
K∑

k=1

Vk(x).

To obtain the distribution of τ(x) and V (x), we need some results about absorbing Markovian
arrival processes.
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5.1. The absorbing Markovian arrival process

The Markovian arrival process is well known in the queueing literature and was introduced
in [9]. Here, we consider a variant of this process in which we add an absorbing state. This
process is defined as a continuous-time Markov chain {(N(t), J (t)), t ≥ 0} with N(0) = 0 on
the state space S = {(a, 0)}∪ (N×{1, . . . , m}) with m ≥ 1 and where state (a, 0) is absorbing.
Its infinitesimal generator G is given by

G =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · ·
V D0 D1 0 0 0 0 · · ·
V 0 D0 D1 0 0 0 · · ·
V 0 0 D0 D1 0 0 · · ·
...

...
...

...
...

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

where the first row and the first column correspond to the absorbing state a. Matrices D0 and
D1 are nonzero (m, m) matrices and column vector V is a nonzero vector with dimension m.
The matrix G being an infinitesimal generator, we have D01 + D11 + V = 0. Moreover, we
assume that all the states, except state (a, 0), are transient. This implies in particular that matrix
D0 is invertible. For  ≥ 0, we define the subset of states S = {(, 1), . . . , (, m)}. As in [13],
we set ξ0 = 0 and we denote, for all n ≥ 1, by ξn the instant at which either the nth arrival occurs
or the absorbing state is reached. Variable ξn is then defined by ξn = inf{t ≥ 0 | N(t) ∈ {n, a}}
for all n ≥ 0. The nth interarrival time �n is then defined by �n = ξn − ξn−1 for n ≥ 1. We
also define Y as the number of subsets S visited by the process until absorption, i.e.

Y =
∞∑

=1

1{�>0} .

We then have ξn = ξY for n ≥ Y and, thus, �Y > 0 and �n = 0 for n ≥ Y +1. Since N(0) = 0,
the initial probability distribution is concentrated on the states (0, 1), . . . , (0, m). We denote
by β the row vector of dimension m defined by βi = P{J (0) = i} for i = 1, . . . , m. Thus, we
have β1 + · · · + βm = 1. Following the results of [13], the joint distribution of �1, . . . , �k is
given by

P{�1 > t1, . . . , �k > tk} = β

[k−1∏
=1

eD0t (−D0)
−1D1

]
eD0tk 1. (21)

We then have, for every k ≥ 0, �k+1 > 0 ⇐⇒ Y > k. By taking t1 = · · · = tk−1 = 0 and
tk = t in (21), for every k ≥ 1 and t ≥ 0, we obtain

P{�k > t} = β((−D0)
−1D1)

k−1eD0t1,

i.e.
P{Y > k} = β((−D0)

−1D1)
k1. (22)

We denote by � the total time spent by the process in the transient states, i.e. � = inf{t ≥
0 | N(t) = a}. By the definition of Y , we have

� =
Y∑

k=1

�k =
∞∑

k=1

�k.
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The distribution of � is given, for every t ≥ 0, by P{� > t} = (β, 0, 0, . . .)eLt1, where

L =

⎛
⎜⎜⎜⎝

D0 D1 0 0 0 0 · · ·
0 D0 D1 0 0 0 · · ·
0 0 D0 D1 0 0 · · ·
...

...
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎠ .

It is easily checked that for every k ≥ 0, we have

Lk1 =
⎛
⎜⎝

(D0 + D1)
k1

(D0 + D1)
k1

...

⎞
⎟⎠ .

We then obtain
P{� > t} = βe(D0+D1)t1. (23)

5.2. Distribution of τ(x) and V (x)

Using the notation a(x) and R(x) introduced in (16), we obtain the following result.

Theorem 7. For every v, t ≥ 0, we have

P{V (x) > v} = π+M(x)e(Q+++Q+−H (x))v1, (24)

P{τ(x) > t} = a(x)e(A+BR(x))t1.

Proof. The joint distribution of the Vk , which is given by (14) is equal to the joint distribution
of the �k given by (21) by taking β = π+M(x), D0 = Q++, and D1 = Q+−H (x). With
these values, the distribution of K given by (19) and the distribution of Y given by (22) are
identical. Thus, according to (23),

P{V (x) > v} = π+M(x)e(Q+++Q+−H (x))v1.

The joint distribution of the τk given by (16) is equal to the joint distribution of the �k given
by (21) by taking β = a(x), D0 = A and D1 = BR(x). With these values, the distribution
of K given by (20) and the distribution of Y given by (22) are identical. Thus, according to
(23), P{τ(x) > t} = a(x)e(A+BR(x))t1.

5.3. Loss probability

Let EIP and EBP be the mean durations of an idle period and a busy period, respectively,
in the stationary regime and let p be the stationary distribution of Markov chain (ϕ(t)). The
mean input rate is then E(χ) = ∑

i∈S piχi , where χi is the input rate in the queue when the
modulating Markov chain (ϕ(t)) is in state i. The quantity πloss, defined by (1), is then given
by

πloss =
(

1

EIP + EBP

)(
E(V (x))

E(χ)

)
. (25)

From (24), we have

E(V (x)) = π+M(x)(−Q++ − Q+−H (x))−11.
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Using (10) and (13), the mean duration of an idle period is given by

EIP = (π−, 0)(−A′)−11 = π−(−Q−−)−1R−1− (I + T−0(−T00)
−1)1.

The mean durations EBP and EIP are related by the relation

P{X = 0} = EIP

EIP + EBP
,

where X is the fluid level in stationary regime. From (25), we have

πloss = P{X = 0}E(V (x))

EIPE(χ)
.

The distribution of X and, more precisely, the quantity P{X = 0} was obtained in [7] using
matrix analytic methods.

To conclude this section, we note that the matrices �(x), M(x), H (x), and �(x) are
equivalent to the matrices G(0, x), H (0, x), and H (x, x) in [4] and the matrix �0 in [6],
respectively. They can be evaluated efficiently using the explicit expressions in [2, Corollary 2]
and [6, Theorem 3] (substitute s = 0) and the quadratic algorithms in [3] and [5], and without
the use of numerical inversion of the Laplace–Stieltjes transforms.

Matrices �(x), H (x), and �(x) are expressed here in terms of matrix differential Riccati
equations that can be solved using the method described in [14] which consists of computing the
exponential of the matrix CQx and then in solving a linear system in which the parameters are
blocks of the matrix exp(CQx). Matrix M(x) (see (7)), is the solution to a system of ordinary
differential equations with nonconstant coefficient matrix that can easily be solved numerically
using a classical Runge–Kutta fourth-order method available in MATLAB®, for example.

6. Conclusion

In this paper we have developed a method of computing the distributions of the total duration
of congestion and the volume of lost information in a finite buffer fed with a Markov-modulated
fluid input process in the stationary regime. This allows us to exactly compute the metric πloss
defined by (1) and corresponding to the fraction of lost information. In addition, we consider
the stationary regime and study the state of the system, when a busy period starts; this aspect is
not investigated in [10]. Finally, one outstanding result of this paper is that we have shown that
the total loss duration and the total volume of information lost in a busy period have phase-type
distributions.
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