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Abstract: The aim of this note is to generalize to the class of non collapsed RCD(K, N)metric measure spaces

the volume bound for the effective singular strata obtained by Cheeger and Naber for non collapsed Ricci

limits in [13]. The proof, which is based on a quantitative differentiation argument, closely follows the original

one. As a simple outcome we provide a volume estimate for the enlargement of Gigli-DePhilippis’ boundary

([20, Remark 3.8]) of ncRCD(K, N) spaces.
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Introduction

In the last years the theory ofmetricmeasure spaces (X, d,m) satisfying the Riemannian curvature dimension

condition has undergone several remarkable developments. After the introduction, in the independentworks

[33, 34] and [30], of the curvature dimension condition CD(K, N) encoding in a synthetic way the notion of

Ricci curvature bounded from below and dimension bounded above, the definition of RCD(K, N)metric mea-

sure space was proposed and extensively studied in [4, 21, 22] (see also [7] for the equivalence between the

RCD*(K, N) and theRCD(K, N) condition) in order to single out spaceswithHilbert-like behaviour at infinites-

imal scale. The infinite dimensional counterpart of this notion had been previously investigated in [3].

In particular, due to the compatibility of the RCD condition with the smooth case of Riemannian manifolds

with Ricci curvature bounded form below and to its stability with respect to pointed measured Gromov-

Hausdorff convergence, limits of smooth Riemannian manifolds with Ricci curvature uniformly bounded

from below and dimension uniformly bounded from above are RCD(K, N) spaces. The study of Ricci limits

was initiated by Cheeger and Colding in the nineties in the series of papers [8–11] and has seen remarkable

developments in more recent years (see for instance [18]). Since the above mentioned pioneering works, it

was known that the regularity theory for Ricci limits improves adding to the lower curvature bound a uni-

form lower bound for the volume of unit balls along the converging sequence of Riemannian manifolds: this

is the case of the so called non collapsed Ricci limits. In particular, as a consequence of the volume conver-

gence theorem proved in [17], it is known that the limit measure of the volume measures is the Hausdorff

measure on the limit metric space (while this might not be the case for a general Ricci limit space).

Inspired by the theory of non collapsed Ricci limits, De Philippis and Gigli proposed in [20] a notion of

non collapsed RCD(K, N)metric measure space (X, d,m) (ncRCD(K, N) for short) asking thatm = H
N , the N-

dimensional Hausdorff measure over (X, d). Let us remark that this class of spaces had already been studied
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by Kitabeppu in [28].

Let us point out that recently examples ofmetricmeasure spaceswhich arencRCD but not non collapsedRicci

limits have been built: hence a gap widens between the two theories. Nevertheless in [20] the authors were

able to prove that many of the structural results valid for non collapsed Ricci limits hold for ncRCD spaces. In

particular, building upon [19], it is possible to prove that any tangent cone to a ncRCD space is a metric cone.

Letting then R ⊂ X be the set of those points where the tangent cone is the N-dimensional Euclidean space,

following [9] it is possible to introduce a stratification

S
0 ⊂ · · · ⊂ S

N−1 = S = X \R

of the singular set S, where, for any k = 0, . . . , N − 1, Sk is the set of those points where no tangent cone

splits a factorRk+1. Adapting the arguments of [9], in [20] the Hausdorff dimension estimate dimH S
k ≤ k was

obtained.

In [13] a quantitative and effective counterpart of the above mentioned stratification of the singular set

was introduced letting, for any k = 0, . . . , N − 1 and for any r, η > 0, Skη,r be the set of those points x ∈ X

where the scale invariant Gromov-Hausdorff distance between the ball Bs(x) and any ball of the same radius

centered at the tip of a metric cone splitting a factor Rk+1 is bigger than η for any r < s < 1.

While in the classical stratification points are separated according to the number of symmetries of tangent

cones, in the quantitative one they are classified according to the number of symmetries of balls of fixed scales

therein centered. In particular, the effective singular strata might be non empty even in the case of smooth

Riemannian manifolds while in that case there is no singular point.

Starting from [13] a number of properties for the effective singular strata on non collapsed Ricci limit

spaces have been obtained. In particular, in the very recent [16], the authors were able to prove k-rectifiability

of the classical singular stratum S
k building on the top of some new volume estimates for the effective strata.

The aim of this note is twofold. On the one hand our main result Theorem 2.4 generalizes to the class of

ncRCD the volume estimate for the effective singular strata obtained by Cheeger and Naber in [13] (which is

easily seen to be stronger than the abovementionedHausdorff dimension estimate dimH S
k ≤ k), on the other

hand we give detailed proofs (in the metric context) of some of the results that therein were just stated. Let

us point out that Theorem 2.4 has already an application in the proof of [32, Theorem 5.8].

Let us remark that the proof of the volume estimate, which closely follows the one for Ricci limits, pro-

vides an instance of the so called quantitative differentiation technique that, although being quite recent in its

formulation, has already a broad range of applications in the regularity theory in various different geometric

and analytic contexts.

In general, quantitative differentiation allows to bound the number of locations and scales at which a given

geometric configuration is far away from any element of a class of special configurations. In the case of our

interest special configurations are the conical ones. We refer to [12] for a general survey about quantitative

differentiation and detailed list of references to the recent applications of this tools in the various contexts.

This note is organised as follows: in section 1 we list a few basic definitions and results useful when

dealing with ncRCD metric measure spaces. Most of the results are stated without proof and references are

indicated. We provide instead proofs for the “almost volume cone implies almost metric cone” Theorem 1.12

and the “almost cone splitting” Theorem 1.17, since we were not able to find any reference in the literature.

In section 2 we give a complete proof of the volume bound for the effective singular strata following the same

strategy introduced by Cheeger and Naber in the setting of non collapsed Ricci limit spaces.

1 Preliminaries

Throughout this paper a metric measure space is a triple (X, d,m), where (X, d) is a separable metric space

and m is a nonnegative Borel measure on X finite on bounded sets. From now on when we will write m.m.s.

we mean metric measure space(s). We will denote by Br(x) = {d(·, x) < r} and B̄r(x) = {d(·, x) ≤ r} the open
and closed balls respectively, by Lip(X) (resp. Lipb(X)) the space of Lipschitz (resp. bounded) functions and



160 | Gioacchino Antonelli, Elia Brué, and Daniele Semola

for any f ∈ Lip(X) we shall denote its slope by

lip f (x)
.
= lim sup

y→x

∣

∣f (x) − f (y)
∣

∣

d(x, y)
.

We will use the standard notation Lp(X,m), for the Lp spaces and L
n ,Hn for the n-dimensional Lebesgue

measure onR
n and the n-dimensional Hausdorffmeasure on ametric space, respectively. We shall denote by

ωn the Lebesgue measure of the unit ball in R
n.

The Cheeger energy Ch : L2(X,m) → [0, +∞] associated to a m.m.s. (X, d,m) is the convex and lower

semicontinuous functional defined through

Ch(f )
.
= inf







lim inf
n→∞

∫

X

lip2 fn dm : fn ∈ Lipb(X) ∩ L2(X,m), ‖fn − f‖2 → 0







(1.1)

and its finiteness domain will be denoted byW1,2(X, d,m). Looking at the optimal approximating sequence

in (1.1), it is possible to identify a canonical object |∇f |, called minimal relaxed slope, providing the integral

representation

Ch(f )
.
=

∫

X

|∇f |2 dm ∀f ∈ W1,2(X, d,m).

Any metric measure space such that Ch is a quadratic form is said to be infinitesimally Hilbertian and from

now on we shall always make this assumption, unless otherwise stated. Let us recall from [3, 23] that, under

this assumption, the function

∇f1 ·∇f2
.
= lim
ε→0

∣

∣∇(f1 + εf2)
∣

∣

2
− |∇f1|2

2ε

defines a symmetric bilinear form onW1,2(X, d,m) ×W1,2(X, d,m) with values into L1(X,m).

It is possible to define a Laplacian operator ∆ : D(∆) ⊂ L2(X,m) → L2(X,m) in the following way. We let

D(∆) be the set of those f ∈ W1,2(X, d,m) such that, for some h ∈ L2(X,m), one has
∫

X

∇f ·∇g dm = −

∫

X

hg dm ∀g ∈ W1,2(X, d,m) (1.2)

and, in that case, we put ∆f = h. It is easy to check that the definition is well-posed and that the Laplacian is

linear (because Ch is a quadratic form).

1.1 RCD(K , N)metric measure spaces

The notion of RCD(K, N)m.m.s. was proposed and extensively studied in [4, 21, 23] (see also [7] for the equiv-

alence between the RCD and the RCD* condition), as a finite dimensional counterpart to RCD(K,∞) m.m.s.

which were introduced and firstly studied in [3] (see also [2], dealing with the case of σ-finite reference mea-

sures). We point out that these spaces can be introduced and studied both from an Eulerian point of view,

based on the so-called Γ-calculus, and from a Lagrangian point of view, based on optimal transportation

techniques, which is the one we shall adopt in this brief introduction.

Let us start recalling the so-called curvature dimension condition CD(K, N). Its introduction dates back

to the seminal and independent works [30] and [33, 34], while in this presentation we closely follow [6].

Definition 1.1 (Curvature dimension bounds). Let K ∈ R and 1 ≤ N < +∞. We say that a m.m.s. (X, d,m) is a

CD(K, N) space if, for any µ0, µ1 ∈ P(X) absolutely continuous w.r.t. m with bounded support, there exists

an optimal geodesic plan Π ∈ P(Geo(X)) such that for any t ∈ [0, 1] and for any N′ ≥ N we have

−

∫

ρ
1− 1

N′

t dm

≤ −

∫ {

τ(1−t)K,N′ (d(γ(0), γ(1)))ρ
− 1
N′

0 (γ(0)) + τ(t)K,N′ (d(γ(0), γ(1)))ρ
− 1
N′

1 (γ(1))

}

dΠ(γ),
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where (et)♯Π = ρtm, µ0 = ρ0m, µ1 = ρ1m and the distortion coefficients τtK,N(·) are defined as follows. First

we define the coefficients [0, 1] × [0, +∞) ∋ (t, θ) 7→ σ(t)K,N(θ) by

σ(t)K,N(θ)
.
=



































+∞ if Kθ2 ≥ Nπ2,

sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < θ < Nπ2,

t if Kθ2 = 0,

sinh(tθ
√
K/N)

sinh(θ
√
K/N)

if Kθ2 < 0,

then we set τ(t)K,N(θ)
.
= t1/Nσ(t)K,N−1(θ)

1−1/N .

The main object of our study in this paper will be RCD(K, N) spaces, that we introduce below.

Definition 1.2. We say that a metric measure space (X, d,m) satisfies the Riemannian curvature-dimension

condition (it is an RCD(K, N)m.m.s. for short) for some K ∈ R and 1 ≤ N < +∞ if it is a CD(K, N)m.m.s. and

the Banach spaceW1,2(X, d,m) is Hilbert.

Note that, if (X, d,m) is an RCD(K, N) m.m.s., then so is (suppm, d,m), hence in the following we will

always tacitly assume suppm = X.

We assume the reader to be familiar with the notion of pointedmeasured Gromov Hausdorff convergence

(pmGH-convergence for short), referring to [35, Chapter 27] for an overview on the subject.

Remark 1.3. A fundamental property of RCD(K, N) spaces, that will be used several times in this paper, is the

stability w.r.t. pmGH convergence, meaning that a pmGH limit of a sequence of (pointed) RCD(K, N) spaces

is still an RCD(K, N)m.m.s..

We recall that any RCD(K, N)m.m.s. (X, d,m) satisfies the Bishop-Gromov inequality:

m(BR(x))

vK,N(R)
≤
m(Br(x))

vK,N(r)
, (1.3)

for any 0 < r < R and for any x ∈ X, where vK,N(r)
.
= NωN

∫ r

0

(

sK,N(s)
)N−1

d s and

sK,N(r)
.
=























√

N−1
K sin

(

√

K
N−1 r

)

if K > 0,

r if K = 0,
√

N−1
−K sinh

(

√

−K
N−1 r

)

if K < 0.

(1.4)

In particular (X, d,m) is locally uniformly doubling, that is to say, for any R > 0 there exists CK,N,R > 0 such

that

m(B2r(x)) ≤ CK,N,Rm(Br(x)) for any x ∈ X and for any 0 < r < R. (1.5)

We refer to [35, Theorem 30.11] for the proof of the Bishop-Gromov inequality in the setting of metric

measure spaces satisfying the curvature dimension condition.

1.2 Non collapsed RCD(K , N) spaces

Let us recall the definition of non collapsed RCD(K, N) m.m.s., as introduced in [20] (see also [28], where

Kitabeppu firstly investigated this class).

Definition 1.4. An RCD(K, N) metric measure space (X, d,m) is said to be non collapsed (ncRCD(K, N) for

short) ifm = H
N , whereHN is the N-dimensional Hausdorff measure on (X, d).
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Now we are ready to state the volume convergence theorem [20, Theorem 1.2] in this setting and other

definitions which will be useful for our aims.

Theorem 1.5 (Volume convergence). Let (Xn , dn ,H
N , xn) be a sequence of pointed ncRCD(K, N)m.m.s. with

K ∈ R and N ∈ [1, +∞). Assume that (Xn , dn , xn) converge in the pGH topology to (X, d, x). Then precisely one

of the following happens:

(a) lim supn→∞H
N
(

B1(xn)
)

> 0. Then the lim sup is a lim and (Xn , dn ,H
N , xn) converge in the pmGH topol-

ogy to (X, d,HN , x);

(b) limn→∞H
N(B1(xn)) = 0. In this case dimH(X, d) ≤ N − 1.

Definition 1.6 (Metric cone). Given a metric space (Z, dZ) we define the metric cone C(Z) over Z to be the

completion of R+ × Z endowed with metric

dC

(

(r1, z1), (r2, z2)
)2 .

=

{

r21 + r
2
2 − 2r1r2 cos

(

dZ(z1, z2)
)

if d(z1, z2) ≤ π,

(r1 + r2)
2 if d(z1, z2) ≥ π.

Thanks to the Bishop-Gromov inequality (1.3), the following definition can be given, following [20].

Definition 1.7 (Bishop-Gromov density). Given K ∈ R, N ∈ [1, +∞) and an RCD(K, N) space (X, d,m), for

any x ∈ X we let the Bishop-Gromov density at x be defined by

ϑN [X, d,m](x)
.
= lim
r→0

m(Br(x))

vK,N(r)
. (1.6)

Remark 1.8. We can define the Bishop Gromov density in (1.6) substituting vK,N(r)with ωN r
N at the denomi-

nator in (1.6) since

lim
r→0

ωN r
N

vK,N(r)
= 1. (1.7)

Remark 1.9. In [20, Corollary 2.14] it is proved that if (X, d,HN) is a ncRCD(K, N) space, with K ∈ R and

N ∈ [1, +∞), then we have

ϑN [X, d,H
N ](x) ≤ 1 for any x ∈ X. (1.8)

This follows from general results about differentiation of measures jointly with the lower semicontinuity of

ϑN , see [20, Lemma 2.2].

1.3 Almost volume cone implies almost metric cone

It is possible to prove a rigidity result about Bishop-Gromov inequality in RCD(0, N) spaces which, roughly

speaking, tells us that if we have equality of Bishop-Gromov ratios at two different radii then, at a certain

scale, the space is isometric to a metric cone. This result is proven in [19, Theorem 1.1, Theorem 4.1] in the

case of RCD(0, N) and RCD(K, N) spaces respectively but we will state (part of) it here only in the case K = 0.

Theorem 1.10 (Volume cone implies metric cone). Let N ∈ (0, +∞) and (X, d,m) be an RCD(0, N) space.

Suppose there exist x ∈ X and R > r > 0 such that

m(BR(x))

Rn
=
m(Br(x))

rn
. (1.9)

Then, if the sphere S R
2
(x) contains at least 3 points, we conclude that N ≥ 2 and that there exists (Z, dz ,mz) an

RCD(N − 2, N − 1) space with diam Z ≤ π such that the closed ball B̄ R
2
(x) is isometric to the closed ball B̄ R

2
(z) in

the metric cone built over Z, where z is the tip of the cone. This isometry sends x to z.

If the sphere S R
2
(x) consists of two points, then B̄ R

2
(x) is isometric to

[

− R2 ,
R
2

]

with an isometry which sends

x to 0 while if the sphere S R
2
(x) contains one point B̄ R

2
(x) is isometric to

[

0, R2
]

with an isometry which takes x

to 0.
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Remark 1.11. If X is a Riemannian manifold with metric g, Ric ≥ K and dim = N, the existence of x ∈ X and

R > r > 0 such that
m(BR(x))

vK,N(R)
=
m(Br(x))

vK,N(r)
(1.10)

implies that the ball BR(x)with theRiemannianmetric is isometric (in theRiemannian sense) to the ball BR(0)

in the model with metric gK,N
.
= d r2 + sK,N(r)

2gSN−1 , where sK,N is defined in (1.4) and gSN−1 is the standard

metric on S
N−1. In the case K = 0 the distance induced from the Riemannian metric g0,N = d r2 + r2gSN−1

is the cone distance introduced in Definition 1.6 if we take
(

S
N−1, dg

SN−1

)

as base space. It is important to

note that in general this Riemannian isometry implies that the two balls are only locally isometric and the

Riemannian isometry could not extend to a metric isometry, which is the reason why in the statement of the

previous theorem we have R
2 instead of R.

To see that in general the Riemannian isometry given by the rigidity in the Riemannian case does not

extend to a global isometry, consider a cylinder in R
3 with sections of diameter 1. Then take a point x on it

and a ball of radius R = 1 centered at x. Even if (1.10) holds with any r < 1, K = 0 and N = 2 and the cylinder

is a flat surface in R
3 it is simple to see that the ball B̄1(x) is not isometric to the euclidean ball B̄1(0) in R

2.

The previous rigidity theorem gives the possibility to deduce, arguing by compactness, an almost rigidity

theorem. In fact Cheeger and Colding proved in [8] a result of this flavour: if in a Riemannian manifold with

a bound from below on Ricci curvature the Bishop-Gromov ratios at two radii R and r are almost equal, then

the closed ball of radius R
2 in the manifold is close, in the sense of Gromov-Hausdorff distance, to the closed

ball of radius R
2 around the tip of a suitably chosen metric cone.

We can now rephrase and prove this result in the non smooth context, arguing by compactness and using

Theorem 1.10.

Theorem 1.12 (Almost volume cone implies almost metric cone - nc version). Given ε > 0, 0 < η < 1, v > 0,

K ∈ R and N ∈ [2, +∞), there exists 0 < δ
.
= δ(K, N, η, v, ε) < 1 such that the following holds. If

(

X, d,HN
)

is

a ncRCD(K, N) space satisfying
H
N(B1(x))

vK,N(1)
≥ v > 0, (1.11)

such that there exist δ > R > r > 0, with r
R = η, and x ∈ X satisfying

H
N(BR(x))

vK,N(R)
≥ (1 − δ)

H
N(Br(x))

vK,N(r)
, (1.12)

then there exists (Z, dz ,mz) an RCD(N − 2, N − 1) space with diam Z ≤ π such that, being B̄ R
2
(z) the closed ball

of radius R
2 around the tip z of the metric cone built over Z, then

dGH

(

B̄ R
2
(x), B̄ R

2
(z)
)

≤ εR. (1.13)

Proof. Suppose by contradiction that there exist ε0, a sequence δi → 0,
(

Xi , di ,H
N
di
, xi

)

which are

ncRCD(K, N) spaces and δi > Ri > ri > 0 radii with
ri
Ri
= η such that

H
N
di
(BRi (xi))

vK,N(Ri)
≥ (1 − δi)

H
N
di
(Bri (xi))

vK,N(ri)
, (1.14)

and with

dGH

(

B̄ Ri
2

(xi), B̄ Ri
2

(z)
)

> ε0Ri (1.15)

for each B̄ Ri
2

(z) closed ball of radius Ri
2 around the tip z of any metric cone built over Z, an RCD(N − 2, N − 1)

space with diam Z ≤ π. If we suitably rescale the metric on these spaces

(

X′
i , d

′
i ,m

′
i , x

′
i

) .
=
(

Xi , R
−1
i di , R

−N
i H

N
di
, xi

)

,
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then (X′
i , d

′
i ,m

′
i , x

′
i) is a ncRCD(KR

2
i , N) space andm

′
i = H

N
d′
i
. Read in these spaces (1.14) becomes

H
N
d′
i
(B′1(x

′
i))

vK,N(Ri)
≥ (1 − δi)

H
N
d′
i
(B′η(x

′
i))

vK,N(ri)
, (1.16)

while (1.15) tells us that

dGH

(

B̄′1
2
(x′i), B̄ 1

2
(z)
)

> ε0 (1.17)

for each B̄ 1
2
(z) closed ball of radius 1

2 around the tip z of anymetric cone built over an RCD(N −2, N −1) space

Z with diam Z ≤ π. Here we tacitly exploited the fact that a metric cone is isometric to any rescaling of itself

with center in the tip.

We also know that, there exist C > 0 and c > 0 depending only on K and N such that

C ≥ HN
d′
i

(

B′1(x
′
i)
)

=
H
N
di

(

BRi (xi)
)

RNi
=
H
N
di

(

BRi (xi)
)

vK,N(Ri)

vK,N(Ri)

RNi
≥ vc (1.18)

because of the non collapsed condition (2.3), the bound on the density (1.9) and the fact that, for 0 < Ri < 1,
vK,N (Ri)

RN
i

is bounded uniformly from above and below. By compactness we have that, up to subsequences,

(

X′
i , d

′
i ,H

N
d′
i
, x′i

)

→ (X∞, d∞,m∞, x∞) (1.19)

where (X∞, d∞,m∞, x∞) is a ncRCD(0, N) space as a consequence of the volume convergence (see Theo-

rem 1.5) and (1.18). Passing to the limit (1.16), taking into account that vK,N (Ri)
vK,N (ri)

→ 1
ηN

and the Bishop-Gromov

inequality in X∞ we obtain
m∞(B1(x∞))

ωN
=
m∞(Bη(x∞))

ωNηN
. (1.20)

Since dimH (X∞) = N > 1we can exclude the degeneracy cases in Theorem 1.10, thus we obtain the existence

of (Z, dz ,mz) an RCD(N − 2, N − 1) space with diam Z ≤ π such that B̄ 1
2
(x∞) is isometric to the closed ball

B̄ 1
2
(z) in the metric cone built over Z, where z is the tip of the cone. Then

dGH

(

B̄ 1
2
(x∞), B̄ 1

2
(z)
)

= 0 (1.21)

which contradicts (1.17).

Remark 1.13. With the same proof, when we work in the class of ncRCD(0, N) spaces, we obtain the same

statement as before with the constraint R < 1 instead of R < δ.

1.4 Almost cone splitting

Definition 1.14. Given metric spaces (X, dX) and (Y , dY ), we say that f : X → Y is an ε-GH equivalence if

|dY (f (x1), f (x2))−dX(x1, x2)| ≤ ε for all x1, x2 ∈ X, and for all y ∈ Y there exists x ∈ X such thatdY (f (x), y) ≤ ε.

Definition 1.15. Let us fix N ≥ 1 a number which has the meaning of the upper bound of the dimension of

our m.m.s. Given a metric space (X, d), we define the t-conicality of the ball Br(x) as

Nt(Br(x))
.
= inf
ε>0

{

∃ Z metric cone and RCD(0, N) with tip z s.t. dGH

(

B̄ tr
2
(x), B̄ tr

2
(z)
)

≤
εr

2

}

. (1.22)

Definition 1.16. Following [13] we define the ε − (t, r) conical set in B 1
2
(x0) as

Cεt,r
.
= {x ∈ B 1

2
(x0) : Nt(Br(x)) < ε}, (1.23)

whereN is defined in Definition 1.15.
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Theorem 1.17 (Cone splitting, quantitative version). For all K ∈ R, N ∈ [2, +∞), 0 < γ < 1, δ < γ
−1, and for

all τ, ψ > 0 there exist 0 < ε = ε(N, K, γ, δ, τ, ψ) < ψ and 0 < θ = θ(N, K, γ, δ, τ, ψ) such that the following

holds. Let (X, d,m) be an RCD(K, N)m.m.s., x ∈ X and r ≤ θ be such that there exists an εr-GH equivalence

F : Bγ−1r

(

(0, z*)
)

→ Bγ−1r(x)

for some cone Rl × C(Z), with (Z, dZ ,mZ) an RCD(N − l − 2, N − l − 1)m.m.s.. If there exists

x′ ∈ Bδr(x) ∩ Cεγ−N ,δr

with

x′ ∈ ̸ Tτr
(

F
(

R
l ×
{

z*
}

∩ Bγ−1r((0, z
*))
))

∩ Br(x),

where Tτr(·) is the tubular neighbourhood of radius τr, then for some cone R
l+1 × C(Z̃), where (Z̃, dZ̃ ,mZ̃) is a

RCD(N − l − 3, N − l − 2)m.m.s.,

dGH

(

Br(x), Br((0, z̃
*))
)

< ψr.

Theorem 1.17 is a quantitative version of the following statement: if a metric cone with vertex z is a metric

cone also with respect to z′ = ̸ z, then it contains a line. It can be rigorously stated in the setting of RCD spaces

as follows.

Proposition 1.18 (Cone splitting, rigid version). Let (X, d,m) be an RCD(0, N)m.m.s. isomorphic to Rl × C(Z̄)

for some l ∈ N and some RCD(N − l − 2, N − l − 1) m.m.s. (Z, dZ ,mZ). Let z̄ be the vertex of C(Z̄) and suppose

that there exist a metric cone C(Ẑ) with vertex ẑ and an isometry I : C(Ẑ) → X such that I(ẑ) ∈ ̸ Rl × {z̄}. Then
(X, d,m) is isomorphic to Rl+1 × C(Z̃) for some RCD(N − l − 3, N − l − 2)m.m.s (Z̃, dZ̃ ,mZ̃).

Proof. The sought conclusion can be achieved through two intermediate steps.

Step 1. Aim of this first step is to prove that (X, d,m) contains a line passing through I(ẑ) (and therefore

with non trivial component on the C(Z̄) factor). In order to do sowewish to prove that the ray connecting (0, z̄)

to I(ẑ) actually extends to a line. Indeed, taking into account the fact that locally around I(ẑ) it is a geodesic

we obtain that the cross section Ẑ contains two points z1, z2 such that d
Ẑ
(z1, z2) = π. Hence, considering

now the ray emanating from I(ẑ) and passing through (0, z̄), which corresponds to the point z2 without loss

of generality, we obtain that also Z̄ contains points z̄1, z̄2 such that dZ̄(z̄1, z̄2) = π, otherwise the ray above

would not be minimizing around (0, z̄). Hence, as we claimed, there is a line in X passing through I(ẑ) and

(0, z̄).

Step 2. The sought conclusion about the additional splitting follows from what we proved in Step 1 ap-

plying Lemma 1.20 below. To conclude it suffices to observe that the split factor is still a metric cone since

the whole space is. Indeed if a product Rl × Z is a metric cone, then it can be viewed as a metric cone on his

sphere of radius 1 and Z is the cone over the intersection of this sphere with the section {0} × Z.

Remark 1.19. Let us remark that the same conclusion of Proposition 1.18 above holds true under the following

weaker assumption: with the same notation adopted above, there exist z ∈ ̸ Rl × {z̄} and an isometry I :

Br(ẑ) → Br(z) for some r > d(z, (0, z̄)) such that I(ẑ) = z. This stronger statement can be checked with no

modification w.r.t. the proof we presented above.

Lemma 1.20 (Additional splitting). Let (X, d,m) be an RCD(0, N)m.m.s. isomorphic to Rl × Y for some l ∈ N

and some RCD(0, N − l)m.m.s. (Y , dY ,mY ). Suppose that X contains a line whose component on the factor Y is

non constant. Then X is isomorphic to Rl+1 × Z for some RCD(0, N − l − 1)m.m.s. (Z, dZ ,mZ).

Proof. We just briefly outline the strategy of the proof.

Let us begin by observing that in the case l = 0 the statement corresponds to the splitting theorem, proved in

this generality in [22].

If l ≥ 1wewish to prove that the existence of a line with non constant Y-component implies the existence of a
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splitting function on the Y-factor and therefore the conclusion. In order to do so, first we build the Busemann

function u associated to the given line. From [22]we know that ∆u = 0 and |∇u| = 1 and then from theBochner

formula, Hess u = 0 (see [24] and [25]). Let us denote furthermore by x1, . . . , xl the coordinate functions of

the Euclidean factor Rl. We claim that there exist real numbers a1, . . . , al such that f
.
= u − a1x1 · · · − alxl is

a non constant function with constant minimal upper gradient, independent of the Euclidean variable and

with vanishing Hessian. Indeed we can define ai
.
= ∇u ·∇xi. These numbers are constant because of the fact

that Hess u = 0 and Hess xi = 0. Then taking f as before, from ∆u = 0 it follows ∆f = 0 and from Hess u = 0

it follows Hess f = 0; while from the fact that |∇u| = 1, it follows, because of the tensorization, that |∇f |
is constant. Such a function induces a splitting function on (Y , dY ,mY ) and the sought conclusion can be

obtained applying the results in the appendix of [26], which inspires the fortchoming Lemma 1.21. One has

to verify that f is not constant: if not u will be an affine function on R
l and then the Busemann function of

a line entirely contained in the first factor Rl. This is not possible since the line associated to the Busemann

function u had a non-trivial projection over the second factor, while in this case u would be the Busemann

function associated to a line in the factor Rl.

Lemma 1.21 (Functional splitting). Let (X, d,m) be an RCD(0, N) space and let u : X → R a function such that

∆u = 0 and |∇u| = 1. Then (X, d,m) is isomorphic to (Y ×R, dY × deucl ,mY ×L
1), where Y is an RCD(0, N − 1)

space.

Analogously, if there exist functions u1, . . . , ul : X → R such that for all i = 1, . . . , l it holds ∆ui = 0

and |∇ui| = 1 in (X, d,m) as before, and ∇ui · ∇uj = 0 for all 1 ≤ i < j ≤ l, then (X, d,m) is isomorphic to

(Y ×Rl , dY × deucl ,mY ×L
l), where Y is an RCD(0, N − l) space.

Proof. From the improved Bochner formula [24, Corollary 3.3.9] it follows that Hess u = 0. Then one can

consider the regular Lagrangian flow Xt (see [5] for the definition of regular Lagrangian flow) associated to

∇u. Since ∆u = 0 and Hess u = 0 we can use [1, Theorem 1.9, (iv)] to deduce that for every x, y ∈ X,

d(Xt(x), Xt(y)) = d(x, y) ∀t > 0. (1.24)

Then, since for every x ∈ X
d

dt
u(Xt(x)) = ∇u ·∇u(Xt(x)) = 1,

it follows that for x ∈ X, u(Xt(x)) − u(x) = t. Using this information, jointly with the fact that u has a 1-Lip

representative, being |∇u| = 1, and the fact that d(Xt(x), x) ≤ t because of |∇u| ≤ 1, it follows that for every
x ∈ X and t > 0,

d(Xt(x), x) = t. (1.25)

From (1.24) and (1.25) it follows the splitting as in [22, Sections 5 to 7] up to substituting Xt(x) with Ft(x)

therein.

For the multiple splitting, one argues precisely as in [31, Conclusion of Theorem 5.1].

Proof of Theorem 1.17. The conclusion follows from Proposition 1.18 via rescaling and a compactness argu-

ment.

Let us suppose by contradiction that the statement is not satisfied. After rescaling r−1d we obtain the exis-

tence of sequences εn ↓ 0 and αn ↓ 0, of a sequence of RCD(−αn , N) m.m.s. (Xn , dn ,mn), of points xn ∈ Xn

and of εn-GH equivalences

Fn : Bγ−1 ((0, z*n)) → Bγ−1 (xn),

where (0, z*n) denotes the vertex of a cone R
l × C(Zn). Furthermore there are points

x′n ∈ Bδ(xn) ∩ Cεnγ−N ,δ

with

x′n ∈ ̸ Tτ
(

Fn(R
l ×
{

z*n

}

∩ Bγ−1 ((0, z*n)))
)

∩ B1(xn)
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and the estimate

dGH

(

B1(xn), B1((0, z̃
*))
)

≥ ψ (1.26)

is satisfied for any cone of the formR
l+1 × C(Z̃), where (Z̃, dZ̃ ,mZ̃) is a RCD(N − l −3, N − l −2)metric measure

space. Passing to the limit all the conditions above, by compactness and stability (see Remark 1.3) we obtain

an RCD(0, N)m.m.s. (X, d,m), x ∈ X, l ∈ N, an RCD(N − l − 2, N − l − 1)m.m.s. (Z, dZ ,mZ) and an isometry

F : Bγ−1 ((0, z*)) → Bγ−1 (x), (1.27)

where (0, z*) is a vertex of the cone Rl × C(Z). Furthermore we can find x′ ∈ Bδ(x) such that B2−1δγ−N (x′)¹ is

isometric to the ball centred in the tip of a metric cone and

x′ ∈ ̸ Tτ
(

F
(

R
l × {z*} ∩ Bγ−1 ((0, z*))

))

∩ B1(x) (1.28)

and, by (1.26), we get that

dGH

(

B1(x), B1((0, z̃
*))
)

≥ ψ, (1.29)

for any cone of the form R
l+1 × C(Z̃), where (Z̃, dZ̃ ,mZ̃) is an RCD(N − l − 3, N − l − 2)metric measure space.

Taking into account a localized version of Proposition 1.18 around x and (0, z*) (see also Remark 1.19), the

combination of (1.27), (1.28) and (1.29) gives the sought contradiction.

1.5 Singular sets on noncollapsed RCD(K , N) spaces

In this subsection we briefly review the main structural results for non collapsed RCD(K, N) spaces.

Given a m.m.s. (X, d,m), x ∈ X and r ∈ (0, 1), we consider the rescaled and normalized pointed m.m.s.

(X, r−1d,mx
r , x), where

m
x
r
.
=







∫

B(x,r)

1 −
d(x, y)

r
dm(y)







−1

m.

Definition 1.22. Let (X, d,m) be an RCD(K, N) m.m.s. for some 1 < N < +∞, K ∈ R and let x ∈ X. We

say that a pointed m.m.s. (Y , dY , η, y) is tangent to (X, d,m) at x if there exists a sequence ri ↓ 0 such that

(X, r−1i d,mx
ri , x) → (Y , dY , η, y) in the pmGH topology. The collection of all the tangent spaces of (X, d,m) at

x is denoted by Tan(X, d,m, x).

A compactness argument, which is due to Gromov, together with the rescaling and stability properties

of the RCD(K, N) condition (see Remark 1.3), yields that Tan(X, d,m, x) is non empty for every x ∈ X and its

elements are all RCD(0, N) pointed m.m.s..

In the special case in which (X, d,m) is non collapsed any tangent cone has a conical structure, we refer

to [20] for the proof of this result.

Theorem 1.23. Let (X, d,m) be a ncRCD(K, N)metric measure space. Then, for any x ∈ X, any (Y , dY , η, y) ∈
Tan(X, d,m, x) is a metric cone according to Definition 1.6 and η = cHN for some c > 0.

As a consequence of the structural property proved in [31] it is simple to see that if (X, d,m) is a

ncRCD(K, N)m.m.s. then N is integer and the regular set

R
.
=
{

x ∈ X : Tan(X, d,m, x) =
{

(RN , deucl , cNL
N
, 0N)

}}

, cN
.
=
N + 1

ωN
(1.30)

1 Note that 2−1δγ−N > δ which will be important to end the proof by applying a localized version of Proposition 1.18 around x

and (0, z*) (see also Remark 1.19).
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satisfies m(X \ R) = 0. The singular set of X is the complement of R. In [9] Cheeger and Colding, inspired by

the stratification results of geometric measure theory, introduced a way to stratify the singular set of a non

collapsed Ricci limit according to the maximal dimension of the Euclidean factor split off by a tangent space.

This definition can be given also in the context of ncRCD(K, N) spaces and reads as follows:

Definition 1.24. Let (X, d,m) be a ncRCD(K, N)m.m.s.. Given x ∈ X and 0 ≤ k ≤ N we say that x ∈ S
k if no

tangent space of (X, d,m) at x splits off isometrically a factor Rk+1.

Note that we have the inclusions

S
0 ⊂ S

1 ⊂ ... ⊂ S
.
= X \R.

Example 1.25. Let K be the region delimited by a triangle in R
2. Let li be the edges of the triangle and vi be

its vertexes. Then (K, deucl ,L
2

K)² is a non collapsed RCD(0, 2)m.m.s. (it is not a non collapsed Ricci limit

of a sequence of two dimensional Riemannian manifolds instead, as it follows from [10]). Observe that all

the points in the interior ofK are regular points. The interior points of the edges belong to S1 \ S0, while the

vertexes are in S
0.

Theorem1.26. Let (X, d,m)beancRCD(K, N)m.m.s.withK ∈ RandN ∈ [1, +∞). Then it holds thatdimH S
k ≤

k for any 0 ≤ k ≤ N.

Proof. We refer to [9, Theorem4.7] for the proof of this result for non collapsedRicci limits and to [20, Theorem

1.8] for its generalization to ncRCD spaces.

Let us just recall here that the proof is basedonadimension reduction argument andon theuse of the splitting

theorem [22], together with Theorem 1.23.

Remark 1.27. It is possible to find examples of non collapsed Ricci limit spaces of dimension 2 such that S0 is

dense (see for instance [16, Subsection 3.4]). Hence, in general,Hk is not locally finite when restricted to Sk.

2 Volume bound for the quantitative strata

2.1 Statement and basic consequences

A quantitative counterpart of the stratification in Definition 1.24 was introduced in [13] in the setting of non

collapsed Ricci limit spaces. The definition extends to the case of ncRCD spaces with no modification.

Definition 2.1. For any η > 0 and any 0 < r < 1, define the kth-effective stratum S
k
η,r by

S
k
η,r

.
= { y | dGH(Bs(y), Bs

(

(0, z*)
)

) ≥ ηs for all Rk+1 × C(Z) and all r ≤ s ≤ 1 } ,

where Bs
(

(0, z*)
)

denotes the ball in R
k+1 × C(Z) centered at (0, z*) with radius s.

Since it plays a role in the sequel of the note, we point out here that, given metric spaces (X, dX) and

(Y , dY ), the notions “dGH(X, Y) ≤ ε” and “there exists an ε-GH equivalence between X and Y” are only equiv-

alent up to a multiplicative constant which, however plays no role for the sake of our discussion. We refer to

[35, Chapter 27] for more details about this point.

Let us observe now that

S
k
η,r ⊂ S

k′

η′ ,r′ , if k ≤ k′, η′ ≤ η and r ≤ r′ (2.1)

2 With L 2 K we mean L 2 K(E)
.
= L 2(K ∩ E) for every E Borel.
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and

S
k =
⋃

η

⋂

r

S
k
η,r . (2.2)

Indeed, if y ∈ S
k then y ∈

⋂

r S
k
η,r for some η > 0 and it is trivial to see that

⋂

r S
k
η,r ⊂ S

k.

The classical stratification is built separating points according to the infinitesimal symmetries of the

space. The quantitative stratification instead is based on howmany symmetries there are on balls of a definite

size at any point.

Remark 2.2. In (2.2) we can consider just the union over 0 < η < ε for some ε > 0 fixed, or even over a

countable sequence ηi → 0.

Remark 2.3. Let us remark that on a smooth Riemannian manifold the strata S
k are all empty, instead the

effective strata Skη,r are non trivial.

Let us state the main result of this note, which extends to the synthetic framework the result proved for

non collapsed Ricci limit spaces in [13]. As we already pointed out in the introduction, this statement has

already been useful, very recently, in the proof of [32, Theorem 5.8], dealing with stability properties for the

boundary of non collapsed RCD(K, N) spaces.

Theorem 2.4. Given K ∈ R, N ∈ [2, +∞), an integer k ∈ [0, N) and v, η > 0, there exists a constant

c(K, N, v, η) > 0 such that if (X, d,HN) is a ncRCD(K, N)m.m.s. satisfying

H
N(B1(x))

vK,N(1)
≥ v ∀x ∈ X, (2.3)

then, for all x ∈ X and 0 < r < 1/2, it holds

H
N(Skη,r ∩ B1/2(x)) ≤ c(K, N, v, η)rN−k−η . (2.4)

Let us make a few remarks about (2.4). First we wish to prove that it implies the standard Hausdorff

dimension estimate dimH(S
k) ≤ k. To do so let us observe that the ηr-enlargement of Sk2η,r is a subset of S

k
η,r,

that is to say

Tηr(S
k
2η,r)

.
= { x ∈ X : d(x, Sk2η,r) < ηr } ⊂ S

k
η,r . (2.5)

To check (2.5) it is enough touse the triangle inequality: take x ∈ Tηr(Sk2η,r), bydefinition there exists x′ ∈ S
k
2η,r

such that d(x, x′) < ηr, hence we have

dGH(Bs(x), Bs((0, z
*))) ≥ dGH(Bs(x

′), Bs((0, z
*))) − dGH(Bs(x

′), Bs(x))

≥ 2ηs − ηs

= ηs

for any Rk+1 × C(Z) with z* tip of C(Z) and every r ≤ s ≤ 1, where in the last inequality we used x ∈ S
k
2η,r and

dGH(Bs(x
′), Bs(x)) ≤ d(x, x

′) < ηr ≤ ηs. With (2.5) at our disposal we can strengthen (2.4) obtaining a volume

estimate of the ηr-enlargement of the quantitative strata

H
N
(

Tηr(S
k
2η,r) ∩ B1/2(x)

)

≤ crN−k−η ∀x ∈ X. (2.6)

In particular, (2.6) implies that

H
N

(

Tηr

(

⋂

s>0

S
k
2η,s

)

∩ B1/2(x)
)

≤ crN−k−η for any 0 < r ≤ 1/2, ∀x ∈ X, (2.7)

that, together with a localized version of Lemma 2.5 below, gives

H
k+η

(

⋂

s>0

S
k
2η,s ∩ B1/2(x)

)

< +∞ ⇒ H
k+η+ε

(

⋂

s>0

S
k
2η,s

)

= 0 ∀ε > 0. (2.8)

Recalling that Sk =
⋃

η>0

⋂

0<s<ε S
k
η,s for any ε > 0 and that the union in η can be taken countable (see Re-

mark 2.2) we get eventually dimH(S
k) ≤ k.
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Lemma 2.5. Let (X, d,HN) be a ncRCD(K, N)m.m.s. satisfying (2.3) and let E ⊂ X be Borel. If for some 0 < α ≤

N it holds that

H
N(Tri (E)) ≤ Cr

N−α
i for a sequence ri ↓ 0, (2.9)

then

H
α(E) ≤ c(K, N, α, v)C.

Proof. Let us fix 0 < ri < 1 and δ ≥ 10ri. By means of a standard covering theorem (see [27, Theorem 1.2]) we

can find a finite family of points x1, ..., xm (a priori a countable family, but finite if we take into account the

estimate (2.10) below) in E such that { Bri (xk) }k=1,...,m is disjoint and E ⊂
⋃m
k=1 B5ri (xk). Let us estimate m.

From the inclusion
⋃m
k=1 Bri (xk) ⊂ Tri (E) and the fact that { Bri (xk) }k=1,...,m is a disjoint family we deduce

m
∑

k=1

H
N(Bri (xk)) ≤ H

N(Tri (E)) ≤ Cr
N−α
i .

On the other hand the Bishop-Gromov inequality and (2.3) guarantee

H
N(Bri (xk)) ≥ vK,N(ri)

H
N(B1(xk))

vK,N(1)
≥ crNi v,

where c > 0 depends only on K and N. Thus

m ≤
C

cv
r−αi . (2.10)

Since E ⊂
⋃m
k=1 B5ri (xk) and δ > 10ri, we get

H
α
δ (E) ≤ c(α)

m
∑

i=1

(diam(B5ri (xk)))
α ≤ mc′rαi ≤

Cc′

cv
,

where c′ > 0 depends only on α and we used (2.10) in the last passage. Letting δ → 0 we obtain the sought

conclusion.

Remark 2.6. The previous Lemma 2.5 can be also stated - and proved with the same proof - for (X, d,m) an

RCD(K, N)m.m.s. substitutingHN withm in (2.9) and substituting the assumption (2.3) with

m(B1(x))

vK,N(1)
≥ v, ∀x ∈ X.

Let us also mention that, even though (2.4) is stronger than dimH(S
k) ≤ k it does not imply

H
k

(

⋂

r>0

S
k
η,r ∩ B1/2(x)

)

< ∞,

one of the problems being the term rη appearing at the right hand side of (2.4). An improvement in this direc-

tion is one of the fundamental results in [16].

2.1.1 Estimate for the r-enlargement of the boundary

In [20] the authors have proposed a definition of boundary ∂X of a ncRCD(K, N)m.m.s. X as

∂X
.
= closure of SN−1 \ SN−2.

We can use Theorem 2.4 to estimate the measure of the r-enlargement of ∂X.

Corollary 2.7. Given K ∈ R, N ∈ [2, +∞) and v, η > 0, there exist c(K, N, v, η) > 0 and r(K, N) > 0 such that,

if (X, d,HN) is a ncRCD(K, N)m.m.s. satisfying (2.3), then, for all x ∈ X and 0 < r < r(K, N), it holds

H
N(Tr(∂X) ∩ B1/2(x)) ≤ c(K, N, v, η)r1−η .
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Proof. Let us denote by k > 0 the biggest constant such that

v−s,N(1)

ωN
≤
3

2
for any 0 < s < k. (2.11)

Note that k depends only on N. The proof is divided in two steps.

Step1. Aim of this first step is to prove our conclusion under the additional assumption K > −k.

Let us first observe that, for any z ∈ S
N−1 \ SN−2, the Euclidean half space of dimension N belongs to

Tanz(X, d,H
N). To check this statement we build upon three ingredients. The first is that, by the very def-

inition of the singular strata, Tanz(X, d,H
N)must contain a ncRCD(0, N)m.m.s. that splits off R

N−1 but not

R
N . The second ingredient is the characterization of RCD(0, 1) spaces provided in [29] and the last one is the

fact that tangent cones are metric cones (see Theorem 1.23).

Let z ∈ S
N−1 \ SN−2 be fixed. Applying [20, Theorem 1.3] we get that ϑN [X, d,H

N ](z) = 1/2 (see (1.6) for

the definition of ϑN). Thus, as a consequence of (1.3) and (2.11), we have

H
N(Br(z))

ωN rN
=
H
N(Br(z))

vK,N(r)

vK,N(r)

ωN rN
≤ ϑN [X, d,H

N ](z)
3

2
≤
3

4
for any 0 < r < 1.

Using again [20, Theorem 1.3] we deduce that there exists η(N) > 0 such that

z ∈ S
N−1 \ SN−2 =⇒ dGH(Br(z), Br(0

N)) ≥ rη(N) for any 0 < r < 1,

therefore SN−1 \ SN−2 ⊂
⋂

r>0 S
N−1
η(N),r. Since the set in the right hand side is closed one has

∂X ⊂
⋂

r>0

S
N−1
η(N),r .

Thus, using (2.7) with 0 < η ≤ η(N)/2, we deduce

H
N(Tr(∂X) ∩ B1/2(x)) ≤ c(K, N, v, η)r1−η for any 0 < r <

1

2
η and x ∈ X. (2.12)

It is simple to see that, up to increase the constant c one can improve (2.12) obtaining the following statement:

for any η > 0 it holds

H
N(Tr(∂X) ∩ B1/2(x)) ≤ c(K, N, v, η)r1−η for any 0 < r <

1

4
η(N) and x ∈ X, (2.13)

therefore, setting r(N) := η(N)/4, we have the sought estimate.

Step2. Let us remove the assumption K > −k by means of a covering and scaling argument.

We can assume without loss of generality that K < 0. Fix x ∈ X and s > 0 such that −Ks2 = k. Arguing as

in the proof of Lemma 2.5 we can find x1, ..., xm in X such that B1/2(x) ⊂ ∪mi=1Bs/2(xi) and m is bounded by

an explicit constant depending only on N and K. For any i = 1, ...,m and η > 0 we apply (2.13) to the space

(X, s−1d,HN
s−1d) obtaining

H
N(Trs(∂X) ∩ Bs/2(xi)) ≤ c(k, N, v, η)sN r1−η for any 0 < r < r(N). (2.14)

Taking the sum over i = 1, . . . ,m in (2.14) and using the fact that s depends only on N and K we conclude the

proof.

2.2 Proof of Theorem 2.4

2.2.1 A lemma in the spirit of quantitative differentiation

Let us fix N ≥ 1 a number which has the meaning of the upper bound of the dimension of our m.m.s. and

K ∈ R which has the meaning of the lower bound of the curvatures. The arrival point of this subsection is

Corollary 2.13which, roughly speaking, ensures that, on all but a definite number of scales around every point
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of X, the space is as close as we like to the conical structure. To this aim we need a lemma which, together

with the almost rigidity result about metric cones proved in Theorem 1.12, will give us the sought result. In

this lemma we use a technique reminding the general machinery of quantitative differentiation (see [12]). We

recall here the definition of conicality given in Definition 1.15.

Definition 2.8. Given a metric space (X, d), we define the t-conicality of the ball Br(x) as

Nt(Br(x))
.
= inf
ε>0

{

∃ Z metric cone and RCD(0, N) space with tip z s.t. dGH

(

B̄ tr
2
(x), B̄ tr

2
(z)
)

≤
εr

2

}

. (2.15)

Definition 2.9. Given an RCD(K, N) m.m.s. (X, d,m) for some K ∈ R and N ∈ [1, +∞), given x ∈ X and

R > r > 0 we define the (R, r)-volume energy around x as

WR,r(x)
.
= log

(

m(Br(x))

vK,N(r)
·

(

m(BR(x))

vK,N(R)

)−1
)

. (2.16)

Remark 2.10. It follows from (1.3) that if (X, d,m) is an RCD(K, N) space and x ∈ X,

WR,r(x) ≥ 0. (2.17)

Moreover, given any R1 > r1 ≥ R2 > r2, it holds

WR1 ,r2 (x) ≥ WR1 ,r1 (x) +WR2 ,r2 (x) (2.18)

with equality if r1 = R2.

Lemma 2.11. Given k > 1, 0 < γ < 1/2, v > 0 and δ > 0, there exists i0
.
= i0(k, γ, v, δ) ∈ N such that the

following holds. If
(

X, d,HN
)

is a ncRCD(K, N) space with N ∈ [1, +∞) and K ∈ R satisfying (2.3), then for

any x ∈ X
∣

∣

{

i ∈ N : Wkγ i ,γ i (x) > δ
}∣

∣ ≤ i0, (2.19)

whereW is defined in (2.9).

Proof. Let x ∈ X and choose i1 < i2 < · · · < in natural numbers such that the intervals [γ i1 , kγ i1 ], . . . [γ in , kγ in ]

are disjoint and kγ i1 < 1. An iterative application of (2.18) gives

n
∑

j=1

W
kγ

ij ,γ
ij (x) ≤ Wkγ i1 ,γ in (x). (2.20)

Now, since kγ i1 < 1, by (1.3) and the volume bound (2.3) we get

H
N
(

Bkγ i1 (x)
)

vK,N
(

kγ i1
) ≥

H
N(B1(x))

vK,N(1)
≥ v, (2.21)

and also
H
N
(

Bγ in (x)
)

vK,N
(

γ in
) ≤ 1 (2.22)

by Remark 1.9. Monotonicity of the logarithm tells that

Wkγ i1 ,γ in (x) = log







H
N
(

Bγ in (x)
)

vK,N
(

γ in
) ·





H
N
(

Bkγ i1 (x)
)

vK,N
(

kγ i1
)





−1





≤ log

1

v
(2.23)

so that, by (2.20), it follows
n
∑

j=1

W
kγ

ij ,γ
ij (x) ≤ log

1

v
. (2.24)
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Then, denoting by ⌈x⌉ the least integer greater than or equal to x ∈ R, the conclusion follows from (2.24)

choosing

i0 ≥

⌈

−
log k

log γ
+ 1

⌉

· δ−1 · log
1

v
+

⌈

−
log k

log γ
+ 1

⌉

. (2.25)

Indeed, if by contradiction we have the opposite inequality in (2.19), then, excluding the first
⌈

− log k
log γ

+ 1
⌉

terms (i.e. working with the i’s such that kγ i < 1) we have

∣

∣

∣

{

i ∈ N : kγ i < 1 ∧Wkγ i ,γ i (x) > δ
}∣

∣

∣
>

⌈

−
log k

log γ
+ 1

⌉

· δ−1 · log
1

v
(2.26)

and then, dividing the set of all the intervals of the form [γ i , kγ i] with kγ i < 1 in
⌈

− log k
log γ

+ 1
⌉

subsets made

of disjoint intervals, a simple pigeonhole with (2.26) tells us that there exist n ≥ δ−1 log 1
v disjoint intervals

[γ i1 , kγ i1 ], . . . , [γ in , kγ in ] with kγ i1 < 1 on which Wkγ i ,γ i (x) > δ. Combining this observation with (2.24) we

obtain a contradiction.

Now we want to prove an analogous of Theorem 1.12 in this setting. We will measure the closeness to a

metric cone by means of the notion of conicality introduced in Definition 1.15.

Proposition2.12. LetK ∈ R,N ≥ 2, k > 1, v > 0and ε > 0befixed. Then there exists0 < δ
.
= δ(K, N, k, v, ε) < 1

such that the following holds. If
(

X, d,HN
)

is a ncRCD(K, N) space satisfying the volume bound (2.3) and there

exist 0 < r < δ and x ∈ X such that

Wkr,r(x) ≤ δ, (2.27)

then

Nk

(

Br(x)
)

≤ ε. (2.28)

Proof. Note thatWkr,r(x) ≤ δ is equivalent to

m(Bkr(x))

vK,N(kr)
≥ e−δ

m(Br(x))

vK,N(r)
. (2.29)

So that we can choose δ
.
= min

{

δ′

k
, − log(1 − δ′)

}

where δ′ = δ′(K, N, k, ε) is given by Theorem 1.12 taking

η = k−1 and ε
2k

in place of ε in that statement. Then Theorem 1.12 gives (2.28).

Corollary 2.13 (Quantitative conicality). Given K ∈ R, N ≥ 2, k > 1, 0 < γ < 1/2, v > 0 and ε > 0, there exists

a natural number j0
.
= j0(K, N, k, γ, v, ε) such that the following holds. If

(

X, d,HN
)

is a ncRCD(K, N) space

satisfying the volume bound (2.3), then for all x ∈ X
∣

∣

{

i ∈ N : Nk

(

Bγ i (x)
)

> ε
}∣

∣ ≤ j0, (2.30)

whereN is defined in Definition 1.15.

Proof. Let 0 < δ
.
= δ(K, N, k, v, ε) < 1 be given by Proposition 2.12 and i0

.
= i0(k, γ, v, δ) given by Lemma 2.11.

Then, according to Proposition 2.12 and Lemma 2.11,

∣

∣

{

i ∈ N : Nk

(

Bγ i (x)
)

> ε
}∣

∣ ≤
∣

∣

∣

{

i ∈ N : γ i > δ
}∣

∣

∣
+
∣

∣

{

i ∈ N : Wkγ i ,γ i (x) > δ
}∣

∣

≤

⌈

log δ

log γ

⌉

+ i0,

so that it is sufficient to choose j0 ≥
⌈

log δ
log γ

⌉

+ i0.
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2.2.2 Construction of the covering and conclusion

From now on we fix x0 ∈ X and our aim is to construct a good covering of Skη,r ∩ B 1
2
(x0) in order to give a

bound onH
N
(

S
k
η,r ∩ B 1

2
(x0)

)

. We recall here the definition of conical sets given in Definition 1.16.

Definition 2.14. Following [13] we define the ε − (t, r) conical set in B 1
2
(x0) as

Cεt,r
.
= {x ∈ B 1

2
(x0) : Nt(Br(x)) < ε}, (2.31)

whereN is defined in Definition 1.15.

The following lemma, whose proof is postponed to the next subsection, is a key ingredient for the proof

of Theorem 2.4.

Lemma 2.15 (Covering Lemma). There exists c0(N) > 1, such that given any η > 0 and 0 < γ < 1/2, there exist

ε0
.
= ε0(N, K, γ, η) > 0 and n0 = n0(N, K, γ, η) ∈ N such that the following holds. If for some natural number

n0 < j ∈ N and k ≤ N − 1 we have x ∈ S
k
η,2−1γ j−1 ∩ B 1

2
(x0) and Nγ−N (Bγ j−1 (x)) ≤ ε0 then the minimal number of

balls of radius 2−1γ j to cover B2−1γ j−1 (x) ∩ S
k
η,2−1γ j ∩ C

ε0
γ−N ,γ j−1

is less than c0γ
−k.

Proof of Theorem 2.4. We can reduce ourselves to prove the sought estimate with r = 2−1γ j for every j ∈ N, for

a fixed 0 < γ(K, N, η) < 1/2 which will be chosen later. Indeed, suppose that there exist 0 < γ(K, N, η) < 1/2

and c(K, N, v, η) such that, for every j ∈ N,

H
N
(

S
k
η,2−1γ j ∩ B 1

2
(x0)

)

≤ c(2−1γ j)(N−k−η). (2.32)

Then, given 0 < r < 1/2, we can find j such that 2−1γ j+1 < r ≤ 2−1γ j. Since s → S
k
η,s is increasing, we easily

obtain

H
N
(

S
k
η,r ∩ B 1

2
(x0)

)

≤ c̄rN−k−η

with c̄(K, N, v, η)
.
= c(K, N, v, η)γ(K, N, η)−(N−k−η).

Let us prove (2.32). We will call j-uple an element of {0, 1}j. From now on we will denote any j-uple with

entries in {0, 1}with T j and the i-th entry of this j-uplewith T ji . Also |T
j|will indicate the number of 1’s in this

j-uple. Let us fix j ∈ N. To each x ∈ B 1
2
(x0) we can associate T j(x) a j-uple with entries in {0, 1} as follows:

for i ≤ j

T ji(x) = 0 ⇔ x ∈ Cεγ−N ,γ i . (2.33)

For any j-uple T j with entries in {0, 1} we let

ET j
.
= {x ∈ B 1

2
(x0) : T

j(x) = T j}. (2.34)

An immediate consequence of Corollary 2.13 is that if ET j is not empty for some j-uple T j, then

|T j| ≤ j0
.
= j0(K, N, γ, v, ε). (2.35)

Indeed, if ET j is not empty, then there exists x ∈ B 1
2
(x0) such that T

j(x) = T j. Recalling that a j-uple defined

starting from a point according to (2.33) has a 1 in the i-th entry if and only ifNγ−N

(

Bγ i (x)
)

≥ ε, the estimates

of Corollary 2.13 applied with k = γ
−N , gives the sought result.

The bound obtained in (2.35) allows to estimate the number of non empty sets ET j by 2j
j0 . Indeed, the number

of possible choices of j0 positions in a string with j ≥ j0 entries is
(

j

j0

)

≤ 2jj0 ,

and the estimate holds also in the case j < j0 since in that case the j-uples are at most 2j which is less than

the right hand side in the previous equation since j < j0.
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Let us define now inductively on j the covering of Skη,2−1γ j ∩ B 1
2
(x0) in such a way that

S
k
η,2−1γ j ∩ B 1

2
(x0) ⊆

⋃

T j:E
Tj
≠∅

B
T j
, (2.36)

whereBT j is a union of balls of radius 2−1γ j.

For j = 1we letB(0) be the union of the minimum amount of balls of radius 2−1γ with centers in S
k
η,2−1γ ∩ E(0)

needed to cover Skη,2−1γ ∩ E(0), if this intersection is not empty. Then we letB(1) be the union of the minimum

amount of balls of radius 2−1γ with centers in S
k
η,2−1γ ∩ E(1) which we need to cover Skη,2−1γ ∩ E(1), if this

intersection is not empty.

Now for any j > 1 and for any T j for which ET j is not empty, we want to define B
T j . Let us consider the

(j−1)-uple T j−1 whichwe obtain by dropping the last entry in T j. For each ball B2−1γ j−1 (x̄) inB
T j−1 , we take the

minimum amount of balls of radius 2−1γ j with centers in S
k
η,2−1γ j ∩ ET j ∩ B2−1γ j−1 (x̄) needed to cover S

k
η,2−1γ j ∩

ET j ∩ B2−1γ j−1 (x̄), if this intersection is not empty.

The next step in order to achieve the volume estimate (2.4) aims to bound the cardinality of the families

B
T j . We claim that for any such family, setting Q

.
= n0 + j0, the number of balls needed can be controlled by

(

c1γ
−N
)Q

·
(

c0γ
−k
)j−Q

, (2.37)

for some constants c1(N, K) ≥ c0(N) > 1. To this aim we just observe that (2.37) follows from the way in

which we constructed the covering, after the appropriate choice of ε0 forced by Lemma 2.15, by means of an

induction argument. Indeed the factorwith exponentQ in (2.37) arises from the atmost j0+n0 scales onwhich

the assumptions of Lemma 2.15 are not satisfied and therefore we are forced to cover with c1γ
−N balls (this

possibility is guaranteed by (1.3)). The factor with exponent j −Q instead arises from the remaining scales on

which Lemma 2.15 applies and we can cover with less than c0γ
−k balls.

Recapitulating what we obtained so far, we proved that there exist constants c1(K, N) ≥ c0(N) > 1 and a

natural number j0 such that, for any natural j, the set Skη,2−1γ j ∩ B 1
2
(x0) is contained in the union of at most

2jj0 non empty families of balls. Furthermore, each of the families above contains at most (c1γ
−N)Q(c0γ

−k)j−Q

balls of radius 2−1γ j.

Let us see how (2.4) can be obtained starting from these results. First we let γ = γ(η)
.
= c

− 2
η

0 , where c0 is

given by Lemma 2.15. Then we observe that cj0 =
(

γ
j
)−

η
2
, jj0 ≤ c(N, K, v, η)(γ j)−

η
2 and up to choose η small

enough0 < γ < 1/2. The considerations above, togetherwith the volumecomparison yieldingHN(B2−1γ j (x)) ≤

c2(N, K)(2
−1
γ
j)N , give the estimate

H
N
(

S
k
η,2−1γ j ∩ B 1

2
(x0)

)

≤2jj0
[

(c1γ
−N)Q · (c0γ

−k)j−Q
]

· c2 · (2
−1
γ
j)N

≤c3(N, K, v, η) · j
j0 · cj0 · (γ

j)N−k

≤c4(N, K, v, η) · (γ
j)N−k−η .

In view of what we observed at the beginning of the proof, the estimate above gives the desired result when

η is small enough, this in turn implies the general case thanks to (2.1).

2.2.3 Proof of the covering lemma via cone splitting

Aim of this subsection is to prove Lemma 2.15. The key tool in proving it will be the effective almost cone

splitting theorem proved in Theorem 1.17 that we restate here for the reader convenience.

Theorem 2.16 (Cone splitting, quantitative version). For all K ∈ R, N ∈ [2, +∞), 0 < γ < 1, δ < γ
−1, and for

all τ, ψ > 0 there exist 0 < ε = ε(N, K, γ, δ, τ, ψ) < ψ and 0 < θ = θ(N, K, γ, δ, τ, ψ) such that the following

holds. Let (X, d,m) be an RCD(K, N)m.m.s., x ∈ X and r ≤ θ be such that there exists an εr-GH equivalence

F : Bγ−1r

(

(0, z*)
)

→ Bγ−1r(x)
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for some cone Rl × C(Z), with (Z, dZ ,mZ) RCD(N − l − 2, N − l − 1)m.m.s.. If there exists

x′ ∈ Bδr(x) ∩ Cεγ−N ,δr

with

x′ ∈ ̸ Tτr
(

F(Rl ×
{

z*
}

∩ Bγ−1r

(

(0, z*)
)

)
)

∩ Br(x),

then for some cone Rl+1 × C(Z̃), where (Z̃, dZ̃ ,mZ̃) is a RCD(N − l − 2, N − l, 1)m.m.s.,

dGH

(

Br(x), Br((0, z̃
*))
)

< ψr.

Corollary 2.17. For all K ∈ R, N ∈ [2, +∞), k ≤ N − 1, 0 < γ < 1/2, η > 0 and for all τ, ψ > 0 there exist

ε(K, N, γ, η, τ, ψ) > 0 and θ(K, N, γ, η, τ, ψ) > 0 such that, for any RCD(K, N) m.m.s. (X, d,m), the following

holds. Let r ≤ θ and x ∈ Cεγ−N ,r ∩ S
k
η,2−1r. Then there exist a coneR

l × C(Z̃) with l ≤ k, an RCD(N − l − 2, N − l − 1)

m.m.s. Z̃ and a (ψ2 r)-GH equivalence

F : Br/2((0, z̃
*)) → Br/2(x)

such that

Cεγ−N ,r ∩ Br/2(x) ⊂ T2−1τr

(

F(Rl × {z̃*} ∩ Br/2((0, z̃*)))
)

(2.38)

Proof. Let ε[N]
.
= ε(N, K, γ, 1, τ, ψ) and θ[N]

.
= θ(N, K, γ, 1, τ, ψ) be given by Theorem 1.17 and inductively

define, still by Theorem 1.17, for all 0 ≤ l ≤ N − 1,

ε[l]
.
= ε(N, K, γ, 2γN−l−1, τγN−l−1, γN−l−1ε[l+1])³,

θ[l]
.
= θ(N, K, γ, 2γN−l−1, τγN−l−1, γN−l−1ε[l+1]).

Observe that ε[0] < ε[1] < · · · < ε[N] < ψ and put ε
.
= ε[0]. Choose θ = minl

{

2θ[l]

γ−(N−l−1)

}

.

By assumption x ∈ Cεγ−N ,r, hence we can find the largest 0 ≤ l ≤ N such that for some coneRl ×C(Z̃), with Z̃ an

RCD(N − l − 2, N − l − 1)m.m.s., there is an (2−1ε[l]r)-GH equivalence F : B2−1γ−(N−l)r((0, z̃
*)) → B2−1γ−(N−l)r(x).

Note that we can assume l ≤ k ≤ N − 1. Indeed, since it is not restrictive to take ε[l] < η, we then have

a (2−1ηr)-GH equivalence between Br/2((0, z̃
*)) and Br/2(x), which is impossible if l > k since x ∈ S

k
η,2−1r.

ApplyingTheorem1.17with r′ = 2−1γ−(N−l−1)r, δ′ = 2γN−l−1, τ′ = τγN−l−1 andψ′ = γ
N−l−1ε[l+1] andconsidering

l ≤ k ≤ N − 1⁴, we obtain

Br(x) ∩ Cε
[l]

γ−N ,r ⊆ T2−1τr

(

F(Rl × {z̃*} ∩ Br/2((0, z̃*)))
)

.

Now the conclusion comes from the straightforward inclusion

Br/2(x) ∩ Cεγ−N ,r ⊆ Br(x) ∩ Cε
[l]

γ−N ,r .

Finally we can pass to the proof of Lemma 2.15.

Proof of Lemma 2.15. Let us choose ε0 = δ
(

K, N, γ, η, 1
10γ,

1
10γ
)

and

θ = θ
(

K, N, γ, η, 1
10γ,

1
10γ
)

as in theprevious corollary. Let n0(K, N, γ, η)be a sufficiently big natural number

so that γ j−1 ≤ θ for all j ≥ n0. Then as we are in the hypothesis x ∈ Cε0
γ−N ,γ j−1

∩ S
k
η,2−1γ j−1 , we can apply the

previous corollary with r = γ
j−1 to obtain F a 1

20γ
j-GH equivalence between the ball B2−1γ j−1 (x) and some ball

of the same radius in a metric cone Rl × C(Z̃) with l ≤ k. We also obtain

B2−1γ j−1 (x) ∩ S
k
η,2−1γ j ∩ C

ε0
γ−N ,γ j−1

⊂ T 1
20γ

j (F(R
l × {z̃*} ∩ B2−1γ j−1 ((0, z̃*)))) ∩ B2−1γ j−1 (x), (2.39)

3 Here we use 1/2 > γ in order to obtain 2γN−l−1 < γ
−1 for all 0 ≤ l ≤ N − 1 and apply Theorem 1.17.

4 This is important to see that an 2−1ε[l]r-GH equivalence is a 2−1ε[l]γ−(N−l−1)r-GH equivalence when we apply Theorem 1.17.
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and then the sought estimate about thenumber of balls of radius2−1γ j necessary to coverB2−1γ j−1 (x)∩Skη,2−1γ j∩
Cε0
γ−N ,γ j−1

follows from (2.39) and the observation that in the Euclidean spaceRk the number of balls of radius

γ
j needed to cover a ball of radius γ j−1 can be controlled by cγ−k, for some dimensional constant c = c(k) > 0.
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