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Abstract. This paper presents an algorithm to compute the value of the inverse Laplace

transforms of rational functions with poles on arrangements of hyperplanes. As an ap-

plication, we present an efficient computation of the partition function for classical root

systems.

1. Introduction

The ultimate goal of this work is to present an algorithm for a fast computation of the

partition function of classical root systems. We achieve this goal in somewhat more

general terms, namely we develop algorithms to compute the volume of a polytope and

its discrete analog, the number of integer points in the polytope. These formulas, in turn,

are inverse Laplace transforms of certain rational functions, and our work can be viewed

in these general terms.

Let U be a finite-dimensional real vector space of dimension r . Denote its dual vector

space U ∗ by V . Consider a set of elements

A = {α1, α2, . . . , αN }
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of non-zero vectors of V . We assume that the convex cone C(A) generated by non-

negative linear combinations of the elements αi is an acute convex cone in V with

non-empty interior.

The elements ℓ in V produce linear functions u �→ ℓ(u) on the complexified vector

space UC. In particular, to the set A we associate the arrangement of hyperplanes

HC(A) :=
N⋃

i=1

{u ∈ UC | αi (u) = 0}

in UC and its complement

UC(A) :=
{

u ∈ UC

∣∣∣
N∏

i=1

αi (u) 	= 0

}
.

We denote by RA the ring of rational functions on UC(A) with poles along HC(A).

Then each element ϕ ∈ RA can be written as P/Q where P is a polynomial function

on r complex variables and Q is a product of elements, not necessarily distinct, of A.

Our first aim is to present an algorithm to compute the value of the inverse Laplace

transform of functions in RA at a point h ∈ V . In other words, we study the value at a

point h ∈ V of convolutions of a number of Heaviside distributions ϕ �→
∫∞

0
ϕ(tαi ) dt .

The first theoretical ingredient is the notion of Jeffrey–Kirwan residues [17]. Going a

step further, De Concini and Procesi [13] proved that one can compute Jeffrey–Kirwan

residues using maximal nested sets (in short MNSs), a combinatorial tool related to

no-broken-circuit bases of the set of vectors A.

The applications in view are volume computation for polytopes, enumeration of in-

tegral points in polytopes, and, more generally, discrete or continuous integration of

polynomial functions over polytopes. Indeed, Szenes and Vergne [22], refining a for-

mula of Brion and Vergne [7], stated formulas for the volume and number of integral

points in polytopes involving Jeffrey–Kirwan residues.

Consider the polytope

	A(h) :=
{

x ∈ R
N

∣∣∣
N∑

i=1

xi αi = h, xi ≥ 0

}
.

As a function of h, the volume of 	A(h) is a piecewise-defined polynomial. The cham-

bers of polynomiality in the parameter space V are polyhedral cones.

Our programs are extremely efficient for computing the volume of the polytope 	A(h)

when A is a classical root system. An important fact is that our algorithm can work with

formal parameters, thus giving the polynomial volume formula for 	A(h) when h runs

over a particular chamber.

For an analogous theory for integral-point enumeration, we have to assume that the

αi are vectors in a lattice VZ. For h ∈ VZ, the function NA(h) which associates to the

vector h the number of integral points in 	A(h), that is the number of ways to represents

the vector h as a sum of a certain number of vectors αi , is called the (vector-)partition

function of A. For example, for B2, given a vector (h1, h2) with integral coordinates we

would like to compute the number NB2
(h) of vectors (xi ) ∈ Z

4
+ such that

x1

(
1

0

)
+ x2

(
0

1

)
+ x3

(
1

−1

)
+ x4

(
1

1

)
=

(
h1

h2

)
.
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As a function of h, the number NA(h) of integral points in 	A(h) is a piecewise-

defined quasipolynomial, and again the chambers of quasipolynomiality are polyhedra

in V [12], [20], [21].

In this paper we describe an efficient algorithm for MNS computation for classical

root systems. This algorithm for MNS gives rise to programs for the Kostant partition

function for the classical root systems An , Bn , Cn , and Dn . Again, our algorithm works

with a formal parameter h that is assumed to be confined to a particular chamber.

These calculations are valuable because partition functions play a fundamental role

also in representation theory of semisimple Lie algebras g. Indeed, partition functions

arise naturally when we want to compute the multiplicity of a weight in a finite-

dimensional representation or the tensor-product decomposition of two representations,

both being basic problems to understand characters of representations. Cochet [9], [10]

has obtained very efficient algorithms for both these problems implementing results of

this paper.

We conclude by describing the way the paper is organized. Section 2 introduces

Laplace transforms and polytopes. In Section 3 we recall the Jeffrey–Kirwan residue and

its link with counting formulas. De Concini–Procesi’s MNSs are described in Section 4,

as well as how they are related to Jeffrey–Kirwan residues. Section 5 describes our general

algorithm for MNS computations. Details of particular cases of the algorithm for the

root systems An , Bn , Cn and Dn are examined in Sections 7–10. Finally, comparative

tests of our programs with existing softwares are performed in Section 11.

A number of theoretical results related to the function NA(h) when A is a subset of

the system An can be found in [1] (as, for example, the computation of the volume of

the Chan–Robbins polytope).

Computer programs for volume computation/integral-point enumeration in polytopes

have only been implemented in the very recent past, most notably LattE [14], [15]

and barvinok [6], both of which are implementations of Barvinok’s algorithm [3].

To the best of our knowledge, these two are the only general programs for volume

computation/integral-point enumeration in polytopes. More specialized programs in-

clude algorithms of Baldoni et al. for flow polytopes [2] and Beck and Pixton for the

Birkhoff polytope [4].

Our programs have been especially designed for classical root systems, are faster than

all actual existing softwares, and can compute new examples that were not reachable

by previous algorithms. Note in particular that our programs can perform computations

for NA(h) for An at least up to n = 10 (11 coordinates vector). For Bn , Cn , and Dn the

algorithms are efficient at least up to n = 6. For our methods (as well as for LattE),

the size of the vector h has little affect on the computation time. Recall that our methods

can also calculate the multivariate quasipolynomials h �→ NA(h) when h varies on a

chamber, and as a particular case for a fixed h the function k �→ NA(kh) which is the

Ehrhart quasipolynomial in k.

2. Laplace Transform and Polytopes

We start by briefly recalling the notations of the Introduction, aiming to relate the in-

verse of the Laplace transform with various counting formulas for a polytope. A good

introduction on this theme is the survey article [24].
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Fig. 1. The seven chambers for A3.

2.1. Laplace Transform

Let U be a finite-dimensional real vector space of dimension r with dual space V . We

fix the choice of a Lebesgue measure dh on V . Consider a set

A = {α1, α2, . . . , αn}

of non-zero vectors of V . We assume that the set of vectors αi spans V . For any subset S

of V , we denote by C(S) the convex cone generated by non-negative linear combinations

of elements of S. We assume that the convex cone C(A) is acute in V with non-empty

interior.

Let Vsing(A) be the union of the boundaries of the cones C(S), where S ranges over

all the subsets of A. The complement of Vsing(A) in C(A) is by definition the open set

Creg(A) of regular elements. A connected component c of Creg(A) is called a chamber

of C(A). Figures 1 and 2 represent slices of the cones C(A3) and C(B3), where the dots

represent the intersection of a slice with a ray R≥0αi hence showing the chambers. Note

that the chambers for Br and Cr are the same (as roots in Br and Cr are proportional).

In dimension 3, the root system A3 is isomorphic to D3. See [2] for the computation of

chambers. Very little is known about the total number of chambers. On the other hand,

given a vector h, it is easy to compute the equations of the chamber containing h. This

Fig. 2. The 23 chambers for B3.
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Table 1. Number of chambers and computation time.

A B C D F G

1 1 1 1

(0 s) (0 s) (0 s)

2 2 3 3 1 5

(0 s) (0 s) (0 s) (0 s) (0 s)

3 7 23 23 7

(1 s) (8 s) (8 s) (1 s)

4 48 695 695 133 12,946

(23 s) (11 min) (11 min) (90 s) (3 d 16 h)

5 820 >26,905 >26,905 12,926

(19 min) ? ? (1 d 5 h)

6 44,288 ? ? ?

(24 d 18 h)

was done in [2] and [11]. We have incorporated this small part of the corresponding

program in our programs for classical root systems.

Table 1 represents the only numbers of chambers that have been computed (and the

computation time).

Consider now a cone C(S) spanned by a subset S of A and let p be a function

on C(S). We assume that p is the restriction to C(S) of a polynomial function on V .

By superposing such functions p, we obtain a space LP(V,A) of locally polynomial

functions on C(A). For f ∈ LP(V,A), the restriction of f to any chamber c of C(A) is

given by a polynomial function.

The Laplace transform L( f ) of such a function f is defined as follows. Consider the

dual cone C(A)∗ ⊂ U of C(A) defined by

C(A)∗ = {u ∈ U | 〈h, u〉 ≥ 0 for all h ∈ C(A)}.

Then, for u in the interior of the cone C(A)∗, the integral

L( f )(u) =
∫

C(A)

e−〈h,u〉 f (h) dh

is convergent. It is easy to see that the function L( f ) is the restriction to C(A)∗ of a

function in RA. (Recall that RA is the ring of rational functions P/Q on U where P

is a polynomial function on U and Q is a product of elements of A.) It is easy [7] to

characterize the functions L( f ) on U arising this way.

Let ν be a subset of {1, 2, . . . , n}. We say that ν is generating (respectively basic) if

the set {αi | i ∈ ν} generates (respectively is a basis of) the vector space V .

Every basic subset is of cardinality r and we write Bases(A) for the set of basic

subsets. Given σ ∈ Bases(A), the associated basic fraction is

fσ =
1∏

i∈σ αi

. (1)

In a system of coordinates (depending on σ ) on U where αi (u) = ui (for i ∈ σ ), such a
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basic fraction is simply of the form

1

u1u2 · · · ur

.

Define G(U,A) ⊂ RA as the linear span of functions 1/
∏

i∈ν α
ni

i , where ν is gener-

ating and ni are positive integers. The following proposition gives the characterization

we were speaking of and is easy to prove:

Proposition 2.1 [7]. If f is a locally polynomial function on C(A), the Laplace trans-

form L( f ) of f is the restriction to C(A)∗ of a function in G(U,A). Reciprocally, for

any generating set ν and every set of positive integers ni > 0, there exists a locally

polynomial function f on V such that

1∏
i∈ν αi (u)ni

=
∫

C(A)

e−〈h,u〉 f (h) dh

for any u in the interior of C(A)∗.

We define the inverse Laplace transform L−1 : G(U,A) → LP(V,A) as follows.

For ϕ ∈ G(U,A), the function L−1ϕ is the unique locally polynomial function that

satisfies

ϕ(u) =
∫

C(A)

e−〈h,u〉(L−1ϕ)(h) dh

for any u ∈ C(A)∗.
In the next sections we explain the relation between Laplace transforms and the

enumeration of integral points of families of polytopes. We will see in Section 4 that one

can write efficient formulas for the inversion of Laplace transforms in terms of residues,

whose algorithmic implementation is working in a quite impressive way, at least for low

dimension.

2.2. Volume and Number of Integral Points of a Polytope

In this subsection we consider a sequence

A+ = [α1, α2, . . . , αN ]

of non-zero elements of A. We assume that each element α ∈ A occurs in the sequence;

in particular N ≥ n and the set A+ spans V .

Remark 2.2. In all our examples the sequence A+ will not have multiplicities, so that

we will freely identify A+ and A.

We now introduce the notion of a partition polytope.

We consider the space R
N with its standard basis ωi and Lebesgue measure dx .

If x =∑N
i=1 xiωi ∈ R

N with xi ≥ 0 (1 ≤ i ≤ N ) then we simply write x ≥ 0.
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Consider the surjective map A : R
N → V defined by A(ωi ) = αi and denote by K

its kernel. Then K is a vector space of dimension d = N − r equipped with the quotient

Lebesgue measure dx/dh.

If h ∈ V , we define

	A+(h) = {x ∈ R
N | Ax = h; x ≥ 0}.

The set 	A+(h) is a convex polytope. It is the intersection of the non-negative quadrant

in R
N with an affine translate of the vector space K . This polytope consists of all non-

negative solutions of the system of r linear equations

N∑

i=1

xiαi = h.

Remark 2.3. It might be appropriate to recall that any full-dimensional convex poly-

tope P in a vector space E of dimension d , defined by a system of N linear inequations

P = {y ∈ E | 〈ui , y〉 + λi ≥ 0}

(where ui ∈ E∗ and λi are real numbers), can be canonically realized as a partition

polytope 	A+(h).

If h is in the interior of the cone C(A), then the polytope 	A+(h) is of dimension d .

It lies in a translate of the vector space K , and this translated space is provided with the

quotient measure dx/dh.

Definition 2.4. We write volA+(h) for the volume of 	A+(h) computed with respect

to this measure.

Suppose further that V is provided with a lattice VZ and that

A+ := [α1, α2, . . . , αN ]

is a sequence of non-zero elements of VZ spanning VZ, that is, VZ =
∑N

i=1 Zαi .

In this case the lattice VZ determines a measure dZh on V so that the fundamental

domain of the lattice VZ is of measure 1 for dZh. However, for reasons which will be

clear later, we keep our initial measure dh. We introduce the normalized volume.

Definition 2.5. The normalized volume volZ,A+(h) is the volume of 	A+(h) computed

with respect to the measure dx/dZh.

Remark 2.6. The reason for keeping our initial dh is that the root systems Br , Cr , and

Dr live on the same standard vector space V = R
r , where the most natural measure is

the standard one. This measure is twice the measure given by the root lattice in the case

of Cr and Dr .
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If vol(V/VZ, dh) is the volume of a fundamental domain of VZ for dh, clearly

volZ,A+(h) = vol(V/VZ, dh) volA+(h).

Now let h ∈ VZ. A discrete analogue of the normalized volume of 	A+(h) is the

number of integral points inside this polytope.

Definition 2.7. Let NA+(h) be the number of integral points in 	A+(h), that is the

number of solutions x = (x1, . . . , xN ) of the equation
∑N

i=1 xiαi = h where xi are

non-negative integers. The function h �→ NA+(h) is called the partition function of A+.

We will see after stating Theorem 3.3 that the functions h �→ volA+(h) and h �→
NA+(h) are respectively polynomial and quasipolynomial on each chamber of C(A).

The following formulas (see, for example, [24]) compute the Laplace transform of

the locally polynomial function volA+(h) and the discrete Laplace transform of the

quasipolynomial function NA+(h).

Proposition 2.8. Let u ∈ C(A)∗. Then:

1.
∫
C(A)

e−〈h,u〉volA+(h) dh = 1/
∏N

i=1 αi (u).

2.
∑

h∈VZ∩C(A) e−〈h,u〉NA+(h) = 1/
∏N

i=1(1− e−〈αi ,u〉).

3. Jeffrey–Kirwan Residue

The aim of this section is to explain some theoretical results due to Jeffrey and Kirwan

which are fundamental for our work. They described an efficient scheme for computing

the inverse Laplace transforms in the context of hyperplane arrangements.

Let us go back to the space of rational functions RA. It is Z-graded by degree. Of

great importance for our exposition are certain functions in RA of degree −r . Every

function in RA of degree −r may be decomposed into a sum of basic fractions fσ
(see (1)) and degenerate fractions; degenerate fractions are those for which the linear

forms in the denominator do not span V . Given σ ∈ Bases(A), we write C(σ ) for the

cone generated by αi (i ∈ σ ) and by vol(σ ) > 0 for the volume of the parallelotope∑r
i=1[0, 1]αi computed for the measure dh. Observe that vol(σ ) = |det(σ )|, where σ

is the matrix whose columns are the αi ’s. Now having fixed a chamber c, we define a

functional JKc(ϕ) on RA called the Jeffrey–Kirwan residue (or JK residue) as follows.

Let

JKc( fσ ) =
{

vol(σ )−1, if c ⊂ C(σ ),

0, if c ∩ C(σ ) = ∅. (2)

By setting the value of the JK residue of a degenerate fraction or that of a rational

function of pure degree different from−r equal to zero, we have defined the JK residue

on RA.

We may go further and extend the definition to the space R̂A which is the space

consisting of functions P/Q where Q is a product of powers of the linear forms αi and

P =∑∞
k=0 Pk is a formal power series. Indeed, suppose that P/Q ∈ R̂A where we may

assume that Q is of degree q , and P = ∑∞
k=0 Pk is a formal power series with Pk of
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degree k. Then we just define

JKc(P/Q) = JKc(Pq−r/Q)

as the JK residue of the component of degree −r of P/Q. In particular, if ϕ ∈ RA and

h ∈ V , the function

e〈h,u〉ϕ(u) =
∞∑

k=0

〈h, u〉k
k!

ϕ(u)

is in R̂A and we may compute its JK residue. Observe that the JK residue depends on

the measure dh.

Theorem 3.1 (Jeffrey–Kirwan). If ϕ ∈ RA, then for any h ∈ c we have

(L−1ϕ)(h) = JKc(e
〈h, · 〉ϕ).

Assume that � : U → U is a holomorphic transformation defined on a neighborhood

of 0 in U and invertible. We also assume that αj (F(u)) = αj (u) f j (u), where f j (u) is

holomorphic in a neighborhood of 0 and f j (0) 	= 0.

If ϕ is a function in R̂A, the function �∗ϕ(u) = ϕ(�(u)) is again in R̂A. Let Jac(�)

be the Jacobian of the map �. For any ϕ in R̂A the following change of variable formula

(Theorem 45 in [1]), which will be useful in our calculations later, holds:

Proposition 3.2. The JK residue obeys the rule of change of variables:

JKc(ϕ) = JKc(Jac(�)(�∗ϕ)).

We conclude this section by recalling the formula for NA+(h).

Consider the dual lattice UZ = {u ∈ U | 〈u, VZ〉 ⊂ Z} and the torus T = U/UZ.

Choosing a basis {u1, . . . , ur } of UZ we may identify T with the subset of U defined

by the fundamental domain {∑r
j=1 tj u j } with 0 ≤ tj < 1. In this setting we use additive

notation for T and denote the identity by g = 0.

Every element g in T = U/UZ produces a function on VZ by h �→ e〈h,2π
√
−1G〉,

where we denote by G a representative of g ∈ U/UZ.1 For σ ∈ Bases(A) we denote by

T (σ ) the subset of T defined by

T (σ ) = {g ∈ T | e〈α,2π
√
−1G〉 = 1 for all α ∈ σ }.

This is a finite subset of T . In particular, if σ is a Z-basis of VZ, then T (σ ) is reduced to

the identity. More generally, consider the lattice Zσ generated by the elements α in σ .

If p is an integer such that Zσ ⊂ pVZ, then all elements of T (σ ) are of order p.

For g ∈ T and h ∈ VZ, consider the Kostant function F(g, h) on U defined by

F(g, h)(u) = e〈h,2π
√
−1G+u〉

∏N
i=1(1− e−〈αi ,2π

√
−1G+u〉)

. (3)

1 We prefer to denote the complex number i by
√
−1 because we use i for many indices.
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For example, when g = 0,

F(0, h)(u) = e〈h,u〉
∏N

i=1(1− e−〈αi ,u〉)
.

The function F(g, h)(u) is an element of R̂A. Indeed, if we write

I (g) = {i | 1 ≤ i ≤ N , e−〈αi ,2π
√
−1G〉 = 1},

then

F(g, h)(u) = e〈h,2π
√
−1G〉 e〈h,u〉

∏
i∈I (g)〈αi , u〉ψ

g(u), (4)

where ψ g(u) is the holomorphic function of u (in a neighborhood of zero) defined by

ψ g(u) =
∏

i∈I (g)

〈αi , u〉
(1− e−〈αi ,u〉)

×
∏

i /∈I (g)

1

(1− e−〈αi ,2π
√
−1G+u〉)

.

If c is a chamber of C(A), the JK residue JKc(F(g, h)) is well defined.

The following theorem is due to Szenes and Vergne [22]. If the set A is unimodular

(that is, each σ ∈ Bases(A) is a Z-basis of VZ), it is a reformulation of the Khovanskii–

Pukhlikhov Riemann–Roch calculus on simple polytopes [18]. For a general set A, this

refines the formula of Brion and Vergne [7].

Theorem 3.3. Let c be a chamber of the cone C(A) and let c be its closure. Then:

1. For h ∈ c we have

volZ,A+(h) = vol(V/VZ, dh) JKc

(
e〈h, · 〉

∏N
i=1 αi

)
.

2. Assume that Ŵ is a finite subset of T such that for any σ ∈ Bases(A), we have

T (σ ) ⊂ Ŵ. Then for h ∈ VZ ∩ c, we have

NA+(h) = vol(V/VZ, dh)
∑

g∈Ŵ

JKc(F(g, h)).

Observe that the right-hand side of the equation in condition 2 does not depend on

the measure dh, as it should.

Remark 3.4. If A is unimodular, we can take Ŵ := {0}.

Let us explain the behavior of these functions on a chamber c. By definition, a

quasipolynomial function on a lattice L is a linear combination of products of polynomial

functions and of periodic functions (functions constant on cosets h + pL where p is an

integer). We now show that the normalized volume volZ,A+(h) is given by a polynomial

formula, when h varies in a chamber c, while NA+(h) is given by a quasipolynomial

formula when h varies in VZ ∩ c.



Partition Functions for Classical Root Systems 561

The residue vanishes except on degree −r , so that

JKc

(
e〈h,u〉

∏N
i=1〈αi , u〉

)
= 1

(N − r)!
JKc

(
〈h, u〉N−r

∏N
i=1〈αi , u〉

)
, (5)

and as expected the normalized volume is a polynomial homogeneous function of h of

degree N − r on each chamber.

Let us analyze the behavior of the function NA+(h) expressing the number of integral

points.

Let g ∈ T and denote by ψ g(u) = ∑+∞
k=0 ψ

g

k (u) the series development of the

holomorphic function ψ g appearing in formula (4). Then we see that JKc(F(g, h))

equals

JKc

(
e〈h,2π

√
−1G〉 e〈h,u〉

∏
i∈I (g)〈αi , u〉ψ

g(u)

)

= e〈h,2π
√
−1G〉

|I (g)|−r∑

k=0

1

(|I (g)|−r−k)!
JKc

(
〈h, u〉|I (g)|−r−k

∏
i∈I (g)〈αi , u〉 ψ

g

k (u)

)
. (6)

If g is of order p, the function h �→ e〈h,2π
√
−1G〉 is constant on each coset h + pVZ of

the lattice pVZ, while the function h �→ JKc((〈h, u〉|I (g)|−r−k/
∏

i∈I (g)〈αi , u〉)ψ g

k (u)) is

a polynomial function of h of degree |I (g)| − r − k. Thus the function

NA+(h) = vol(V/VZ, dh)
∑

g∈Ŵ

JKc(F(g, h)) (7)

is given by a quasipolynomial formula when h varies in the closure of a chamber. In

particular, if A is unimodular (like in the case of the positive root system of Ar ), then Ŵ

is reduced to the identity and NA+(h) is polynomial. In the non-unimodular case (like

in the case of the positive root system of Br , Cr , Dr ), the set Ŵ is not reduced to the

identity, and the function NA+(h) is in general only quasipolynomial.

Note that its highest degree component of NA+(h) is polynomial and is the normalized

volume as expected.

Example 3.5. Let us consider the root system B2, that is for A+ = B2 = {e1, e2, e1 +
e2, e1−e2}. Fix a chamber c and an integral vector h = (h1, h2) in the coneC(B2). Observe

that the root lattice is Ze1⊕Ze2 and vol(V/VZ, dh) = 1 for the measure dh = dh1 dh2.

There are three chambers, namely c1 = C({e2, e1 + e2}), c2 = C({e1, e1 + e2}), and

c3 = C({e1−e2, e1}) (see Fig. 3). Following the procedure explained above (see formulas

(6) and (7)) and computing the JK residues on the chambers we obtain:

vol(	B2
(h)) NB2

(h) Chamber

1
2
h2

1 1+ 3
2
h1 + 1

2
h2

1 c1
1
4
(h1 + h2)

2 − 1
2
h2

2
1
4
h2

1 + 1
2
h1h2 − 1

4
h2

2 + h1 + 1
2
h2 + 7

8
+ (−1)h1+h2 1

8
c2

1
4
(h1 + h2)

2 1
4
h2

1 + 1
2
h1h2 + 1

4
h2

2 + h1 + h2 + 7
8
+ (−1)h1+h2 1

8
c3
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Fig. 3. The three chambers for B2.

Note that the formulas agree on walls c1 ∩ c2 and c2 ∩ c3 and they are valid on the

closures of the chambers.

Remark 3.6. Combining (6) and (7), we can see that the quasipolynomial character of

the integral-point counting functions N+
A

stems precisely from the root of unity in (6).

Furthermore, we will see in Lemmas 8.2, 9.1, and 10.1 that for root systems of type B,

C , and D, these roots of unity are of order 2, as in the above example for B2. Let us

record the following immediate consequence:

Corollary 3.7.

• The integral-point counting functions NAr
is polynomial.

• The integral-point counting functions NBr
, NCr

, NDr
are quasipolynomials with

period 2.

Remark 3.8. The partition functions NAr
, NBr

, NCr
, NDr

can be interpreted as (weak)

flow quasipolynomials on certain signed graphs [5]. The polynomiality of NAr
follows

immediately from this interpretation and a unimodularity argument; the fact that the

quasipolynomials NBr
, NCr

, NDr
have period 2 follows from a half-integrality result of

Lee [19].

Remark 3.9. In the case where A+ is an arbitrary sequence of vectors in VZ, the

straightforward implementation of Theorem 3.3 above is of exponential complexity.

Indeed, we make a summation on the set Ŵ, which can become arbitrarily large. Barvinok

uses a signed cone decomposition to obtain an algorithm of polynomial complexity, when

the number of elements of A+ is fixed, to compute the number NA+(h); the LattE team

implemented Barvinok’s algorithm [14], [15] in the language C. Our work will be dealing

either with volumes of polytopes, where the set Ŵ does not enter, or with the partition

function of classical root systems, where the set Ŵ is reasonably small. Then we obtain a

fast algorithm, implemented for the moment in the formal calculation software MAPLE.
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This algorithm for these particular cases can reach examples not obtainable by theLattE

program.

4. A Formula for the Jeffrey–Kirwan Residue

If f is a meromorphic function of one variable z with a pole of order less than or equal

to h at z = 0 then we can write f (z) = Q(z)/zh , where Q(z) is a holomorphic function

near z = 0. If the Taylor series of Q is given by Q(z) = ∑∞
k=0 qk zk , then as usual the

residue at z = 0 of the function f (z) = ∑∞
k=0 qk zk−h is the coefficient of 1/z, that is,

qh−1. We denote it by resz=0 f (z). To compute this residue we can either expand Q into

a power series and search for the coefficient of z−1, or employ the formula

resz=0 f (z) = 1

(h − 1)!
(∂z)

h−1(zh f (z))|z=0. (8)

We now introduce the notion of iterated residue on the space RA.

Let �ν = [α1, α2, . . . , αr ] be an ordered basis of V consisting of elements of A (here

we have implicitly renumbered the elements of A in order that the elements of our

basis are listed first). We choose a system of coordinates on U such that αi (u) =
ui . A function ϕ ∈ RA is thus written as a rational fraction ϕ(u1, u2, . . . , ur ) =
P(u1, u2, . . . , ur )/Q(u1, u2, . . . , ur ) where the denominator Q is a product of linear

forms.

Definition 4.1. If ϕ ∈ RA, the iterated residue Ires�ν(ϕ) of ϕ for �ν is the scalar

Ires�ν(ϕ) = resur=0 resur−1=0 · · · resu1=0ϕ(u1, u2, . . . , ur ),

where each residue is taken assuming that the variables with higher indices are considered

constants.

Observe that the value of Ires�ν(ϕ) depends on the order of �ν. For example, for f =
1/(x(y − x)) we have resx=0 resy=0( f ) = 0 and resy=0 resx=0( f ) = 1.

Remark 4.2. Choose any basis γ1, γ2, . . . , γr of V such that
⊕ j

k=1 αj =
⊕ j

k=1 γj for

every 1 ≤ j ≤ r and such that γ1∧γ2∧· · ·∧γr = α1∧α2∧· · ·∧αr . Then, by induction,

it is easy to see that for ϕ ∈ RA,

resαr=0 · · · resα1=0 ϕ = resγr=0 · · · resγ1=0 ϕ.

Thus given an ordered basis, we may modify α2 by α2 + cα1, . . . , with the purpose

of getting easier computations.

The following lemma will be useful later.

Lemma 4.3. Let �ν = [α1, α2, . . . , αr ] and let fβ = 1/
∏r

i=1 βi be a basic fraction.

Then the iterated residue Ires�ν( fβ) is non-zero if and only if there exists a permutation

w of {1, 2, . . . , r} such that

βw(i) ∈ Rα1 ⊕ · · · ⊕ Rαi for all 1 ≤ i ≤ r.
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Definition 4.4. Let �ν = [α1, α2, . . . , αr ] and let u j = αj (u). Choose a sequence of

real numbers: 0 < ε1 < ε2 < · · · < εr . Then define the torus

T (�ν) = {u ∈ UC | |u j | = εj , j = 1, . . . , r}. (9)

The torus T (�ν) is identified via the basis αj with the product of r circles oriented

counterclockwise. The sequence [ε1, ε2, . . . , εr ] is chosen so that elements αq not in⊕ j

k=1 Rαj do not vanish on the domain {u ∈ UC | |uk | ≤ εk, 1 ≤ k ≤ j ; |ui | = εi , i =
j+1, . . . , r}. This is achieved by choosing the ratios εj/εj+1 very small. The torus T (�ν)

is contained in UC(A) and the homology class [T (�ν)] of this torus is independent of the

choice of the sequence of the ordered εj [23].

Choose an ordered basis e1, e2, . . . , er of V of volume 1 with respect to the measure

dh. For z ∈ UC, define z j = 〈z, ej 〉 and dz = dz1 ∧ dz2 ∧ · · · ∧ dzr . Denote by det(�ν)

the determinant of the basis α1, α2, . . . , αr with respect to the basis e1, e2, . . . , er .

Lemma 4.5. For ϕ ∈ RA, we have

1

det(�ν)
resαr=0 · · · resα1=0 ϕ = 1

(2π
√
−1)r

∫

T (�ν)

ϕ(z) dz.

Thus, as for the usual residue, the iterated residue can be expressed as an integral.

We now introduce the notion, due to De Concini and Procesi [13], of a maximal

proper nested set, MPNS in short.

If S is a subset of A, we denote by 〈S〉 the vector space spanned by S. More generally,

if M = {Si } is a set of subsets of A, we denote by 〈M〉 the vector space spanned by all

elements of the sets Si . We say that a subset S of A is complete if S = 〈S〉∩A or in other

words if any element of A which is a linear combination of elements of S belongs to S.

A complete subset S is called reducible if we can find a decomposition V = V1 ⊕ V2

such that S = S1 ∪ S2 with S1 ⊂ V1 and S2 ⊂ V2. Otherwise S is said to be irreducible.

Definition 4.6. Let I be the set of irreducible subsets of A. A set M = {I1, I2, . . . , Ik}
of irreducible subsets of A is called nested if, given any subfamily {I1, . . . , Im} of M

such that there exists no i , j with Ii ⊂ Ij , then the set I1 ∪ · · · ∪ Im is complete and the

elements Ij are the irreducible components of I1 ∪ I2 ∪ · · · ∪ Im .

Example 4.7. Let E be an (r + 1)-dimensional vector space with basis ei (i = 1, . . . ,

r ). We consider the set

Kr+1 = {ei − ej | 1 ≤ i < j ≤ r + 1}.

These are the positive roots for the system Ar . The irreducible subsets of Kr+1 are

indexed by subsets S of {1, 2, . . . , r + 1}, the corresponding irreducible subset being

{ei − ej | i, j ∈ S, i < j}. For instance, the set S = {1, 2, 4} parametrizes the set of

roots given by {e1 − e2, e2 − e4, e1 − e4}.
A nested set is represented by a collection M = {S1, S2, . . . , Sk} of subsets of

{1, 2, . . . , r + 1} such that if Si , Sj ∈ M then either Si ∩ Sj is empty, or one of them is

contained in another.



Partition Functions for Classical Root Systems 565

Definition 4.8. A maximal nested set (in short MNS) M is a nested set such that for

every irreducible set I of A the set M ∪ {I} is no longer nested.

An MNS has exactly r elements [13].

Assume now that A is irreducible, otherwise just take the irreducible components.

Then every MNS M contains A. Let I1, I2, . . . , Ik be the maximal elements of the set

M\A. We see that the vector space 〈I1〉 ⊕ 〈I2〉 ⊕ · · · ⊕ 〈Ik〉 is of codimension 1 [13,

Proposition 1.3].

Definition 4.9. A hyperplane H in V isA-admissible if it is spanned by a set of vectors

of A.

Thus if M is an MNS, the vector space 〈M\A〉 is an admissible hyperplane H .

Definition 4.10. Let A be irreducible and let H be an A-admissible hyperplane. All

MNSs such that 〈M\A〉 = H are said to be attached to H .

Therefore to classify MNSs for an irreducible set A we proceed by running over the

set of A-admissible hyperplanes, as described in Fig. 4.

We now describe the notion of an MPNS of A.

Fix a total order on the set A. For example, we can choose a linear functional ht on

V so that the values ht(αi ) are all distinct and positive. Thus the value ht(α) is larger if

α is deeper in the interior of the cone.

Let M = {S1, S2, . . . , Sk} be a set of subsets of A. In each Sj we choose the element

αj maximal for the order given by ht. This defines a map θ from M to A.

Definition 4.11. An MNS M is called proper if θ(M) is a basis of V . We denote by

P(A) the set of MPNSs.

If M = {I1, I2, . . . , Ir } is an MNS, we associate to M the list [θ(Ii1
), . . . , θ(Iir

)]

using the total order on the elements θ(M); that is we have ht(θ(Ii1
)) < ht(θ(Ii2

)) <

· · · < ht(θ(Iir
)). Observe that, if A is irreducible, for every MNS, Iir

is always equal to

A and θ(Iir
) is the highest element of A. We often implicitly renumber our elements in

M such that ht(θ(I1)) < ht(θ(I2)) < · · · < ht(θ(Ir )).

We have associated to every MPNS M an ordered basis
−−→
θ(M) = [α1, α2, . . . , αr ] of

elements of A. We denote by vol(M) > 0 the volume of the parallelepiped
∑r

i=1[0, 1]αi

with respect to our measure, and by C(M) = ∑r
i=1 R≥0αi ⊂ C(A) the cone generated

by θ(M).

• Take a hyperplane H spanned by a set of vectors of A.

• Break A ∩ H into irreducible subsets I1 ∪ I2 ∪ · · · ∪ Ik .

• For each irreducible Ii construct the set {M i
1, . . . , M i

ki
} of MNSs for Ii .

• Set Ci = {1, . . . , ki }.
• An MNS is then given by the union M1

c1
∪M2

c2
∪ · · · ∪Mk

ck
∪{A}where c1 ∈ C1, . . . ,

ck ∈ Ck , and all of them are obtained by letting ci vary.

Fig. 4. Building of all MNSs attached to an A-admissible hyperplane H .
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If v is a regular element of V , let

P(v,A) = {M ∈ P(A) | v ∈ C(M)}. (10)

The set P(v,A) depends only of the chamber c where v belongs. We are now ready to

state the basic formula for our calculations.

Theorem 4.12 [13]. Let c be a chamber and let v ∈ c. Then, for ϕ ∈ RA, we have

JKc(ϕ) =
∑

M∈P(v,A)

1

vol(M)
Ires−−→

θ(M)
ϕ.

We also use the corresponding integration formula.

Each MPNS M ∈ P(v,A) determines an oriented cycle [T (
−−→
θ(M))] contained in the

open set UC(A), as described in Definition 4.4.

Definition 4.13. Let c be a chamber. Define the oriented cycle:

H(c) =
∑

M∈P(v,A)

sign(det(
−−→
θ(M)))[T (

−−→
θ(M))].

The following integral version of Theorem 4.12 will be useful.

Theorem 4.14. Let c be a chamber. Then for ϕ ∈ RA we have

JKc(ϕ) = 1

(2π
√
−1)r

∫

H(c)

ϕ(z) dz.

The following example should help clarify the notions introduced.

Example 4.15. We consider the set K4 of positive roots for A3 (see Fig. 5) defined by

K4 = {ei − ej | 1 ≤ i < j ≤ 4}.

We let V be the vector space generated by the elements in K4. Then V has dimension

3 and we write an element of V as

a = a1e1 + a2e2 + a3e3 − (a1 + a2 + a3)e4.

We consider the height function defined by

ht(e1 − e2) = 10, ht(e2 − e3) = 11, ht(e3 − e4) = 12.

This choice gives the following order on the roots:

e1 − e2 < e2 − e3 < e3 − e4 < e1 − e3 < e2 − e4 < e1 − e4.

Take a hyperplane H in V spanned by two linearly independent elements ofK4. Therefore

it is the kernel of a linear form
∑

i∈IH
ai , where IH is a proper subset of {1, 2, 3, 4}. The set
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a12

a2a13

a23

a1

a3

c2

c6 c5

c4 c3

c1

c8 c7

a.23 a.1

a.12

a.13

a.3

a.2

a.123

Fig. 5. Hyperplanes for A3 with a = a1e1 + a2e2 + a3e3 − (a1 + a2 + a3)e4.

of complementary indices gives the same hyperplane. Thus each admissible hyperplane

partitions the set of indices {1, 2, 3, 4} in two sets Z1 and Z2, where Z1 := {i ∈ IH }
and Z2 is the set of complementary indices. In our example we have seven choices of

admissible hyperplanes corresponding to the following partitions:

H1 = {[1, 2, 3], [4]}, H2 = {[1, 2, 4], [3]}, H3 = {[1, 3, 4], [2]},
H4 = {[2, 3, 4], [1]}, H5 = {[1, 2], [3, 4]}, H6 = {[1, 3], [2, 4]},
H7 = {[1, 4], [2, 3]}.

Now observe that if the hyperplane Hi already contains the highest root e1 − e4 then

it cannot lead to an MPNS. Indeed, we must get a basis if we add the highest root to a set

of vectors contained in Hi . Thus H2, H3, and H7 can be excluded. It remains to consider

the hyperplanes H1, H4, H5, and H6.

Hyperplanes H1 and H4 give rise to two MPNSs each, while H5 and H6 give rise to

only one. So we obtain a list of six MPNSs (as described in Example 4.7, we identify an

irreducible subset I with a subset S of [1, 2, 3, 4]):

M1 = {[1, 2], [1, 2, 3], [1, 2, 3, 4]}, M2 = {[2, 3], [1, 2, 3], [1, 2, 3, 4]},
M3 = {[2, 3], [2, 3, 4], [1, 2, 3, 4]}, M4 = {[3, 4], [2, 3, 4], [1, 2, 3, 4]},
M5 = {[1, 3], [2, 4], [1, 2, 3, 4]}, M6 = {[1, 2], [3, 4], [1, 2, 3, 4]}.

5. Search for Maximal Proper Nested Sets Adapted to a Vector:

The General Case

Given a vector v in the cone C(A), we describe how to search for all MPNSs belonging

to P(v,A), without enumerating all MPNSs.
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We use as height function a linear form that is positive and that takes different values

on all elements αi , and consider the total order it induces. Let H be an A-admissible

hyperplane in V . Then the cone C(A∩ H) generated by the elements of A belonging to

H is a cone with non-empty interior in H .

We have already seen that to list all the MPNSs, we first have to list all admissible

hyperplanes H and then find the irreducible components J1, J2, . . . , Js of A∩ H . Then

we choose an MPNS Mi := {I a
i } for Ji , and define M = M1∪M2∪M3∪· · ·∪Ms∪{A}.

As we have seen in Example 4.15 we can discard some of the hyperplanes a priori,

because they cannot lead to an MPNS. The next lemma examines the general situation.

Let θ be the highest element in A and let H be an admissible hyperplane of A.

Lemma 5.1. There exists an MPNS M ∈ P(v,A) attached to H , if and only if θ does

not belong to H and if v belongs to the cone generated by θ and A ∩ H .

Proof. The condition is necessary. Indeed, v must belong to the cone generated by the

elements θ(I a
i ) and θ , and all the elements θ(I a

i ) are in A∩H . Reciprocally consider the

projection v−(〈u, v〉/〈u, θ〉)θ , where u is the equation of the hyperplane H . This can be

written as v1⊕ v2⊕· · ·⊕ vs , where each vi is in the cone C(Ji ). Now let Mi ∈ P(vi , Ji )

be an MPNS in Ji . The element vi belongs to C(θ(Mi )). We can write

v = tθ +
s∑

i=1

∑

I a
i ∈Mi

ta
i θ(I a

i )

with ta
i > 0. Thus we see that the collection M1 ∪ · · · ∪Ms ∪A is an MPNS in P(v,A).

Moreover, in this way we list all elements of P(v,A).

Our search for MPNS in P(v,A) will then be pursued by constructing all possible

admissible hyperplanes H for which v is in the convex hull of C(A ∩ H) and θ . We

denote by Hyp(v,A) the set of such A-admissible hyperplanes.

The following easy lemma lists some obvious conditions for the set Hyp(v,A). Let

uH ∈ U be the normal vector to an A-admissible hyperplane, meaning that H := {h ∈
V | 〈uH , v〉 = 0}.

Lemma 5.2. If H ∈ Hyp(v,A) then H satisfies the following conditions:

1. 〈uH , θ〉 	= 0.

2. 〈uH , v〉 × 〈uH , θ〉 ≥ 0.

Thus if a hyperplane H satisfies the above conditions we define

projH (v) = v − 〈uH , v〉
〈uH , θ〉θ.

Hence to decide if H ∈ Hyp(v,A) we simply have to test if projH (v) is in the cone

generated by A ∩ H , which is done by standard methods.

We summarize the scheme of the algorithm in Fig. 6. Recall that we have as input a

vector v, and as output the list of all MPNSs belonging to P(v,A).
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check if v ∈ C(A)

for each hyperplane H do

check if v and θ are on the same side of H

if not, then skip this hyperplane

define the projection projH (v) of v on H along θ

check if projH (v) belongs to C(A ∩ H); if not then skip this hyperplane

write A ∩ H as the union of its irreducible components I1 ∪ · · · ∪ Ik

write v as v1 ⊕ · · · ⊕ vk according to the previous decomposition

for each Ij do

compute all MPNSs for vj and Ij

collect all these MPNSs for vj and Ij

end of loop running across Ij s

collect all MPNSs for the hyperplane H

end of loop running across H ’s

return the set of all MPNSs for all hyperplanes

Fig. 6. Algorithm for MPNSs computation (general case).

We will explain our algorithm in more detail for each classical root system (see

Sections 7–10).

6. Trees and Order of Poles

Let M be an MNPS for the system A := {α1, α2, . . . , αn}. In our algorithms we will

need to take an iterated residue with respect to a basis
−−→
θ(M) of a function of the form ϕ =

P/
∏N

i=1 αi , where P is a polynomial function on U . It is thus important to understand

the order of the poles of the function obtained after performing a certain number of

residues. We also prove that the iterated residue associated to M depends only on the

tree associated to M .

We associate to an MNS M a tree T as follows. Let M = {I1, . . . , Ir } be an MNS.

The vertices of T are the elements of M and the oriented edges are determined from the

reverse order relation by inclusion: the ends of the tree are irreducible sets with just one

element and if A is irreducible, the base is the set A. A subset N of M is called saturated

if it contains all elements above elements of N in the tree order. Thus if N contains an

element S, it contains all the elements S′ of M which are contained in S.

Example 6.1. The two MNSs named M1 and M5 described in Example 4.15 can be

rewritten respectively as

[1, 2] [1, 3] [2, 4]

[1, 2, 3]

��

and

[1, 2, 3, 4]

��

[1, 2, 3, 4]

�������������������

�������������������
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Lemmas 7.3, 8.6, and 10.4 describe the decomposition of A∩H in irreducible nested

sets and lead to the following result:

Proposition 6.2. Let T be the tree associated to an irreducible classical root system.

Then T is a connected tree for which every vertex is adjacent to at most two other

vertices.

Lemma 6.3. Let M = {I1, I2, . . . , Ir } be an MPNS. Here we have numbered our

irreducible sets such that θ(I1) < θ(I2) < · · · < θ(Ir ). Let k be an integer smaller than

or equal to r . Then the set {I1, I2, . . . , Ik} is saturated.

Indeed, if two sets I, J belong to M and I ⊂ J , then θ(I ) < θ(J ).

Proposition 6.4. Let M = [I1, I2, . . . , Ir ] be a maximal nested proper family. Let

[I ′1, I ′2, . . . , I ′r ] be a reordering of the sequence [I1, I2, . . . , Ir ]. We assume that this

reordering is compatible with the partial order given by inclusion: if I ′j ⊂ I ′k then j < k.

Let

�ν = [θ(I1), θ(I2), . . . , θ(Ir )]

and

�ν ′ = [θ(I ′1), θ(I ′2), . . . , θ(I ′r )].

Then we have Ires�ν = Ires �ν ′ .

Proof. We prove this proposition by induction on r .

If A is irreducible, then necessarily Ir = I ′r = A and [I ′1, I ′2, . . . , I ′r−1] is a reorder-

ing of the sequence [I1, I2, . . . , Ir−1]. Furthermore, the families {I1, I2, . . . , Ir−1} and

{I ′1, I ′2, . . . , I ′r−1} are MPNSs for A0 =
⋃r−1

j=1 Ij . The set A0 spans a codimension 1

vector space in V .

To prove that Ires�ν = Ires �ν ′ , it suffices to test it on basic fractions fσ . Let σ =
{β1, β2, . . . , βr } be a basic subset of A. By Lemma 4.3, if Ires�ν fσ 	= 0, then the set

σ ∩ 〈A0〉 is of cardinality r − 1, and there exists an element of σ , say βr , of the form

cθ + ξ where ξ belongs to 〈A0〉, c is a non-zero constant, and θ is the highest element

of A. Let

�ν0 = [θ(I1), θ(I2), . . . , θ(Ir−1)]

and

�ν ′0 = [θ(I ′1), θ(I ′2), . . . , θ(I ′r−1)].

Then we have

Ires�ν fσ =
1

c
Ires �ν0

fσ∩〈A0〉

and

Ires �ν ′ fσ =
1

c
Ires �ν ′0 fσ∩〈A0〉.

We conclude by induction.
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When A is not irreducible, we write A = ⋃s
a=1 Ja where Ja are irreducibles. We

have V = ⊕s
a=1〈Ja〉. Every basic subset σ of A is the union of basic subsets for the

irreducible sets Ja . Define

�νa = [θ(I i1

a ), θ(I i2

a ), . . . , θ(Ja)],

where [I i1
a , I i2

a , . . . , Ja] is the subsequence of irreducible sets contained in Ja extracted

(with conserving order) from the sequence [I1, I2, . . . , Ir ]. Similarly let

�ν ′a = [θ(I ′a
i1), θ(I ′a

i2), . . . , θ(Ja)]

where [I ′a
i1 , I ′a

i2 , . . . , I ′a] is the subsequence of irreducible sets contained in Ja extracted

from the sequence [I ′1, I ′2, . . . , I ′r ]. Then, as the calculation takes place with respect to

independent variables, we have

Ires�ν( fσ ) =
s∏

a=1

(Ires�νa
fσ∩〈Ja〉),

Ires �ν ′( fσ ) =
s∏

a=1

(Ires �ν ′a fσ∩〈Ja〉).

Each of the vector spaces 〈Ja〉 is of dimension less than r , so that by induction hypothesis

Ires�νa
= Ires �ν ′a . This concludes the proof.

We now consider partial iterated residues. To a set ν of elements of A, we associate

the vector space

Hν := {u ∈ U | 〈α, u〉 = 0 for all α ∈ ν}.
A linear function α ∈ A produces a linear function on Hν by restriction. If �ν :=
[α1, α2, . . . , αk] is a sequence of elements of A, the partial iterated residue

Ires�ν ϕ := resαk=0 · · · resα1=0 ϕ

associates to a rational function ϕ in RA a rational function on Hν of the form

G∏
i=1,...,n ;αi 	=0 αi

ni
,

where G is a polynomial function on Hν and α is the restriction of α to Hν . Let M be

an MPNS and consider the tree associated to M . Given a saturated subset S of M , we

can define the iterated residue with respect to this saturated set: we choose any order

S := [I1, I2, . . . , Ik] on S compatible with the inclusion relation and define IresS := Ires�ν
with �ν = [θ(I1), θ(I2), . . . , θ(Ik)]. With the same proof as for Proposition 6.4, this partial

residue depends only on the set S. We denote by HS the intersection of the kernels of

the elements α for α ∈ S. It is also the intersection of the kernels of the elements θ(Ik),

as the set ν is a basic sequence in S.

Let ϕ be a function in RA of the form

ϕ = P∏n
i=1 αi

.
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Let M be an MPNS and let J1, J2, . . . , Js be elements of M . We consider the saturated

subset S of M consisting of the elements of the tree strictly above J1, J2, . . . , Js . The

iterated residue IresS ϕ is a function on HS . Denote by ua the restriction of the function

θ(Ja) to HS .

Proposition 6.5. The pole of the linear function ua in the iterated residue IresS ϕ is of

order less than or equal to |Ja| − dim〈Ja〉 + 1.

See Figs. 7 and 8 for an application of the proposition.

Proof. Choose a vector space E such that

V = 〈J1〉 ⊕ · · · ⊕ 〈Js〉 ⊕ E .

Let B =⋃s
a=1 Ja and C = A\B. Write C := {β1, β2, . . . , βq} and

ϕ = P × ϕ1 × ϕ2 × · · · × ϕs × Q

with ϕa = 1/
∏

α∈Ja
α and Q = 1/

∏q

j=1 βj .

For βj ∈ C , we write βj =
∑s

i=1 β i
j + γj with β i

j ∈ 〈Ji 〉 and γj ∈ E . The element γj

is necessarily non-zero, as the set B is complete. Thus we write

1

βj

= 1

γj (1+ (
∑s

i=1 β i
j )/γj )

and the iterated residue is by definition

IresS(ϕ) = IresS


P × (ϕ1 · · ·ϕs)×

q∏

j=1

1

γj

∞∑

k=0

(
(−1)k

∑s
i=1 β i

j

γj

)k

 .

Here, when taking the residue, the elements γj are considered as constants and this sum

is finite.

Consider the subset Ma of elements of M contained in Ja . This is an MPNS for the

set Ja . Let J+a be the saturated subset of Ma consisting of all elements of Ma different

from Ja . Then J+a has dim〈Ja〉 − 1 elements. If g = Pa/
∏

α∈Ja
αnα , the iterated residue

IresJ+a g is a Laurent polynomial in ua .

Now IresS ϕ is a sum of products of residues of the form IresJ+a ga where ga =
Pa/

∏
α∈Ja

α and Pa is a polynomial. Thus we obtain a Laurent polynomial in ua, a =
1, . . . , s (with coefficients rational functions on the vector space E∗). Now the homo-

geneous degree of ga is greater than or equal to −|Ja|. The number of residues we are

taking is equal to dim〈Ja〉 − 1. So we obtain a function of ua of homogeneous degree

greater than or equal to −|Ja| + dim〈Ja〉 − 1. This means that the pole in ua is of order

less than or equal to |Ja| − dim〈Ja〉 + 1.

Let us consider the MPNS whose tree representation is given by Fig. 7. The orders

of the poles of its nodes are given in Fig. 8.
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[1, 2]
��

������
[4, 5]

��

������������ [6, 7]
��

[10, 11]
��

[1, 2, 3]
��

����������� [4, 5, 6, 7]
��

[9, 10, 11]
��

[1, 2, 3, 4, 5, 6, 7]
��

[8, 9, 10, 11]
��

�����������

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Fig. 7. Irreducible components of an MPNS in A10.

Remark 6.6. In our program for calculating iterated residues for root systems of type

Ar , we reorder roots according to the tree order: we take the residue first with respect

to the elements θ(Ik) appearing at the end of the tree in arbitrary order, and we remove

these variables. Then we take the variables appearing at the end of the tree when we

have removed these irreducible sets. Here an irreducible set I is indexed by a subset S

of {1, 2, . . . , r + 1}. A subset S of cardinality 2, for example [1, 3], corresponds to the

irreducible set with one element (here e1 − e3). Thus given an MNS M represented as

M = {S1, S2, . . . , Sr }we first take the residues with respect to the roots θ(Ik), for sets Sk

of cardinality 2, in arbitrary order, then with respect to irreducible sets associated to sets

Sk of cardinality 3, etc. The procedure of ordering roots coming from an MNS M = {Sj }
according to the cardinality of the set Sk is called OrderThetas. Furthermore, at the

same time we keep track of the order of the pole for calculating an iterated residue of a

function ϕ = P/
∏N

i=1 αi in the procedure FormalPathAwithOrders.

7. Volume and Partition Function for the System An−1

7.1. The Formulas to Be Implemented

Let E be an n-dimensional vector space with basis ei (i = 1, . . . , n) and consider the set

Kn = {ei − ej | 1 ≤ i < j ≤ n}.

These are the positive roots for a system of type An−1. The number of elements in Kn

is N = n(n − 1)/2. Note that Kn is also the set of vectors in a complete graph with n

nodes.

1
��

��
��

� 1
��

��
��

� 1
��

1
��

2
��

��
��

� 4
��

2
��

16
��

4
		

��
��

�

46

Fig. 8. Order of nodes in the tree represented in Fig. 7, according to Proposition 6.5.
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We let V be the vector space generated by the elements in Kn . Then V has dimension

n − 1 and it is defined by

V =
{

v =
n∑

i=1

vi ei ∈ E

∣∣∣
n∑

i=1

vi = 0

}
.

In our procedures, a vector v of length n such that
∑n

i=1 vi = 0 is called an A-vector

and written as v = [v1, v2, . . . , vn]. The lattice spanned by Kn is simply

VZ =
{

h =
n∑

i=1

hi ei ∈ Z
n
∣∣∣

n∑

i=1

hi = 0

}
.

It is well known and easy to prove that Kn is unimodular. The cone C(Kn) generated by

Kn is simplicial with generators the n − 1 simple roots e1 − e2, e2 − e3, . . . , en−1 − en .

This cone is described as

C(Kn) = {A-vector v = [v1, v2, . . . , vn] | v1 + v2 + · · · + vi ≥ 0 for all i}.

Keep in mind that our vector v satisfies the condition

v1 + v2 + · · · + vn−1 + vn = 0.

We choose on V the measure dh determined by VZ. Let v be in the cone C(Kn). We

are interested in computing the volume volZ,Kn
(v) of the polytope

	Kn
(v) =

{
(xα)α ∈ R

N
∣∣∣ x ≥ 0,

∑

α∈Kn

xαα = v

}
.

If h is a point in V with integral coordinates then we are also interested in computing

the number NKn
(h) of integral points in 	Kn

(h).

We apply the formulas of Theorem 3.3. Since Kn is unimodular, the set Ŵ can be

taken as Ŵ := {0} (Remark 3.9).

Since V is contained in E , then we have a canonical map E∗ −→ V ∗ given by

restriction. Define U = V ∗ as in the general setting. We identify U with R
n−1 by

sending u ∈ R
n−1 to u = ∑n−1

i=1 ui e
i ∈ E∗, where ei is the dual basis to ei . Thus the

root ei − ej (1 ≤ i < j < n) produces the linear function ui − u j on U , while the root

ei − en produces the linear function ui .

Definition 7.1. Let v = ∑n
i=1 vi ei ∈ V be a vector with real coordinates. Let h =∑n

i=1 hi ei ∈ V be a vector with integral coordinates. Then for u ∈ U define:

• JA(v)(u) = e
∑n−1

i=1 ui vi /

n−1∏

i=1

ui

∏

1≤i< j≤n−1

(ui − u j ).

• FA(h)(u) =
n−1∏

i=1

(1+ ui )
hi+n−1−i/

n−1∏

i=1

ui

∏

1≤i< j≤n−1

(ui − u j ) .
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Theorem 7.2. Let c be a chamber of C(Kn).

• For v ∈ c, we have

volZ,Kn
(v) = JKc(JA(v)).

• For h ∈ Z
n ∩ c, we have

NKn
(h) = JKc(FA(h)).

Proof. The first assertion is the general formula.

The function F(0, h)(u) = e〈h,u〉/
∏

α∈A(1− e−〈α,u〉) for the system Kn is

F(0, h)(u) = e
∑n−1

i=1 ui vi

∏n−1
i=1 (1− e−ui )

∏
1≤i< j≤n−1(1− e−(ui−u j ))

.

Note that the change of variable 1 + zi = eui preserves the hyperplanes ui = 0 and

ui = u j . After the change of variable, we get

F(0, h)(u) =
∏n−1

i=1 (1+ zi )
hi+n−i

∏
1≤i< j≤n−1(zi − z j )×

∏n−1
i=1 zi

. (11)

However, zi = eui − 1 leads to dzi = eui dui = (1 + zi ) dui and hence we obtain

the desired exponent hi + n− i − 1 thanks to the formula involving Jacobians in Propo-

sition 3.2.

In order to implement these formulas, we first have to describe the set P(v,Kn)

(Section 7.2), then calculate the iterated residue formulas associated to these paths (Sec-

tion 7.3), and then add them. We stress the fact that our programs work with formal

parameters.

7.2. The Search for Maximal Proper Nested Sets Adapted to a Vector

We now look for MPNSs adapted to a vector following the general method as outlined

in Fig. 6: we begin by listing all possible Kn-admissible hyperplanes. The usual height

function is

ht(v) =
n−1∑

i=1

(n − i)vi

which takes the value 1 on all the simple roots, and hence the value j − i on ei − ej .

We deform ht slightly in order to have a function taking different values on all roots:

If two elements ei − ej and ek − eℓ are such that j − i = ℓ − k, we decide that

ht(ei − ej ) < ht(ek − eℓ) if i < k.

If P is a proper subset of {1, 2, . . . , n} and v is an A-vector, we denote by 〈u P , v〉 the

linear form
∑

i∈P vi , and by HP the hyperplane

HP := {v ∈ V | 〈u P , v〉 = 0}.
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Observe that the hyperplane HP is equal to the hyperplane HQ determined by the

complement Q of P . We denote

K(P) := {ei − ej | 1 ≤ i < j ≤ n ; i, j ∈ P} ⊂ Kn.

Note that K(P) is the positive system AP|−1, where the positivity is induced by the

lexicographic order.

Lemma 7.3.

• The hyperplane HP is a Kn-admissible hyperplane and every Kn-admissible hy-

perplane is of this form.

• The set Kn ∩ HP is the union of K(P) and K(Q), where Q is the complement of

P in {1, 2, . . . , n}.

Proof. Let H be a Kn-admissible hyperplane. Let us prove that H = HP for some

proper subset P of {1, 2, . . . , n} by induction on n. Let α be a root in H . Renumbering

the roots, we may assume that α = en−1 − en . The map q sending ei to ei if i < n and

en to en−1 sends the set Kn\{α} to Kn−1. The space H/Rα becomes a Kn−1-admissible

hyperplane. It is thus determined by a subset P ′ of {1, 2, . . . , n − 1}. If P ′ does not

contain n − 1, the hyperplane H is equal to the hyperplane determined by the subset

P ′ of {1, 2, . . . , n − 1}. If P ′ does contain n − 1, then the hyperplane H is equal to the

hyperplane determined by P = P ′ ∪ {n}. The other assertions of the lemma are easy to

see.

We now proceed to the description of our algorithm. Recall our description of an

A-vector as an array v = [v1, v2, . . . , vn] with
∑n

i=1 vi = 0. Referring to Fig. 6 we need

to check if the vector is in the cone C(Kn), that is,
∑i

j=1 vj ≥ 0 for 1 ≤ i ≤ n − 1. This

is done by using the procedure CheckVector(v), which gives an answer true or false.

For the system Kn the highest root θ is equal to

θ = [1, 0, . . . , 0,−1] ∈ R
n.

We list all hyperplanes that are in Hyp(v,Kn). This is done in the procedure

TwoSets(v), that we are about to describe. As explained in Lemma 7.3, each hy-

perplane is determined by an equation
∑

i∈I ai = 0. It therefore produces a set of two

lists P , Q, where P = [i ∈ I ] and Q = [i /∈ I | 1 ≤ i ≤ n]. Note that P and Q are

sorted. To verify that such a hyperplane is in Hyp(v,Kn), we need to test if 〈u P , θ〉 is not

zero (θ is not in the hyperplane) and if 〈u P , v〉× 〈u P , θ〉 is non-negative (θ and v are on

the same side of the hyperplane). Furthermore, the procedure ProjH(v,H) constructs

the vector

projH (v) = v − 〈u P , v〉
〈u P , θ〉θ

that we represent as {[v1, P], [v2, Q]}. Each of the vectors v1, v2 is an A-vector (sum

of coordinates equal to zero). So the last condition for H being in Hyp(v,Kn) is that

v1 ∈ C(K(P)) and v2 ∈ C(K(Q)).
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Hence a hyperplane HP is in Hyp(v,Kn) if it satisfies the series of conditions:

〈u P , θ〉 	= 0 with Hvalue(theta(n),P) 	= 0,

〈u P , v〉 × 〈u P , θ〉 ≥ 0 with CheckSide(v,P) = true,

v1 ∈ C(K|P|−1) with CheckVector(v1) = true,

v2 ∈ C(K|Q|−1) with CheckVector(v2) = true.

If all answers are true, then HP is in Hyp(v,Kn) and we obtain two vectors, [v1, P],

[v2, Q], from our input (v, P). Then we construct the MNSs for [v1, P] and [v2, Q],

and go on recursively until the procedure stops. These iterated steps are done by the

procedure Splits. Finally the procedure MNSs(v) computes the set P(v,Kn) for a

given vector v, by running over all subsets P such that HP is in Hyp(v,Kn).

7.3. Residues Associated to Maximal Proper Nested Sets

An element M in P(v,Kn) is represented as a collection M = {K1, K2, . . . , Kn−1}
of (n − 1) subsets of [1, 2, . . . , n]. As we have said in Remark 6.6, given an MPNS

M := {K1, K2, . . . , Kn−1} we associate to it an ordered basis
−−→
θ(M) of V (procedure

OrderThetas). If p = [α1, α2, . . . , αn−1] is the list of roots singled out by our pro-

cedure, then α1 is an element associated to a set Ki of cardinality 2 and αn−1 = θ . We

identify the root ei − en to the linear function zi on C
n−1 and the root ei − ej to zi − z j .

Let h be an A-vector with integral coordinates. Let us consider the Kostant function

(Definition 7.1)

FA(h)(z1, z2, . . . , zn−1) =
∏n−1

i=1 (1+ zi )
hi+n−1−i

∏
1≤i< j≤n−1(zi − z j )×

∏n−1
i=1 zi

.

To compute NKn
(h), we have to compute

resM ϕ := resαn−1=0 resα2=0 · · · resα1=0 ϕ

with ϕ = FA(h). Our procedure works either if we assign some numerical value to h, or

if h is a symbolic parameter. In this section we explain how to compute the polynomial

h → NKn
(h).

If α1 = zi − z j , we can replace—after taking the residue at zi = z j —the variable zi

by the variable z j in all the other roots. Thus we eliminate the variable zi . Recursively,

we have to compute the residue at zi0
− z j0 = 0 of an expression

f = A(zi , h, i ∈ L)
∏

i∈L(1+ zi )
hi+n−1−i

∏
i, j∈L;i< j (zi − z j )

mi, j
∏

i∈L z
mi

i

, (12)

where L is a list of indices taken in {1, . . . , n − 1}, and A(zi , h) is a polynomial in zi

and h. Recall that using Proposition 6.5, we know in advance the order maxi = mi0, j0 of

the root zi0
− z j0 . Note that computing the residue is exactly the same as computing the

coefficient of z of degree maxi−1 of the expansion of f × (zi0
− z j0)

maxi at zi0
= z+ z j0 .
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For any parameter b, we write at zi0
= z + z j0 ,

(1+ zi0
)b = (1+ z j0)

b

(
1+

maxi−1∑

j=1

(
b

j

) (
z

1+ z j0

) j
)
+ O(zmaxi).

Similarly, we write at zi0
= z + z j0 ,

1

(zi − zi0
)mi,i0

= 1

(zi − z j0)
mi,i0

(
1− z

zi − z j0

)−mi,i0

and we expand it as a series in z in the procedure CoeffBin using the binomial coeffi-

cients.

Finally after expanding all factors of f containing the variable zi0
= z + z j0 in the

variable z, we compute the coefficient of zmaxi−1.

7.4. The Procedure MNS KostantA

We finish the section dedicated to An−1 by giving the global outline of the procedure

MNS KostantA(v) computing the Kostant partition number of a vector v lying in the root

lattice. We begin by slightly deforming v so that it lies on no admissible hyperplanes,

with the command v′ := DefVector(v,n). We compute all MPNSs for v′ with the

procedure MNSs(v′).
Given such an MPNS M = {Sk}, we extract the highest roots of its irreducible

components with the call R := ThetaMNS(M). We obtain a set R where each element of

R is a root represented as [i, j] together with the cardinality of the set Sk it comes from.

We then transform this set R into a path p keeping track of the order of poles by setting

p := FormalPathAwithOrders(R).

Finally we compute the residue associated to this path with

OneIteratedResidue(p,v,n). Summing all these residues over the set of MNSs,

we obtain, thanks to Theorem 7.2, the desired partition number for v.

8. Type Bn

8.1. The Formulas to Be Implemented

Consider a vector space V with basis e1, e2, . . . , en . We choose on V the standard

Lebesgue measure dh. Let

Bn = {ei | 1 ≤ i ≤ n} ∪ {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}.
Then Bn is a positive roots system of type Bn and generates V . The number of elements

in Bn is N = n2. We denote by U the dual of V . The lattice VZ generated by roots is

equal to Z
n , so the constant vol (V/VZ, dh) = 1.

The cone C(Bn) is simplicial and spanned by the n simple roots e1− e2, e2− e3, . . . ,

en−1 − en , en . A vector v = [v1, v2, . . . , vn] is in C(Bn) if and only if it satisfies the

inequalities v1 + · · · + vi ≥ 0 for all i = 1, . . . , n.
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Let v be in the cone C(Bn). Consider the polytope

	Bn
(v) =

{
(xα)α ≥ 0

∣∣∣
∑

α∈Bn

xαα = v

}
.

If h is a point in V with integral coordinates, we are interested in computing the number

NBn
(h) of integral points in 	Bn

(h).

Let UZ be the lattice dual to VZ. We identify the torus T = U/UZ = R
n/Z

n to (S1)n

by

(u1, u2, . . . , un) �→
(

e2π
√
−1u1 , . . . , e2π

√
−1un

)
.

If G is a representative of g = (g1, g2, . . . , gn) ∈ T , and h = ∑n
i=1 hi ei in VZ, then

e〈h,2π
√
−1G〉 is equal to

∏n
i=1 g

hi

i = gh . As the set Bn is not unimodular, the sets T (σ )

are not reduced to 1. Note that we are now using multiplicative notation for T , so that

we denote the identity by g = 1. We do the same in the case of Cn and Dn .

Example 8.1. Let σ be the basic set {e1 + e2, e1 − e2} for B2. Then T (σ ) = {(1, 1),

(−1,−1)}.

We now determine a set Ŵ containing all sets T (σ ).

Lemma 8.2. Let σ be a basic subset of Bn . Assume g ∈ T (σ ). Then all the coordinates

of g are equal to ±1. Furthermore, if g is not 1, there are at least two coordinates of g

which are equal to −1.

Proof. We prove this by induction on n. ForB2, we have seen this by direct computation.

Let σ be a basic subset ofBn . Assume first that σ contains a root ei . Up to renumbering,

we may assume that this root is en . Then the basis σ produces a basis σ ′ of Bn−1 by

putting en = 0. Let g = (g1, g2, . . . , gn) in T (σ ). We see that g′ = (g1, g2, . . . , gn−1) is

in T (σ ′). Thus, by induction the first n − 1 coordinates of g′ are equal to ±1. However,

since en is in σ we get 1 = gn . Note that g 	= 1 if and only if g′ 	= 1, hence by induction

hypothesis g′ has at least two coordinates not equal to 1.

Consider now the case where σ does not contain any root ei . Up to renumbering, it

contains a root en−1 − en or en−1 + en .

We examine first the case where σ contains the root α = en−1 − en . Let g =
(g1, g2, . . . , gn−1, gn) in T (σ ). This implies gn−1 = gn . Consider the map q sending ei to

ei if i < n and en to en−1. Then q sends σ\{en−1− en} to a basis σ ′ of Bn−1. The element

g′ = (g1, g2, . . . , gn−1) is easily seen to belong to T (σ ′). Indeed, if α equals ei ± ej

with 1 ≤ i < j < n, this is by definition. On the other hand, q(ei ± en) = ei ± en−1 and

gn−1 = gn imply that gi g
±1
n−1 coincides with the value of gi g

±1
n . By induction hypothesis,

all coordinates of g′ are equal to ±1. Moreover, g 	= 1 if and only if g′ 	= 1, so that g is

of the desired form.

Finally, the same argument works if σ contains α = en−1 + en , by considering the

map q sending ei to ei if i < n, and en to −en−1.
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Definition 8.3. If I is a subset of {1, 2, . . . , n} with at least two elements, we consider

the set Ŵ(I ) := {(g1, g2, . . . , gn) | gi = −1, i ∈ I ; gj = 1, j /∈ I }. We define Ŵ ⊂ T to

be the finite subset of T union of such sets Ŵ(I ) together with the identity (1, 1, . . . , 1).

Let v =∑n
i=1 vi ei ∈ V be a vector with real coordinates and let h =∑n

i=1 hi ei ∈ V

be a vector with integral coordinates. We compute the normalized volume of 	Bn
(v)

and the number of integral points in 	Bn
(h) using Theorem 3.3. Thus we introduce the

function JB(v) on U defined by

JB(v)(u) = e
∑n

i=1 ui vi

∏n
i=1 ui

∏
1≤i< j≤n(ui − u j )

∏
1≤i< j≤n(ui + u j )

.

For g = (g1, g2, . . . , gn) ∈ Ŵ and h ∈ VZ∩C(Bn) the Kostant fraction (3) is the function

on U defined by

FB(g, h)(u) =
∏n

i=1 g
hi

i e
∑n

i=1 ui hi

∏n
i=1(1− g−1

i e−ui )×∏
1≤i< j≤n(1− g−1

i gj e
−(ui−u j ))

× 1∏
1≤i< j≤n(1− g−1

i g−1
j e−(ui+u j ))

.

We then have

Theorem 8.4. Let c be a chamber of C(Bn).

• For any v ∈ c, we have

volZ,Bn
(v) = JKc(JB(v)).

• For any h ∈ VZ ∩ c, the value of the partition function is given by

NBn
(h) =

∑

g∈Ŵ

JKc(FB(g, h)).

As in the case of An , we use the change of variable 1+ zi = eui to compute NBn
(h)

more easily. However, we note that this transformation does not leave the hyperplane

ui + u j = 0 fixed. This hypersurface is transformed into the hypersurface zi + z j +
zi z j = 0. So we use the expression of JKc as an integral over the cycle H(c) defined in

Theorem 4.14. This cycle (its homology class) is stable by the transformation eui = 1+zi

which is close to the identity. Thus define the following function on U :

FB(g, h)(z) =
∏n

i=1(1+ zi )
hi+2n−i−1 ×∏n

i=1 g
hi

i∏n
i=1(1+ zi − gi )×

∏
1≤i< j≤n(1+ zi − gi gj (1+ z j ))

× 1∏
1≤i< j≤n(1+ zi )(1+ z j )− gi gj

.

Performing the change of variables eui = 1+ zi on the function FB(g, h)(u) and com-

puting the Jacobian, Theorem 3.3 becomes:
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Theorem 8.5. Let c be a chamber of C(Bn).

• For any v ∈ c, we have

volZ,Bn
(v) = JKc(JB(v)).

• For any h ∈ VZ ∩ c, the value of the partition function is given by

NBn
(h) =

∑

g∈Ŵ

1

(2π
√
−1)n

∫

H(c)

FB(g, h)(z) dz.

As in the case of type A, in order to implement these formulas we first have to describe

the set P(v,Bn) (Section 8.2), then we explain how the integral over the cycle H(c) is

calculated similarly to an iterated residue formula associated to these paths (Section 8.3),

using an estimate of the order of poles. Finally we explain how these computations fit

together to get a global procedure for the Kostant partition function for Bn (Section 8.4).

8.2. The Search for Maximal Proper Nested Sets

A height function is

ht(v) =
n∑

i=1

(n + 1− i)vi

which takes value 1 on all simple roots. We deform ht later in order to have a function

taking different values on roots.

We now proceed to describe hyperplanes for Bn . If P = [P+, P−] are two disjoints

subsets of {1, 2, . . . , n}, we denote by 〈u P , v〉 the linear form
∑

i∈P+ vi −
∑

j∈P− vj .

Consider the hyperplane

HP = {v ∈ V, 〈u P , v〉 = 0}

in V . It is equal to the hyperplane determined by the reverse list [P−, P+]. Thus to each

set P = {P+, P−} of two disjoint sets P+, P− such that at least one is non-empty, we

associate a hyperplane HP .

We denote by Z the complement of P+∪ P− in {1, 2, . . . , n} and by B(Z) the subset

of Bn defined by

B(Z) = {ei | i ∈ Z} ∪ {ei ± ej | 1 ≤ i < j ≤ n ; i, j ∈ Z}.

This is the positive root system B|Z |, with the positivity induced by the lexicographic

order.

Let K(P+, P−) be the subset of Bn defined by

{ei − ej | 1 ≤ i < j ≤ n ; i, j ∈ P+} ∪ {ei + ek | i ∈ P+, k ∈ P−}
∪ {ek − eℓ | 1 ≤ k < ℓ ≤ n; k, ℓ ∈ P−}.
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Note that by defining fi = ei if i ∈ P+ and fk = −e|P−|−k+1 if k ∈ P−, the set

K(P+, P−) coincides with

{ fi − f j | 1 ≤ i < j ≤ n; i, j ∈ P+} ∪ { fi − fk | i ∈ P+, k ∈ P−}
∪ { fk − fℓ | 1 ≤ k < ℓ ≤ n; k, ℓ ∈ P−}.

Thus the set K(P+, P−) is a positive root system of type A|P+|+|P−|−1. However, the

positivity is induced by the lexicographic order on P+ and the reverse lexicographic

order on P−. Observe also that HP is the vector space spanned by K(P+, P−) ∪ B(Z).

Lemma 8.6.

• The hyperplane HP is a Bn-admissible hyperplane and every Bn-admissible hy-

perplane is of this form.

• The set Bn ∩ HP is the union of B(Z) and K(P+, P−).

Proof. Let H be a Bn-admissible hyperplane. We prove that H is of the form HP

by induction on n, the case n = 2 being trivial. Let α be a root in H . There are

three possibilities for α: up to renumbering roots, we can consider the cases α = en ,

α = en−1 − en and α = en−1 + en .

In the first case, the map q sending ei to ei if i < n and en to 0 maps the set Bn\{α} to

Bn−1. The space H/Rα becomes a Bn−1-admissible hyperplane. It is thus determined by

P ′ = [P
′+, P

′−], where P
′+ and P

′− are two disjoint sets contained in {1, 2, . . . , n−1}.
Then the hyperplane H is equal to the hyperplane determined by [P ′+, P ′−].

In the second case, the map q sending ei to ei if i < n and en to en−1 sends the

set Bn\{α} to Bn−1. The space H/Rα becomes a Bn−1-admissible hyperplane. It is thus

determined by P ′ = [P
′+, P

′−]. If neither P
′+ nor P

′− contain n−1, the hyperplane H is

equal to the hyperplane determined by [P
′+, P

′−]. Otherwise assume that, for example,

P
′+ contains n − 1. Then the hyperplane H is equal to the hyperplane determined by

[P+, P−], where P+ = P
′+ ∪ {n} and P− = P

′−.

The third case is treated similarly.

We now give a description of our algorithm computing MNSs. We describe a vector

as an array v = [v1, v2, . . . , vn]. To check if v is in the cone C(Bn), we need to verify

if
∑i

j=1 vj ≥ 0 for 1 ≤ i ≤ n. This is done by the procedure CheckBvector, which

returns the answer true or false.

For the system Bn the highest root θ B(n) is equal to

θ B(n) = [1, 1, 0, 0, 0, . . . , 0].

We recall here that P is divided in two sets P+∪P−, one of them being non-empty. The

first task is to list the hyperplanes in Hyp(v,Bn). This set of hyperplanes is obtained by

the command line AllPossibleBwalls(v). The input of this procedure is the vector

v. The output is a set of elements P = {P+, P−}, where P+ = [i1, i2, . . . , ip] and P− =
[ j1, j2, . . . , jq ] are two ordered disjoint lists made from indices taken in {1, . . . , n}, with

at least one of P+ or P− being non-empty. Let 〈u P , v〉 = ∑
i∈P+ vi −

∑
j∈P− vj be the
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normal vector to HP . Then as stated in Lemma 5.2 we need to test if 〈u P , θ B(n)〉 is not

zero and if 〈u P , v〉 × 〈u P , θ B(n)〉 is non-negative.

We then construct the vector

projH (v) = v − 〈u P , v〉
〈u P , θ B(n)〉θ

B(n).

This vector is represented as {[v1, P+], [v2, P−], [w, Z ]}. The sum of coordinates of v1

is equal to the sum of the coordinates of v2. Now Z is the ordered list [k1, k2, . . . , kℓ] of

complementary indices to P+ ∪ P− and

w = [projH (v)[k1], . . . , projH (v)[kℓ]].

Note that the equations of the cone C(K(P+, P−)) can be given in the convenient form

v1⊕v2 ∈ C(K(P+, P−)) if and only if CheckBvector(v1) and CheckBvector(v2)

are true. Equations of the cone C(B(Z)) are given in the form w ∈ C(B(Z)) if and only

if CheckBvector(w) is true.

Thus the condition that H is in Hyp(v,Bn) is equivalent to the series of conditions:

〈u P , θ B(n)〉 	= 0,

〈u P , v〉 × 〈u P , θ B(n)〉 ≥ 0,

CheckBvector(v1) = true,

CheckBvector(v2) = true,

CheckBvector(w) = true.

These five conditions are checked by the command line CheckBwall(v,H), that gives

an answer true or false.

This achieves the description of the procedure AllPossibleBwalls. We now have

to perform the next step of our algorithm. As for type A we build MNSs iteratively. At

each step we get a set of partial MNSs, to which we recursively apply our algorithm.

Note that after Lemma 8.6 the intersection of a Bn-admissible hyperplane HP with Bn

is the union of a system of type A and a system of type B.

The part of the MNS coming from the subsystem of type A is computed with the

procedure AddAnests. It performs a reordering of the result of a call to the procedure

MNSs described in Section 7.2.

The part of the MNS coming from the subsystem of type B is computed with the pro-

cedure Bsplits, calling the previously described procedure AllPossibleBwalls.

8.3. Residues Associated to Maximal Proper Nested Sets

An MPNS M gives rise to an ordered basis αi , and a cycle H(M). We need to compute

∫

H(M)

FB(g, h)(z) dz,
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where

H(M) := {z, |〈αi , z〉| = εi }.
The function z �→ FB(g, h)(z) is deduced from the function FB(g, h)(u) in the space

R̂A by the change of variable eui = 1+ zi . Thus its denominator is a product of factors,

either of the form zi corresponding to the root ui , or of the form zi − z j corresponding

to the root ui − u j or zi + z j + zi z j corresponding to the root ui + u j . We denote by u(z)

the point with coordinates ui satisfying eui = 1+ zi .

We start integrating our function FB(g, h)(z) over the smaller circle |〈α1, z〉| = ε1

keeping the other variables fixed. By our condition on the cycle, the function we integrate

has poles on the domain |〈α1, z〉| ≤ ε1 only when α1(u(z)) = 0. If α1(u(z)) = ui − u j

or α1(u(z)) = ui , the poles are obtained for zi = z j or zi = 0. If α1(u(z)) = ui +u j , the

pole on the domain |〈α1, z〉| ≤ ε1 is obtained for zi = −z j/(1+ z j ). Thus we compute

the integral over the circle by the residue theorem in one variable, and proceed. From the

general theory, the poles of the function we obtain, replacing zi by one of the values above,

are again of the same form with respect to the remaining variables, as is easily checked.

As in case An−1, for a root α = ui (resp. α = ui ± u j ) we can replace after taking the

residue at α = 0 the variable zi by 0 (resp. by∓z j ) in all other roots. Thus we eliminate

the variable zi . The procedure FormalPathB produces the ordered path resulting from

all these substitutions.

In the case of type B we compute the residue by directly checking the order of the

pole at α = 0, and then using differentiation. The program works in the same way with

parameters. The function obtained is locally polynomial with polynomial coefficients

depending of the parity of the integers hi .

8.4. The Procedure MNS KostantB

We finish the section dedicated to Bn by giving the global outline of the procedure

MNS KostantB(v) computing the Kostant partition number of a vector v lying in the

root lattice of Bn . We begin by slightly deforming v so that it lies on no wall, by setting

v′ := DefVectorB(v,n). We then compute all MNSs for v′ with the call B MNSs(v′)
(Section 8.2). For every MNS M , we extract the list R of highest roots of its irreducible

components by setting R := BthetaMNS(M). We sort these roots by their height with

the command line R′ := BorderThetas(R,n). We then transform the list of roots R′

into a path p by setting p := FormalPathB(R′).
Now note that our procedures are designed to take residues along positive roots, using

the fact that res−α = −resα for any root α. The sign that appears (more precisely −1 to

the power the number of negative roots in the path p) is computed with the procedure

PathSign(p,n).

Then for every g in Ŵ we do the following. The iterated residue along the path p

and for g is obtained by the command line OneIteratedBresidue(p,g,v,n). We

briefly describe its implementation. We first compute the Kostant fraction (second item

of Definition 7.1, procedure KostantFunctionB). Then for every root of the path we

apply the procedure ComputeOneResidue (Section 8.3) and update the order of the

pole with a procedure named OrderPoleB.
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Finally, summing all products PathSign(p,n) × OneIteratedBresi-

due(p,g,v,n) over the sets of g’s and of M’s, we get the desired result.

Remark 8.7. Let us fix a list R′ = [α1, . . . , αn] of ordered roots coming from an

MNS, and an element g. We say that R′ and g are compatible if the following condition

is satisfied. If indices of monomial(s) of αk have not yet occurred among indices of roots

αℓ with ℓ < k, then g must satisfy gαk = 1 (that is gi g
±1
j = 1 if αk = ei ± ej and gi = 1

if αk = ei ). Note that the iterated residue for g and for the path p associated to R′ is zero

if g and R′ are not compatible. Hence summing only over g’s that are compatible with

a given list R′ saves useless computations. The check of compatibility is performed by

the procedure ListAndGAreCompatible(R′,g,n).

9. Type Cn

Consider a vector space V with basis e1, e2, . . . , en . We choose on V the standard

Lebesgue measure dh. Let

Cn = {2ei | 1 ≤ i ≤ n} ∪ {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}.
Then Cn is a positive roots system of type Cn , and generates V . The number of elements

in Cn is N = n2. Note that elements of Cn and Bn are proportional, so they determine the

same hyperplane arrangement and the same chambers.

Let L be the lattice defined by Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen . We remark that the lattice

VZ generated by Cn is the sublattice of index 2 in L consisting of all elements v =
[v1, v2, . . . , vn] with integral coordinates and such that the sum

∑n
i=1 vi is an even

integer. A Z-basis of VZ is, for example,

Z(e1 − en)⊕ Z(e2 − en)⊕ · · · ⊕ Z(en−1 − en)⊕ Z(2en),

so vol(V/VZ) = 2.

The dual lattice UZ is the lattice of vectors γ = (γ1, γ2, . . . , γn) such that γi are half

integers and such that γi + γj is an integer for all i , j . The set UZ/Ze1⊕ · · · ⊕Zen is of

cardinality 2 with representative elements (0, 0, . . . , 0, 0) and ( 1
2
, . . . , 1

2
).

As before, we identify the torus T̃ = U/(Ze1 ⊕ · · · ⊕ Zen) = R
n/Z

n with (S1)n by

(u1, u2, . . . , un) �→ (e2π
√
−1u1 , . . . , e2π

√
−1un ).

Then

T = T̃ /{±1} = U/UZ.

Let G be a representative of g = (g1, g2, . . . , gn) ∈ T̃ and h = ∑n
i=1 hi ei in VZ. Then

e〈h,2π
√
−1G〉 is equal to

∏n
i=1 g

hi

i = gh . This function is well defined on T = T̃ /{±1}
since

∑n
i=1 hi is even.

For σ a basic subset of Cn , define

T̃ (σ ) = {g ∈ T̃ | e〈α,2π
√
−1G〉 = 1 for all α ∈ σ }.

As the set Cn is not unimodular, sets T̃ (σ ) are not reduced to 1. By induction on n, we

prove the following lemma.
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Lemma 9.1. Let σ be a basic subset of Cn . Then T̃ (σ ) ⊂ {±1}n .

Let v = ∑n
i=1 vi ei ∈ V be a vector with real coordinates and let h = ∑n

i=1 hi ei ∈
V be a vector with integral coordinates and such that

∑n
i=1 hi is even. We compute

the normalized volume of 	Cn
(v) and the number of integral points in 	Cn

(h) using

Theorem 3.3. We use the JK residue with respect to the measure dh associated to the

basis e1, e2, . . . , en . However, the normalized volume volZ,Cn
(h) is computed for the

measure determined by the lattice spanned by Cn which is of index 2 in
⊕n

i=1 Zei .

We introduce the function JC(v) on U defined by

JC(v)(u) = e
∑n

i=1 ui vi

∏n
i=1 2ui

∏
1≤i< j≤n(ui − u j )

∏
1≤i< j≤n(ui + u j )

.

For g = (g1, g2, . . . , gn) ∈ {±1}n the Kostant fraction (3) is the function on U defined

by

FC(g, h)(u) =
∏n

i=1 g
hi

i e
∑n

i=1 ui hi

∏n
i=1(1− e−2ui )×∏

1≤i< j≤n(1− g−1
i gj e

−(ui−u j ))

× 1∏
1≤i< j≤n(1− g−1

i g−1
j e−(ui+u j ))

.

Theorem 9.2. Let c be a chamber of C(Cn).

• For any v ∈ c, we have

volZ,Cn
(v) = 2 JKc(JC(v)).

• For any vector h ∈ VZ ∩ c with integral coordinates such that
∑n

i=1 hi is even, the

value of the partition function is given by

NCn
(h) =

∑

g∈{±1}n
JKc(FC(g, h)).

In the second formula, there should be a multiplication by a factor 2 as the volume of

the fundamental domain of the lattice spanned by Cn is 2. However, we should sum only

on T = T̃ /{±1}. Thus the two factors of 2 compensate each other. In fact, we indeed

sum over T represented as {±1}n−1 × {1} and multiply the result by the constant 2.

As in the case of Bn , we use the change of variable 1 + zi = eui to compute more

easily the formula for NCn
(h). As explained in the case of Bn we need to use the integral

formulation of the JK residue. Thus define

FC(g, h)(z) =
∏n

i=1(1+ zi )
hi+2n−i ×∏n

i=1 g
hi

i∏n
i=1((1+ zi )2 − 1)×∏

1≤i< j≤n(1+ zi − gi gj (1+ z j ))

× 1∏
1≤i< j≤n(1+ zi )(1+ z j )− gi gj

.

Performing the change of variables eui = 1+ zi on the function FC(g, h)(u) and com-

puting the Jacobian, Theorem 3.3 becomes:
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Theorem 9.3. Let c be a chamber of C(Cn).

• For any v ∈ c, we have

volZ,Cn
(v) = 2 JKc(JC(v)).

• For any vector h ∈ VZ∩c with integral coordinates hi with
∑n

i=1 hi even, the value

of the partition function is given by

NCn
(h) =

∑

g∈{±1}n

1

(2π
√
−1)n

∫

H(c)

FC(g, h)(z) dz.

Similarly we sum over T represented as {±1}n−1×{1} and multiply the result by the

constant 2.

The cycle H(c) associated to a chamber c containing a regular element v =∑n
i=1 vi ei

is the same cycle that we computed in the preceding section for Bn . Hence we can reuse

most of procedures from type Bn . Paths are the same, and the residue calculations are the

same. More precisely, the only two changes are in the computation of the set G (procedure

GC(n)) and in the computation of the Kostant function (procedure UCKostant). This

terminates the case of Cn .

10. Type Dn

10.1. The Formulas to Be Implemented

Consider a vector space V with basis e1, e2, . . . , en . We choose the standard Lebesgue

measure dh. Let

Dn = {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}.

Then Dn is a positive roots system of type Dn , and generates V . The number of elements

in Dn is N = n2 − n.

We remark that the lattice VZ generated by roots of Dn is the same lattice as the one

generated by the roots of Cn . It is of index 2 in L := Ze1⊕Ze2⊕· · ·⊕Zen and consists

of elements v = [v1, v2, . . . , vn] with integral coordinates such that the sum
∑n

i=1 vi is

an even integer. The group T = U/UZ is thus the quotient of T̃ = U/Ze1 ⊕ · · · ⊕ Zen ,

obtained by identifying g and −g, that is T = T̃ /{±1}. As in Section 9, we identify the

torus T̃ = U/(Ze1 ⊕ · · · ⊕ Zen) = R
n/Z

n to (S1)n by

(u1, u2, . . . , un) �→
(

e2π
√
−1u1 , . . . , e2π

√
−1un

)
.

Consider the set Ŵ = {±1}n ⊂ (S1)n . For σ a basic subset of Dn , define

T̃ (σ ) = {g ∈ T̃ | e〈α,2π
√
−1G〉 = 1 for all α ∈ σ }.

Lemma 10.1. Let σ be a basic subset of Dn . Then T̃ (σ ) is contained in Ŵ.
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Proof. Basic subsets of Dn are basic subsets of Cn so that we can choose the same set

Ŵ = {±1}n .

Let v = ∑n
i=1 vi ei ∈ V be a vector with real coordinates and let h = ∑n

i=1 hi ei ∈
V be a vector with integral coordinates and such that

∑n
i=1 hi is even. We compute

the normalized volume of 	Dn
(v) and the number of integral points in 	Dn

(h) using

Theorem 3.3.

Thus we introduce the function JD(v) on U defined by

JD(v)(u) = e
∑n

i=1 ui vi

∏
1≤i< j≤n(ui − u j )

∏
1≤i< j≤n(ui + u j )

.

For g = (g1, g2, . . . , gn) ∈ {±1}n the Kostant fraction (3) is the function on U defined

by

FD(g, h)(u) =
∏n

i=1 g
hi

i × e
∑n

i=1 ui hi

∏
1≤i< j≤n(1− g−1

i gj e
−(ui−u j ))

× 1∏
1≤i< j≤n(1− g−1

i g−1
j e−(ui+u j ))

.

We then have

Theorem 10.2. Let c be a chamber of C(Dn).

• For any v ∈ c, we have

volZ,Dn
(v) = 2 JKc(JD(v)).

• For any vector h ∈ VZ ∩ c with integral coordinates such that
∑n

i=1 hi is even, the

value of the partition function is given by

NDn
(h) =

∑

g∈{±1}n
JKc(FD(g, h)).

We use the change of variable 1 + zi = eui to compute more easily the formula for

NDn
(h) and thus introduce integration over a cycle. Thus define

FD(g, h)(z) =
∏n

i=1(1+ zi )
hi+2n−i−2 ×∏n

i=1 g
hi

i∏
1≤i< j≤n(1+ zi − gi gj (1+ z j ))

× 1∏
1≤i< j≤n(1+ zi )(1+ z j )− gi gj

.

After performing the change of variables eui = 1+ zi on the function FD(g, h)(u) and

after computing the Jacobian, Theorem 3.3 becomes:
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Theorem 10.3. Let c be a chamber of C(Dn).

• For any v ∈ c, we have

volZ,Dn
(v) = 2 JKc(JD(v)).

• For any vector h ∈ VZ ∩ c with integral coordinates hi such that
∑n

i=1 hi is even,

the value of the partition function is given by

N (Dn, h) =
∑

g∈{±1}n

1

(2π
√
−1)n

∫

H(c)

FD(g, h)(z) dz.

As for types A and B, in order to implement these formulas we first have to describe

the set P(v,Dn) (Section 10.2). We finish by explaining the implementation of case D

in Section 10.3, using the fact that types B and D are similar.

10.2. The Search for Maximal Proper Nested Sets

A height function is

ht(v) =
n∑

i=1

(n − i)vi

which takes value 1 on all simple roots. We deform it later in order to have a function

taking different values on roots.

We now proceed to describe hyperplanes for Dn . If P = [P+, P−] are two disjoints

subsets of {1, 2, . . . , n}, we denote by 〈u P , v〉 the linear form
∑

i∈P+ vi −
∑

j∈P− vj .

Consider the hyperplane in V defined by

HP = {v ∈ V, 〈u P , v〉 = 0}

and note that it is equal to the hyperplane determined by the reverse list [P−, P+]. Thus

to each set P = {P+, P−} of two disjoint sets P+, P− such that at least one is non-empty,

is associated a hyperplane HP .

We denote by Z the complement of P+∪ P− in {1, 2, . . . , n} and by D(Z) the subset

of Dn defined by

D(Z) = {ei ± ej | 1 ≤ i < j ≤ n; i, j ∈ Z}.

This is the positive roots system of type D|Z |, with the positivity induced by the lexico-

graphic order.

Let K(P+, P−) be the subset of Dn defined by

{ei − ej | 1 ≤ i < j ≤ n; i, j ∈ P+} ∪ {ei + ek | i ∈ P+, k ∈ P−}
∪ {ek − eℓ | 1 ≤ k < ℓ ≤ n; k, ℓ ∈ P−}.

As we observed in Section 8.2 for Bn , by defining fi = ei if i ∈ P+ and fk = −e|P|−k+1

if k ∈ P−, the set K(P+, P−) is a positive roots system of type A|P+|+|P−|−1. Here the
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positivity is induced by the lexicographic order on P+ and the reverse lexicographic

order on P−.

Observe also that HP is the vector space spanned by K(P+, P−)∪D(Z). As before,

we prove

Lemma 10.4.

• The hyperplane HP is a Dn-admissible hyperplane and every Dn-admissible hy-

perplane is of this form.

• The set Dn ∩ HP is the union of D(Z) and K(P+, P−).

10.3. The Procedure MNS KostantD

Most of procedures from type Bn are kept unchanged. More precisely, the iterated residue

calculation, the estimate of the order of poles, and the global procedures coordinating

computations are exactly the same as for type Bn .

The only serious adaptations to the case of Dn appears in the procedure CheckD-

vector(n,v). In fact now we check that

v1 + · · · + vi ≥ 0 for 1 ≤ i ≤ n − 1,

v1 + · · · + vn−1 + vn ≥ 0 and is even,

v1 + · · · + vn−1 − vn ≥ 0 and is even.

Other modifications are in procedures that are parents of CheckDvector. For

example the procedure CheckDwall works exactly as CheckBwall, but now calls

CheckDvector instead of CheckBvector. See Section 8.2.

11. Performance of the Programs

In this section we describe several tests of our programs implementing the above MNS

algorithms for types An , Bn , Cn , and Dn . The algorithm implementation is made with

Maple. Our programs are freely available at www.math.polytechnique.fr/

∼vergne/work/IntegralPoints.html. We compare our results with the ones

obtained by two previous algorithms:

• The Sp (for special permutations) algorithm by Baldoni et al. [2], only for An .

• The implementation LattE of Barvinok’s algorithm [15], for every classical

algebra.

These two methods also helped us test our algorithms on various examples.

Note that for our programs most of the computation time is spent while computing

iterated residues. Indeed, MNS computation is fast and efficient. Note also that most of

the memory used by our programs serves to store all fractions that occur in the iterated

residue process. The number of MNSs has a great influence on computation time, since

we sum over all MNSs. In any case it seems that the deeper a vector is in the cone

generated by positive roots, the higher the number of MNSs is. This is morally bound to



Partition Functions for Classical Root Systems 591

Fig. 9. Number of MNSs containing any vector in a given chamber for B3.

the fact that there are more simplicial cones that might contain the vector. In Fig. 9 we

attach to every chamber c for B3 the number of MNSs associated to any vector v ∈ c.

Recall that the Sp algorithm relies on sums over a set Sp(a) of special permutations

for a vector a. The main advantage of our algorithms is that we compute fewer iterated

residues. In fact, the number of MNS seems to be smaller than the number of special

permutations that occur, for a given generic example. However, examples at the end

of Table 2 show that a number of MNSs considerably smaller than those of Sp’s does

not lead to a better performance in time computation, even in the extreme case of just

one MNS. Indeed, this one residue computation can be very time consuming due to the

substitutions zi = z j , which takes more time that the substitutions zi = 0 used in the

Sp(a) algorithm. In the near future we will improve this minor point. The MNSs method

should be better and is better in general.

During comparative tests, we figured out that one example in [2] has not been correctly

copied from draft. More precisely in their Table 2 for the complete graph Kn , for the

vector

a = (82275, 33212, 91868,−57457, 47254,−64616, 94854,−227390)

in the root lattice for A7, the correct Kostant partition number is the 93-digit integer

226040494681135377722281761934040091356424181

242669497614801846058092972975120580334961426497

and not only the first line of 45 digits. The Kostant number and Ehrhart polynomials for

this a were computed on a 1 GHz computer in 2.14 s and 18.54 s, respectively, using

26 special permutations. Now with our programs running on a 1.13 GHz computer these

times drop to 1.38 s and 2.50 s respectively, using 14 maximal nested sets. Similarly

for the biggest example examined in [2], that is for the vector

a = (46398, 36794, 92409,−16156, 29524,−68385,

93335, 50738, 75167,−54015,−285809)
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Table 3. Computation time for LattE and our programs, for Bn .

Root lattice element LattE MNS

(1388, 4024, 3826) 0.8 s < 0.1 s

3 MNS

(2691, 5998,−6067, 6184) 2.6 s 0.1 s

1 MNS

(1585, 7818,−2542,−2803, 2715) 214.9 s 3.0 s

2 MNS

(479, 7114, 1909,−5696, 193, 9297) 16,369.6 s 27.5 s

8 MNS

(1070, 1006,−37) 0.9 s 0.1 s

3 MNS

(1082, 947, 27, 42) 22.9 s 1.2 s

15 MNS

(1047, 974, 20, 44,−35) 1,939.9 s 21.7 s

51 MNS

(1015, 1082,−37,−21,−28, 14) > 7,000 s 378.0 s

> 1,500 Mo 26 MNS

in the root lattice for A10, the 189-digit answer was obtained in 2193 s using 322 special

permutations, whereas now we get the same result in 308 s using 109 MNSs.

Table 2 contains respective performances for An of LattE, Sp algorithms, and our

programs, apart from the last four examples that compare only the last program with

ours. Tables 3–5 contain respective performances for Bn , Cn , and Dn of LattE and

our programs. We also indicated the number of special permutations (Sp) and maximal

nested sets (MNS).

Table 4. Computation time for LattE and our programs, for Cn .

Root lattice element LattE MNS

(1388, 4024, 7652) 0.8 s < 0.1 s

1 MNS

(2691, 5998,−6067, 12368) 2.8 s 0.1 s

1 MNS

(1585, 7818,−2542,−2803, 5430) 163.0 s 1.4 s

1 MNS

(479, 7114, 1909,−5696, 192, 18594) > 5,400 s 65.3 s

> 900 Mo 8 MNS

(1038, 22,−2) 0.8 s 0.1 s

3 MNS

(1021, 37,−40, 178) 12.2 s 0.5 s

4 MNS

(1051,−45, 26,−5,−131) 195.4 s 2.8 s

6 MNS

(1024, 6, 60,−6,−42, 52) > 10,800 s 1,292.4 s

> 2,000 Mo 42 MNS
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Table 5. Computation time for LattE and our programs, for Dn .

Root lattice element LattE MNS

(8608,−305, 183) 0.3 s < 0.1 s

1 MNS

(32, 5914, 6166,−5360) 1.5 s < 0.1 s

1 MNS

(1646, 3916,−3330, 6372, 7452) 18.0 s 0.5 s

2 MNS

(8127, 601,−2870,−2908, 10823, 3639) 313.5 s 3.1 s

2 MNS

(1009, 1106,−9) 0.2 s < 0.1 s

1 MNS

(1074, 959, 64, 77) 3.0 s 0.3 s

6 MNS

(1100, 973, 2,−1,−60) 100.2 s 3.1 s

18 MNS

(1096, 965,−54, 68,−34,−1) 7,076.7 s 763.3 s

47 MNS

Tests were performed on Pentium IV 1 and 13 GHz computers with 1500 or 2000

mega-octets (Mo) of RAM memory. We stopped several computations with LattEwhen

we figured out that they would overcome the computers’ memory or take too much time

with respect to the other algorithms; in this case we indicate the time spent and the

number of mega-octets used by the computer.
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András Szenes, Corrado de Concini, Claudio Procesi, and an anonymous referee. We

thank them for sharing their mathematical expertise with us. We also thank the various

institutions that helped us to collaborate on this work: the Research-in-pairs program at

the Forschungsinstitut Oberwolfach, a LIEGRITS grant and the University Tor Vergata

Roma, the University Denis Diderot in Paris, the Centre Laurent Schwartz at Ecole

Polytechnique, and San Francisco State University.

References

1. Baldoni-Silva, W., and Vergne, M., Residues formulae for volumes and Ehrhart polynomials of convex

polytopes (2001), available at math.ArXiv, CO/0103097.

2. Baldoni-Silva, W., De Loera, J.A., and Vergne, M., Counting integer flows in networks, Found. Comput.

Math. 4 (2004), 277–314, available at math.ArXiv, CO/0303228.

3. Barvinok, A.I., A polynomial time algorithm for counting integral points in polyhedra when the dimension

is fixed, Math. Oper. Res. 19 (1994), 769–779.

4. Beck, M., and Pixton, D., The Ehrhart polynomial of the Birkhoff polytope, Discrete Comput. Geom.

30(4) (2003), 623–637.

5. Beck, M., and Zaslavsky, T., The number of nowhere-zero flows on graphs and signed graphs (2004),

available at math.ArXiv, CO/0309331.



Partition Functions for Classical Root Systems 595

6. Beyls, K., Bruynooghe, M., Loechner, V., Seghir, R., and Verdoolaege, S., Analytical computation of

Ehrhart polynomial and its applications for embedded systems, IEEE/ACM International Symposium on

Code Generation, Palo Alto, California, March 2004.

7. Brion, M., and Vergne, M., Residue formulae, vector partition functions and lattice points in rational

polytopes, J. Amer. Math Soc. 10(4) (1997), 797–833.

8. Brion, M., and Vergne, M., Arrangements of hyperplanes, I: Rational functions and Jeffrey–Kirwan residue,
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