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ABSTRACT Cluster validity index plays an important role in assessing the quality of clustering results.

However, most of the existing validity indices take a trial-and-error strategy, and their correctness depend on

not only the measurements of intra- and inter-cluster distances but also the specific clustering algorithms and

data structures. Consequently, the applications of these indices are limited in practice. In this paper, we firstly

define the total surface area and volume of all clusters in a 2-dimensinal data space, thereby recovering their

natural interrelation among various numbers of clusters. On this basis, a novel validity index is proposed

to directly assess the clustering results of any dataset, which does not require any trail-and-error process,

clustering algorithms, data structures, or the measurements of intra- and inter-cluster distances. In the case

of a high-dimensional data space, all clusters are transformed into spherical clusters of normalized size in a

2-dimensinal data space through a multidimensional scaling transformation. Two groups of typical synthetic

datasets and real datasets with various characteristics are used to validate the novel validity index.

INDEX TERMS Cluster validity index, multidimensional scaling transformation, volume and surface area.

I. INTRODUCTION

Cluster analysis, with which one can find the hidden struc-

tures inside the investigated datasets, playing an important

role in the domain of data mining [1], [2]. Clustering algo-

rithms and cluster validity indices are two most important

tasks in cluster analysis [3],[4]. Determining the optimal

number of clusters is usually completed based on one cluster

validity index or several [5], [6]. A great number of validity

indices have been proposed, ranging from the typical Davies-

Bouldin measure (DB) [7] to the latest unsupervised cluster

validity index [8]. Various validity indices have played a

very important role in evaluating results from any clustering

algorithm. For example, in a novel way both internal and

external validity indices were used to evaluate clustering task

when clustering was carried on a large high dimensional

dataset [9]. The symmetry validity in [10] was used to deter-

mine the number of clusters so that the human precuneus can

effectively be subdivided to six connected parcels by using

an eigen clustering approach. In [11], the notation of cluster

has led to scaling hierarchical power efficient clustering with

energy aware routing, and so on.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xin Luo .

Nowadays, under the background of big data [12], [13], the

efficiency of cluster validity index has become a focus beside

clustering algorithm [14]. Various similarity norms may

greatly affect the accuracy of the cluster validity [15], [16].

The computational complexity of each iteration when using

Bregman clustering algorithms [17] is linear with respect to

the number of data points. Therefore, these related algorithms

are scalable and appropriate to largescale machine learning

tasks. Recently, graph-based algorithms have effectively been

applied to express clustering structure and natural relation

hidden in investigated objects. For instance, the DB indexwas

used as fitness function to evaluate the quality of the clusters

in a largescale dataset [18], several indices commonly eval-

uated the clustering results from large uncertain graphs [19]

or the minimum spanning tree [20] that were used to present

the clustering structure.

The above methods have their own applicable and efficient

ranges. However, they cannot solve the classical clustering

assessment problems such as measurements of intra- and

inter-cluster distances [21], or multiple time repeated compu-

tation of clustering algorithms [22]. In this paper, efforts have

been made to solve the above problems. After uncovering the

interrelation between surface area and volume of all clusters

in a dataset, a novel validity index is proposed.
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II. RELATED WORK

Let X = {x1, x2, . . . , xn} be a dataset consisting of n points in
a d-dimensional space. When X is partitioned into c subsets,

i.e., C1,C2, . . .Cc, a binary membership function U can be

used to describe the relationship between points and sub-

sets [23]. If point xj belongs to the ith subset Ci, then uij is

equal to 1; otherwise, 0. The binary membership function can

be expressed as

uij =
{

1, xj ∈ Ci

0, xj /∈ Ci
, i=1, 2, . . . , c; j=1, 2,. . ., n (1)

A hard partitioning of X means that each point in X only

belongs to one subset [24]. In this situation, all points are

divided into c disjoint subsets, i.e.,

X = C1 ∪ C2 ∪ . . . ∪ Cc, Ci ∩ Cj = ∅, i, j = 1, 2, . . . , c

(2)

On the contrary, if each point in X belongs to all subsets

with its individual membership degrees, then this kind of par-

tition is called fuzzy partitioning [25]. Here, the partitioning

matrix satisfies

uij ∈ [0, 1], s.t.,
∑c

i=1
uij = 1,

i = 1, 2, . . . , c, j = 1, 2, . . . , n (3)

Generally, a validity index is a function of the number

of clusters (c), which combines the intra- and inter-cluster

distances [26], [27]. A validity index is usually denoted as

min(max) z = f (φc, δc), c = 1, 2, . . . ,C (4)

where φc and δc denote the intra- and inter-cluster distances,

respectively.

By minimizing φc and maximizing δc, (4) can reach its

maximum orminimum.Most validity indices take a trial-and-

error way to find the optimum of (4) [28]. Various combina-

tions of δc and φc can result in different kinds of indices [29].

Five typical cluster validity indices will be described as

below. Here, the upward arrow indicates that the maximum

of the corresponding index refers to the optimal partition,

and the corresponding number of clusters denotes the optimal

number of clusters. In contrast, the downward arrow indicates

the opposite meaning.

A. CALINSKI-HARABASZ INDEX (CH ↑) [30]

The compactness of this index is computed in terms of the

distances between each point and the centroid of a cluster, and

the separation is estimated by the distances between centroid

of each cluster and the global centroid. Thus, for a dataset

containing n points, CH can be defined as

CH (c) =
n− c

c− 1
·

∑c
i=1 ni||zi − z||2

∑c
i=1

∑ni
k=1 ||xk − zi||2

(5)

where ni and zi denote the number of points and the centroid

of cluster i, respectively; and z is the centroid of the whole

dataset.

B. DAVIES-BOULDIN INDEX (DB ↓) [13]

Let1i and zi denote the compactness and centroid of cluster i,

respectively; δij represents the separation between clusters i

and j. DB can be expressed as

DB(c) =
∑c

i=1
Ri/c,

s.t.,











Ri = maxj,j 6=i(1i + 1j)/δij

δij = ||Zi − Zj||
1i =

∑

x∈Ci ||xi − zi||/|Ci|
(6)

where |Ci| denotes the number of points in cluster i.

C. TIBSHIRANI’S GAP STATISTIC INDEX (GS ↑) [31]

GS can be defined as

W (c) =
∑c

i=1
Di/(2|Ci|),

s.t., Di = 2|Ci|
∑

j∈Ci
||xj − x||, x =

∑|Ci|

i=1
xi/|Ci| (7)

The optimal number of clusters appears at the inflection

point on the curve computed by (7). Owing to the subjectivity

of the detection of inflection point, the gap statistics can be

formulated as,

gap(c) = E∗[log(W (c))] − log(W (c)),

s.t., W (c) =
∑c

i=1
Di/(2|Ci|) (8)

where E∗ refers to the expectation under a null reference

distribution.

D. PAKHIRA AND BANDYOPADHYAY’ INDEX (PB ↑) [32]

PB is proposed by Pakhira and Bandyopadhyay to evaluate

the clustering results from both hard and fuzzy algorithms,

i.e.,

PB(c) = (
1

c
×
E1

J
× Dc)

2, s.t.,











E1 =
∑n

j=1 ||xj − z||
Dc =

∑c
i,j=1 ||zi − zj||

J =
∑c

i=1

∑n
j=1 ||xj−zi||

(9)

E. XIE–BENI’S SEPARATION INDEX(XB ↓) [33]

XB is designed for fuzzy clustering algorithms, which is the

ratio of compactness to separation of a dataset, i.e.,

XB(c) =
∑c

i=1

∑n
j=1 u

m
ij ||xj − zi||2

n · mini 6=j ||zj − zi||2
(10)

where m denotes the fuzzy exponential.

However, there are at least three problems with the existing

validity indices.

1) Measurement of intra- and inter-cluster distances.

Various measurements may lead to different assess-

ment results based on distances such as Euclidean and

Hausdorff [34]. Recently, the Bregman divergence has been

applied in the process of assessing clustering results [35].

In addition, the line symmetry distance measures [36] can

enhance the efficacy of existing widely used validity indices
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and this method can deal with clusters of any shape or size

in a given dataset. Nevertheless, there is no fixed rule for

choosing the optimal measurement, and how to combine

these measurements is still also a challenge.

2) Dependence on clustering algorithms. The existing

validity indices depend on specific clustering algorithms, e.g.,

C-means algorithm [37]. In the case of clustering results

obtained using other clustering algorithms, these indices will

not be applicable.

3) Trial-and-error way. The existing validity indices take

the trial-and-error way to find the optimal number of clus-

ters [38]. However, in the case of a highly scalable dataset, the

time consumption is intolerable since the clustering algorithm

has to be performed repeatedly.

Recently, some advanced clustering techniques have been

proposed to deal with datasets and evaluate the clustering

results in complicated situations. Tong et al proposed a

Scalable Clustering Using Boundary Information (SCUBI)

algorithm [39], which can obtain almost the same clustering

results as those obtained using the existing clustering algo-

rithms when dealing with some typical datasets. Dunn’s [40]

cluster validity index has quadratic time complexity O(pn2),

where p denotes the dimension of the dataset. As a result, its

computation is impractical for datasets with large values of n.

The typical validity indices cannot solve the above prob-

lems. For example, the improved Dunn index [41] relies on

the trail-and-error strategy and specific clustering algorithms.

As for SCUBI, the intra- and inter-cluster distances cannot

be defined well. In this paper, our novel validity index aims

to take advantage the interrelation between surface area and

volume of a dataset in an unsupervised manner.

III. NOVEL VALIDITY INDEX

In a d-dimensional data space, any cluster occupies a dis-

tributed space position. If the cluster is assumedly spherical,

then there will be a natural relation between its hyper-surface

area and hyper-volume, which can be used to construct a

novel validity index as follows.

In any 2-dimensional (2-D) data space, the hyper-surface

area and hyper-volume can be reduced to area and perimeter

of all clusters. Firstly, we define the area and perimeter in a

2-D data space, where all clusters are assumedly spherical.

In the case of a high-dimensional data space and arbitrary-

shaped clusters, we use the Multidimensional Scaling

(MDS) [42], [43] method to map all clusters to a 2-D data

space, and transform the arbitrary-shaped clusters to approx-

imately spherical clusters of normalized size using the nota-

tion of chain. By revealing the interrelation between area and

perimeter, a novel cluster index can be formulated.

A. AREA AND PERIMETER OF CLUSTER IN 2-D DATA

SPACE

In this section, we will introduce the notations of area and

perimeter of all clusters of a dataset X in any 2-D data space.

For any point xi ∈ X , we approximate its neighborhood by a

rectangle, whose side length and area can be characterized by

its k-nearest neighbors.

Definition 1 (The Side Length and Area of a Point): Let

KNN4(xi) be the set of 4-nearest neighbors of xi in X (see

Fig. 1), then the side length of xi can be defined as

li =
1

8

∑

j∈KNN4(xi)
dist(xi, xj) (11)

FIGURE 1. Occupied area in a 2-D data space.

And the area occupied by xi is computed as

si = l2i (12)

where dist(xi, xj) denotes the Euclidean distance between

points xi and xj. Since dist(xi, xj) is shared by xi and its neigh-

bor xj, li can be represented by half of the average 4-nearest

neighbors’ distances. Consequently, the total occupied area S

of all points in X is

S =
∑n

i=1
si (13)

where n is the number of points in X .

Definition 2 (Density): For any data point xk ∈ X , its m

nearest neighbors are denoted as, xk,1, xk,2,. . . , xk,m, with

distances dist (xk , xk,1), dist(xk , xk,2),. . . , dist(xk , xk,m), where

m = 2d . Thus, in a 2-D space, m = 4.

density(xk )={
∑m

j=1
dis(xk , xk,j)}−1, k = 1, 2,. . ., n (14)

Different from the existing density notations [44], [45],

the proposed density is nonparametric, which does not

need any prior information and can reduce uncertainties in

practice.

Definition 3 (Boundary and Interior Points): Point xi in X

is called a boundary point if half of its 4-nearest neighbors

have higher density than its own; otherwise, it is called an

interior point.

Hereafter, let BX and IX denote the set of boundary and

interior points in X , respectively.

Definition 4 (Perimeter): The perimeter of all clusters in X

can be defined as

P =
∑

j∈BX
lj (15)

Fig. 1 shows a cluster in a 2-D data space, whose bound-

ary points are determined after densities of all points are

computed. Note the boundary and interior points are marked
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in red and blue, respectively; the area in green denotes the

occupied area of this cluster, and the perimeter represented

by red dotted lines is computed according to the determined

boundary points. The right part of Fig. 1 also shows the

occupied area of point o and the length of this rectangle

denotes the side length of point o, demonstrating that any

point can be measured by its 4-nearest neighbors.

B. MULTIDIMENSIONAL SCALING

In the case of a data space whose dimensionality is larger

than 2, the occupied positions of all points have to be mea-

sured in terms of the hyper-volume and hyper-surface area

in principle. However, they are difficult to measure. In this

paper, MDS is used to project high-dimensional datasets into

a 2-D data space, where the hyper-volume and hyper-surface

area are reduced to area and perimeter, respectively.

MDS can reveal the structure of any dataset in a two/three-

dimensional data space by constructing a low-dimensional

configuration [46], which aims to preserve distances between

points so that the structure of the dataset is unchanged [47].

The typical process of MDS is illustrated as follows. For any

dataset X , the distance matrixM ∈ Rn×n can be defined as

Mij =
(

dist2
(

x1, xj
)

+dist2 (xi, x1)−dist2
(

xi, xj
)

)

/2 (16)

Then,M can be decomposed by eigenvalue decomposition

as

M = USUT (17)

where U is an n× nmatrix of eigenvectors, and S is an n× n

diagonal matrix whose diagonal elements are the correspond-

ing eigenvalues.

Finally, the mapping coordinates Y ∈ Rn×n can be com-

puted as follows.

Y = U
√
S (18)

Generally, the first two columns of Y represent the whole

matrix Y with a small deviation [48], which is further cho-

sen as the mapping coordinates in the corresponding 2-D

data space in view of the tradeoff between accuracy and

complexity.

Fig. 2 shows the well-known IRIS and Helix datasets [49],

and the contained clusters from a 3-D distribution are trans-

formed into a 2-D data space. In view of the unchangeable

density characteristic of MDS, the transformed clusters keep

both their mutual positions and the positions of all points

unchangeable. Consequently, in the 2-D data space, there are

identical clustering structures and points distribution. As a

result, the correct number of clusters in any dataset can be

estimated in the corresponding 2-D data space.

C. PROPOSED VALIDITY INDEX

Assume that a dataset X in a d-dimensional data space con-

tains c clusters which are nearly spherical with the same

radius r , and then the hyper-volumeVd [50] and hyper-surface

FIGURE 2. Two transformed datasets by MDS from a 3-D to 2-D data
space.

area Sd of any cluster can be computed as follows.

Vd (r) =
πd/2

Ŵ(d/2 + 1)
rd and Sd (r) =

2πd/2

Ŵ(d/2)
rd−1 (19)

where Ŵ(x) =
∫ ∞
0 tx−1e−tdt (x > 0) is the gamma func-

tion [51], satisfying the recurrence equation as below

Ŵ(x + 1) = x · Ŵ(x) (20)

In the case of c clusters, their total hyper-volume and

hyper-surface area are

V = c · Vd (r) and S = c · Sd (r) (21)

When V and S are known, the unknown variables of c and

r can be computed by

c =
π−d/2Ŵ(d/2)

2dd−1
·
Sd

V d−1
(22)

Considering that the computations of V and S in a

high-dimensional data space are difficult, we apply MDS

to transform these clusters into the corresponding 2-D

data space, and whereby V and S can be computed by

(13) and (15).

However, all clusters in any dataset are not often nearly

spherical with the same radius r , i.e., (22) cannot directly rec-

ognize the correct number of clusters when a dataset contains

different-sized and arbitrary-shaped clusters (see Fig. 3).

To solve this problem, the notation of chain is introduced,

based on which the arbitrary-shaped clusters can be trans-

formed into spherical clusters and the size of each cluster can

be normalized at the same time.

For each point xi, we define a density-based distance σi,

i.e., the minimum distance from xi to other points with a

higher density than xi. The corresponding point is called the

VOLUME 8, 2020 24173
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FIGURE 3. Datasets containing different-sized and arbitrary-shaped
clusters.

nearest density-based neighbor ϕi. Here, σi and ϕi can be

formalized as

σi = min
j:ρi>ρj

dist
(

xi, xj
)

(23)

ϕi = arg min
j:ρi>ρj

dist
(

xi, xj
)

(24)

Definition 5 (Key Points): Points with relatively higher

density and larger value of σi are regarded as key points,

which can be determined by the value of kpi, i.e.,

kpi = ρi · σi (25)

In general, the maximal number of clusters is less than

|
√
n| [52], where | · | is an integer operator. Thus, the number

of key points can be set as |
√
n|.

The adjacent points in X can be connected following the

connecting rule. For any point xi, the next point xj is the

nearest density-based neighbor of xi. The above steps are

repeated till a key point is visited.

Definition 6 (Chain): A chain is a subset of points in X ,

i.e., xi1, xi2, . . . , xik , which starts with xi1 and stops at a key

point xik according to the above connecting rule. The length

of chain Ti is defined as

Ti =
∑k−1

i=1
dist (xik , xik+1) , i = 1, 2, . . . ,

√
n (26)

where dist(xik , xik+1) is the distance between adjacent points

on the i th chain.

Considering that the two datasets in Fig. 3 both have

90 points, then all points in each dataset can be divided

into
√
90 chains, i.e., 9 chains (see Fig. 4), where the key

points are marked by green triangles and the red lines with

arrows denote the directions of chains. Fig. 4 shows that each

chain contains a group of points. In most cases, due to the

different-sized and arbitrary-shaped clusters, different chains

have different numbers of points and lengths.

To normalize the size of each cluster and make the shape

of each cluster spherical, the j th line segment dist(xkj, xkj+1)

on any k th chain is transformed into a new one, i.e.,

dist∗
(

xkj, xkj+1
)

= dist
(

xkj, xkj+1
)

/Tk , k = 1, 2,. . .,
√
n

(27)

By using (27), the lengths of long chains will be shortened

whereas those of the short chains will be relatively enlarged.

FIGURE 4. Distributions of key points and chains in the two datasets
in Fig. 3.

Consequently, centralizing at any key point, the points on a

long chain move to the key points and those on a short chain

move far from the key points after all chains are transformed

according to (27). Fig. 5 shows a detailed transformation

process, with the smallest cluster in Fig. 3 (a) as an example.

FIGURE 5. Original and transformed points in the smallest cluster
in Fig. 3(a).

In Fig. 5, the numbers accompanying these points are

ranked in order, and the corresponding points after transfor-

mation are marked with the numbers unchanged. The area

occupied by each cluster is circled by a curve. The three

chains (9-10-11, 12-11, 14-13-11) in the left of Fig. 5 have

different lengths. And after transformation, the lengths of the

three chains are similar, which can be illustrated in the right

of Fig. 5. Fig. 5 shows that the shape of the cluster can be

normalized after transformation. In addition, the noise points

can be assigned to the nearest clusters by using the notation

of chain, which has no effect on the evaluation process.

Fig. 6 illustrates the transformation results of datasets in

Fig. 3. And different colors represent different clusters and

the occupied area of each cluster is circled by a corresponding

curve. The dotted lines with arrows connect the original clus-

ter and the corresponding transformed cluster. Fig. 6 shows

that the transformed datasets have spherical clusters of nor-

malized size, which is consistent with the assumption above.

Hereafter, the proposed volume and area-based index

is called VAI. The evaluation process of VAI is listed in

Algorithm 1.

Compared with the existing indices, VAI has the following

characteristics:

1) UNSUPERVISION

Since VAI is nonparametric and does not need any prior

information (e.g., the clustering results from a specific clus-

tering algorithm), the entire evaluation process is independent
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FIGURE 6. Original and transformed clusters in two datasets.

Algorithm 1 Evaluation Process of VAI

Input: A dataset X ∈ Rd containing n points.

Output: Number of clusters.

Steps:

1) Map X into a 2-D data space using MDS.

2) Transform the mapping dataset into a normalized

dataset with spherical clusters and normalized size.

3) Compute the density of each point in 2) and partition

the points into boundary and interior points.

4) Compute the side length of each point in the trans-

formed dataset using (11).

5) Compute the area of the transformed dataset

using (13).

6) Compute the perimeter of the transformed dataset

using (15).

7) Compute the number of clusters c using (22).

8) Stop and give the number of clusters.

of underlying clustering. In contrast, most of the existing

indices take a trial-and-error way, which relies on clustering

algorithms and can only work for spherical clusters.

2) GENERALITY

VAI can reflect the structure hidden in any dataset no matter

what distributions it has. In addition, it can evaluate datasets

containing noise points.

3) NO DIMENSION CONSTRAINTS

VAI has no limitation in dimensions, and it can suggest the

number of clusters in high-dimensional datasets.

For any dataset containing n objects distributed in c clus-

ters, the computation of VAI mainly consists of three parts:

1) computing all distances in X , 2) mapping all points

in X into the corresponding 2-D data space using MDS,

and 3) normalizing all distances in any chain. The compu-

tational complexity of the first part is O(n2). The runtime of

the second part is the longest, since the computation of eigen-

values and eigenvectors leads to computational complexity

O(n3). Note the runtime of the third part is much shorter than

that of the second one. Therefore, the efficiency of the second

part is key to reducing the runtime of VAI.

IV. EXPERIMENTAL RESULTS

To validate VAI, experiments are carried out on synthetic and

real datasets. Four existing hard validity indices (i.e., CH,DB,

GS, and PB) and one fuzzy validity index XB are used to

make a comparison.

A. TESTS ON SYNTHETIC DATASETS

Fig. 7 shows seven groups of datasets with various character-

istics. Different colors represent different clusters. Datasets

in the first column denote the original datasets without

noise points, and those in columns 2–4 are generated by

adding 10%, 20%, and 30% uniformly distributed noises to

the original ones, respectively, with ‘‘+’’ denoting a noise

point.Groups 1–4 show regular datasets of spherical clusters,

where Groups 1 and 2 contain clusters of different sizes

and Groups 3 and 4 contain clusters of different densities.

Datasets in Group 5 have 15 spherical clusters, and those

in Groups 6 and 7 have arbitrary-shaped clusters.

Fig. 8 shows the corresponding transformed datasets of

Fig. 7, indicating that the transformation rule can transform

irregular clusters into spherical clusters and the occupied area

of each cluster is normalized. Moreover, the noise points in

datasets can be assigned to the nearest clusters and have no

effect on the evaluation process, demonstrating the robustness

of VAI.

Table 1 lists the evaluation results of datasets in Fig. 7. The

number marked by ‘‘
√
’’ denotes that the evaluation result

based on the corresponding index is true; otherwise, it is

wrong.

The validity indices are analyzed as follows.

1)Different Sizes:Datasets inGroups 1 and 2 contain clus-

ters of different sizes, on which CH, DB, and GS have similar

evaluation results, i.e., they are capable of determining the

correct numbers of clusters when datasets have fewer noise

points (e.g., 10%). However, when the proportion of noise

points is higher than 10% (e.g., 20% and 30%), the evaluation

results of these indices are incorrect. XB suggests the correct

cluster numbers for Sets1–6. PB cannot find the correct num-

bers of clusters in these eight datasets. On the contrary, VAI

can give the correct numbers of clusters in all datasets.

2) Different Densities: Datasets in Groups 3 and 4 con-

tain clusters of different densities. The evaluation results of

CH are all 2, which is relatively smaller. On the contrary,

PB gives relatively larger numbers. DB, GS, and XB all can

find the correct cluster numbers for Sets9–11 that contain

fewer noise points. When the proportion of noise points is

larger (e.g., Set 12), DB, GS, and XB cannot give correct

evaluation results. As for Group 4, the other five indices
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FIGURE 7. Seven groups of synthetic datasets.
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FIGURE 8. Transformed results of datasets in Fig. 7.
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TABLE 1. Evaluation results of seven groups of synthetic datasets.

cannot obtain the correct cluster numbers in most cases. VAI

is capable of finding the correct cluster numbers for datasets

in Groups 3 and 4.

3) Large Numbers of Clusters:When datasets have a large

number of clusters (see Group5), CH, DB, PB, and XB will

give relatively smaller numbers. On the contrary, GS gives the

opposite evaluation results, which is the nearest to the correct

cluster number. VAI can obtain the correct cluster numbers

for datasets in Group 5.

4) Arbitrary Shape: Datasets in Groups 6 and 7 contain

arbitrary-shaped clusters. The evaluation results of the other

five indices are all incorrect. On the contrary, VAI can reveal

the structures of datasets and determine the real numbers of

clusters, regardless of noise points in datasets.

In summary, the evaluation results of the other five indices

may be affected by the distributions and noise points in the

investigated datasets. When the proportion of noise points

becomes larger, the evaluation results will be worse. VAI can

find the hidden structures in datasets and suggest the correct

numbers of clusters for all these datasets.

B. TESTS ON REAL DATASETS

The UCI Machine Learning Repository [53] contains many

kinds of databases, domain theories, and data generators. The

datasets in UCI are from the real-world, covering a wide

range of domains so that they are relevant and representative.

The characteristics of these datasets are introduced in detail,

such as the attribute types, number of instances, number of

attributes and year published. UCI datasets are usually used

to evaluate machine learning algorithms and provide a useful

baseline for comparison.
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In this paper, eight real datasets from UCI are selected

to test the proposed VAI index. The characteristics of

these datasets are listed in Table 2. The first column of

Table 2 denotes the names of these datasets. The second

and fourth columns represent the numbers of clusters and

points of datasets, respectively. And the third column denotes

the dimensions of these datasets. The last column shows the

number of points of each cluster in datasets.

TABLE 2. Characteristics of eight real datasets from UCI.

1) Cancer has 699 points in total, and the number of

features of each point is 9. In this paper, we remove 16 records

which have missing features, so the number of remaining

records is 683. One cluster has 444 records which represents

the cluster Benign, and the other has 239 records denoting the

cluster Malignant.

2)Seeds contains 210 points with 7 features. The number

of clusters is 3 and each cluster has 70 instances.

3) Iris has 150 points in total and each point has four

attributes. It has three clusters and each cluster has 50 points.

One cluster is separated from the other two clusters, whereas

the latter two clusters are overlapped with each other.

4) Ecoli is a nonlinear dataset with 8 clusters. It contains

336 instances with 7 features. And the majority of clusters

have different numbers of instances except the last two clus-

ters. The numbers of points in the last three clusters are much

less than the other clusters, which can be regarded as noise

instances.

5) Satimage dataset has 2000 samples consisting of 6 clus-

ters. Each sample has 36 attributes. And these clusters have

various shapes and sizes.

6)Vertebral has 310 instances in total, and each instance

has 6 features. And the number of clusters is 3. Its character-

istics are similar to those in Iris.

7)Wholesale dataset contains 440 points with 7 attributes.

There are two clusters in this dataset, containing 298 and

142 points, respectively.

8) Wine is a dataset with a relatively higher dimension,

and each point in Wine has 13 attributes. The three clusters

in this dataset are nonlinear and mutually overlapped, which

is similar to those in Iris.

When evaluating datasets in a high-dimensional data space,

VAI maps these datasets into a 2-D data space at first.

The mapping results of UCI datasets in Table 2 are listed

TABLE 3. Mapping and transformation results of eight UCI datasets.

in Table 3. Columns 2 denotes the mapping results by

using MDS algorithm. Columns 3 denotes the transformation

results by using the transformation rule above. Points in

different colors represent different clusters, which is based

on the true labels of these points.

1) Cancer has relatively clear boundaries in a 2-D data

space. However, the sizes of its two clusters are quite dif-

ferent. After transformation, clusters in Cancerhave similar

sizes.

2) Each cluster in the mapping result of Seedsis circu-

larly distributed and overlapped with each other slightly.
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The normalized clusters are well separated with several mis-

classified points.

3) The mapping result of Irisshows that the left cluster

is linearly separable from the other two, which are par-

tially overlapped. The boundary of different clusters is much

clearer compared with the other datasets, which can help

to calculate the volume and surface area occupied by the

dataset precisely. Datasets Vertebral, Wine, and Wholesale

has similar mapping results as Iris.

4) The clusters in the 2-D projection of Ecoliare a little

overlapped. The number of data points in each cluster is

different, and the four clusters with fewer objects do not

have an obvious distribution structure, which are easy to be

neglected.

5) The mapping clusters of Satimageare all nonspherical.

Although the transformation rule can make these clusters

spherical, there are some misclassified points due to the

greatly overlapped clusters.

Table 4 shows the evaluation results of VAI and other

five indices. CH suggests the real numbers of clusters for

Cancer andWholesale. XB can find the right evaluation result

of Cancer. With regard to the other datasets, CH and XB

give relatively small numbers, which are close to the real

numbers. On the contrary, GS and PB give relatively larger

numbers. DB suggests the right evaluation results for Cancer

and Vertebral. It can be seen that VAI is capable of finding

the hidden structures in datasets, and the corresponding eval-

uation results are the nearest to the real numbers of clusters.

TABLE 4. Evaluation results of eight real datasets.

V. CONCLUSION

Finding the real number of clusters in a dataset is the first task

in clustering analysis. The correct clustering results result

from the correct identification of the number of clusters.

In this paper, we map the original datasets into a 2-D data

space firstly, and then transform the mapping clusters into

spherical shapes with normalized sizes. Finally, we uncover

the interrelation between hyper-volume and hyper-surface

area of all clusters in a dataset, and originally propose a novel

validity index. This index is unsupervised and independent

of clustering algorithms and data distributions. Experimental

results validate the accuracy of the novel index.

There are some opportunities for future research.

1) There are two possible ways to reduce the computational

complexity of the proposed index. Firstly, using alternative

algorithm to replace MDS but keeping its basic functions in

our proposed method. Secondly, decomposing theMDS tasks

into multiple units can greatly reduce the computational com-

plexity, such as parallel algorithm, popular cloud computing,

and so on.

2) The misclassified points in the overlapped area may

affect the transformation process, which leads to inaccurate

evaluation results. Therefore, how to identify the points in

the overlapped area and rectify the deviation caused by the

transformation process still remains as one of our research

focuses in the future.
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