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VOLUME GROWTH AND STOCHASTIC COMPLETENESS

OF GRAPHS

MATTHEW FOLZ

Abstract. Given the variable-speed random walk on a weighted graph and a
metric adapted to the structure of the random walk, we construct a Brownian
motion on a closely related metric graph which behaves similarly to the VSRW
and for which the associated intrinsic metric has certain desirable properties.
Jump probabilities and moments of jump times for Brownian motion on metric
graphs with varying edge lengths, jump conductances, and edge densities are
computed. We use these results together with a theorem of Sturm for sto-
chastic completeness, or non-explosiveness, on local Dirichlet spaces to prove

sharp volume growth criteria in adapted metrics for stochastic completeness
of graphs.

1. Introduction

Let Γ = (G,E) be an unoriented, connected, finite or countably infinite, locally
finite graph. We assume that Γ has neither loops nor multiple edges. We use d
to denote the graph metric on Γ; given x, y ∈ G, d(x, y) is equal to the number
of edges in a shortest (geodesic) path between x and y. Given x, y ∈ G, we write
x ∼ y if {x, y} ∈ E. We assume that Γ is a weighted graph, so that associated
with each (x, y) ∈ G × G is a non-negative edge weight πxy which is symmetric
(πxy = πyx for x, y ∈ G) and satisfies πxy > 0 if and only if {x, y} ∈ E. The edge
weights define a measure on G by setting πx := π({x}) :=

∑
y∈G πxy for x ∈ G,

and extending to all subsets of G by countable additivity. If π(e) = 1 for all e ∈ E,
we say that Γ has the standard weights. We denote weighted graphs by the pairing
(Γ, (π(e))e∈E); for brevity we write this as (Γ, π).

On (Γ, π), we consider the variable-speed continuous time simple random walk
(VSRW), which we denote by (Xt)t≥0. This process has generator LX given by

(LXf)(x) :=
∑
y∼x

πxy(f(y)− f(x)).

The jump probabilities for X are P (x, y) = πxy/πx. The jump times, started at a
vertex x, are exponentially distributed random variables with parameter πx, so that
the mean jump time is 1/πx. This process is strong Markov. The heat kernel ofX is
the function pt(x, y) := P

x(Xt = y), defined for t ≥ 0 and x, y ∈ G. A good general
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2090 MATTHEW FOLZ

reference for the VSRW is the upcoming book by Barlow [1]. For analytic properties
of the operator LX , which is sometimes referred to as the physical Laplacian, see
[33].

A weighted graph (Γ, π) is stochastically complete if the heat kernel of the VSRW
on (Γ, π) satisfies

(1.1)
∑
y∈G

pt(x, y) = 1

for all t ≥ 0 and x ∈ G. If (π(e))e∈E are the standard weights and (Γ, π) is
stochastically complete, we simply say that Γ is stochastically complete. A weighted
graph which is not stochastically complete is said to be stochastically incomplete.
The heat kernel condition (1.1) is equivalent to X having infinite lifetime (or X
being non-explosive). If (JX

n )n∈Z+
are the times between jumps of X, then non-

explosiveness is equivalent to having, P−a.s.,∑
n∈Z+

JX
n = +∞.

Stochastic completeness is also equivalent to various uniqueness criteria for the heat
equation on (Γ, π); see [34], and also [15] for stochastic completeness in the related
setting of Riemannian manifolds.

This paper is primarily concerned with the relationship between volume growth
and stochastic completeness for graphs. Generically speaking, small volume growth
ensures that the VSRW does not escape from its starting point too quickly, as it
implies that the process, on average, is not much more likely to move away from its
starting point than towards it. For diffusions on a Riemannian manifold, the best
possible criterion relating volume growth in the Riemannian volume and stochastic
completeness of the manifold was proved by Grigor’yan in [14] (see also [15] for a
more detailed exposition of results on stochastic completeness for manifolds) and
is as follows:

Theorem 1.1 (Grigor’yan, [14]). Let M be a geodesically complete Riemannian
manifold with Riemannian metric ρM and Riemannian volume V . If there exists
r0 ≥ 0 and x0 ∈ M such that

(1.2)

∫ ∞

r0

r

log V (BρM
(x0, r))

dr = +∞,

then M is stochastically complete.

This result was generalized to the setting of strongly local Dirichlet spaces by
Sturm in [30]; there, the Riemannian metric is replaced by the intrinsic metric
associated with the Dirichlet form. This result is not applicable to the setting of
graphs, as the Dirichlet form associated with the VSRW is non-local.

Stochastic completeness of graphs has been a topic of substantial interest in
recent years. Attempting to modify the techniques used in the manifold setting
to the setting of graphs quickly leads to difficulties, due in large part to the fact
that the heat kernel of the VSRW has very different long range behavior than
the heat kernel of a Riemannian manifold (see [10] and [14]). The situation is
further complicated by the fact that the Riemannian metric plays a different role
for diffusions on manifolds than the graph metric does for the variable-speed random
walk. In order to obtain a criterion analogous to Grigor’yan’s manifold result, it is
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necessary to consider metrics which are in some sense ‘adapted’ to the structure of
the VSRW; we will discuss the notion of adaptedness subsequently.

Previous results for stochastic completeness on graphs have focused primarily
on relatively simple graphs possessing a high degree of symmetry. Numerous re-
sults for spherically symmetric graphs and trees are contained in [34]. Necessary
and sufficient criteria for stochastic completeness of weakly symmetric graphs are
established in [22]. Stochastic completeness of subgraphs is discussed in [21], and
[19] establishes analytic criteria which are equivalent to stochastic completeness of
graphs and which have analogues in the manifold setting. Criteria for stochastic
completeness in the general setting of symmetric jump processes are proved in [27].
A proof of stochastic completeness in a particular adapted metric assuming at most
exponential volume growth is given in [4].

The recent paper of Grigor’yan, Huang, and Masamune ([17]), which also deals
with symmetric jump processes, establishes a criterion for stochastic completeness
on graphs if one considers volume growth with respect to the graph metric, as well
as a volume growth criterion for stochastic completeness of graphs using adapted
metrics. This criterion is also obtained via different techniques in [20]. However, this
result is not analogous to the manifold criterion (1.2) and does not produce optimal
results when compared with the exact criteria in [34] for spherically symmetric
graphs or trees.

Our main result is as follows:

Theorem 1.2. Let (Γ, π) be a weighted graph, and let ρ be a metric on Γ satisfying
the following two conditions:

• There exists cρ > 0 such that ρ(x, y) ≤ cρ whenever x ∼ y.
• There exists Cρ > 0 such that∑

y∼x

πxyρ
2(x, y) ≤ Cρ,

for each x ∈ G.

Denote by Bρ(x, r) the closed ball of radius r centered at x in the metric ρ, and let
| · | denote counting measure.

If there exists x0 ∈ G and r0 ≥ 0 such that∫ ∞

r0

r

log |Bρ(x0, r)|
dr = +∞,

then (Γ, π) is stochastically complete.

An immediate consequence of this criterion is that a weighted graph is stochas-

tically complete if there exists x0 ∈ G and r0 ≥ 0 such that |Bρ(x0, r)| ≤ Cecr
2 log r

for r ≥ r0. This is a substantial improvement over the best previous result re-
lating volume growth and stochastic completeness of graphs (found in [17] and
[20]), which proved stochastic completeness under the assumption that there exists
x0 ∈ G, r0 ≥ 0, and c ∈ (0, 2) such that |Bρ(x0, r)| ≤ Cecr log r for r ≥ r0.

The criterion in Theorem 1.2 will be seen to yield sharp results for stochastic com-
pleteness of graphs in certain applications where necessary and sufficient conditions
for stochastic completeness are known, such as birth-death chains. As Theorem 1.2
is also analogous to the result of Grigor’yan relating volume growth with stochastic
completeness on manifolds, one expects that Theorem 1.2 is essentially the best
possible criterion relating volume growth and stochastic completeness of graphs.
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2092 MATTHEW FOLZ

The condition on the metric in the hypotheses of Theorem 1.2 appeared pre-
viously in work of the author in [10] and has also been used in papers of Frank,
Lenz, and Wingert ([12]) and Grigor’yan, Huang, and Masamune ([17]). A closely
related metric is the intrinsic metric arising from the Dirichlet space construction
of the VSRW, which was studied first by Davies in [8]. In light of the aforemen-
tioned result of Sturm for local Dirichlet spaces, one might expect that an analogue
of Theorem 1.2 holds using the intrinsic metric for the VSRW; we will show by a
counterexample that this is not the case.

While this result deepens our understanding of the relationship between contin-
uous time simple random walks on graphs and diffusion processes on manifolds,
the overall picture is still far from clear. This paper shows that the sharp volume
growth criteria for stochastic completeness on graphs and on manifolds are the
same. The author has also shown in [11] that the optimal volume growth crite-
ria for the bottom of the spectrum of the Laplacian on graphs and manifolds are
also very similar. However, the recent paper of Huang [20] shows that a certain
uniqueness class for the heat equation (with close connections to stochastic com-
pleteness) is very different for graphs and manifolds. As well, it has been known
for some time that heat kernel behavior is very different for graphs and manifolds;
while the heat kernel of a diffusion on a manifold admits a Gaussian upper bound
(see [16]), the heat kernel of a continuous time simple random walk only satisfies
a Gaussian upper bound in a certain space-time region (see [10]), and satisfies a
different, ‘Poisson-type’ heat kernel estimate elsewhere (see [8] and [10]). It would
be useful to understand the connections between these disparate results in some
sort of unified framework.

The structure of the paper is as follows. In Section 2, we define Brownian motion
on metric graphs, and compute jump probabilities and moments of hitting times
for Brownian motions on weighted metric graphs. The Dirichlet form associated
with these processes is strongly local, and consequently the result of Sturm relating
volume growth in the intrinsic metric to stochastic completeness is applicable in
this setting. In Section 3, we discuss various metrics for the VSRW and for Brow-
nian motion on metric graphs, with an emphasis on intrinsic metrics and adapted
metrics. These metrics are compared under varying hypotheses, and an example is
given showing that on graphs with unbounded vertex degrees, the intrinsic metric
for the VSRW may have certain undesirable properties from the perspective of sto-
chastic completeness. In Section 4, given the VSRW on a weighted graph and an
adapted metric, we use the adapted metric to define a weighted metric graph which
has the same vertex set as the weighted graph. We show that Brownian motion on
this metric graph behaves similarly to the VSRW with respect to jump probabili-
ties and expected jump times, and that the intrinsic metric on the metric graph is
larger than the adapted metric on the graph. Finally, in Section 5, we prove Theo-
rem 1.2. Under the hypotheses of this theorem, our comparison results for metrics,
combined with Sturm’s result for stochastic completeness on local Dirichlet spaces,
imply that the Brownian motion on the associated metric graph defined in Section 4
is non-explosive. By using the estimates on various moments of hitting times for
Brownian motion on metric graphs from Section 2, we show that this implies that
the VSRW is also non-explosive. We then present examples demonstrating that
Theorem 1.2 yields sharp results when applied to graphs for which necessary and
sufficient conditions for stochastic completeness are known.
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2. Brownian motion on metric graphs

This section contains a construction of Brownian motion on metric graphs, and
computations of hitting probabilities and moments of hitting times for this pro-
cess. These results will be used in Section 4 to construct a Brownian motion on a
metric graph which behaves similarly to a given VSRW; this will be useful in our
subsequent study of stochastic completeness of graphs.

2.1. Construction. We begin with a graph Γ = (G,E). For each e ∈ E, we
assign a positive, finite edge length �(e), and give this graph a metric structure
by identifying the edge e with a copy of the closed interval [0, �(e)]; the endpoints
of e are identified with the points 0 and �(e). When we wish to emphasize the
metric structure of the edge e, we denote it by I(e). The resulting object, which
we denote by X (Γ, (�(e))e∈E), is a metric graph. We define a geodesic metric on

X (Γ, (�(e))e∈E): given x, y ∈ X (Γ, (�(e))e∈E), d̃(x, y) is the length of a shortest path
(using the Euclidean metric along each edge) joining x and y. For more details,
including defining a topological structure on X (Γ, (�(e))e∈E), see [18].

In the metric graph setting, we will want to consider graphs which have loops.
Given a graph Γ = (G,E) with no loops, we denote by Γloop := (G,Eloop) the
augmented graph with the same vertex set and an edge set which consists of all
the edges in E, plus loop edges added at every vertex of G. We denote the loop
incident to a vertex x by xloop. Given a vertex x ∈ G, we write E(x) to denote all
non-loop edges incident to x (regardless of whether we are working on Γ or Γloop)
and Eloop(x) to denote all edges (loop or non-loop) incident to x.

We equip X (Γ, (�(e))e∈E) with two sets of edge weights: positive edge densi-
ties (ω(e))e∈E and positive jump conductances (p(e))e∈E. We call X (Γ, (�(e))e∈E,
(ω(e))e∈E, (p(e))e∈E) a weighted metric graph.

For brevity, we henceforth write

X (Γ, �) := X (Γ, (�(e))e∈E),

Xloop(Γ, �) := X (Γloop, (�(e))e∈Eloop
),

X (Γ, �, p, ω) := X (Γ, (�(e))e∈E , (ω(e))e∈E, (p(e))e∈E),

Xloop(Γ, �, p, ω) := X (Γloop, (�(e))e∈Eloop
, (ω(e))e∈Eloop

, (p(e))e∈Eloop
).

We will construct Brownian motion on weighted metric graphs using Dirichlet
space theory. For simplicity, we work for now on X (Γ, �, p, ω), although the case of
loops is handled by simply changing all sums to be over Eloop instead of E. We
consider the Hilbert space L2(X (Γ, �, p, ω), μ), where

μ(dx) :=
∑
e∈E

1I(e)(x)p(e)ω(e)m(dx),

and m is Lebesgue measure on the edge I(e).
Let C(X (Γ, �)) denote the set of continuous functions on our weighted met-

ric graph; continuity clearly does not depend on the choice of the edge weights
(ω(e))e∈E or (p(e))e∈E. Similarly, let Cc(X (Γ, �)) denote the set of continuous func-
tions with compact support, and let C0(X (Γ, �)) denote the closure of Cc(X (Γ, �))
with respect to the ‖ · ‖∞-norm.
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For k ∈ Z+ and p ≥ 1, set

Sk,p(X (Γ, �, p, ω), μ) :=
{
u∈C(X (Γ, �)) : for all e∈E, u

∣∣
I(e)

∈W k,p(I(e), μ
∣∣
I(e)

)
}
,

W k,p(X (Γ, �, p, ω), μ) :=

{
u∈Sk,p(X (Γ, �, p, ω), μ) :

∑
e∈E

‖u‖p
Wk,p(I(e),μ

∣∣
I(e)

)
< ∞

}
,

W k,p
0 (X (Γ, �, p, ω), μ) := C0(X (Γ, �)) ∩W k,p(X (Γ, �, p, ω), μ).

We consider the Dirichlet form on L2(X (Γ, �, p, ω), μ) with domain D(E) =

W 1,2
0 (X (Γ, �, p, ω), μ), which is defined on D(E)×D(E) by

E(f, g) :=
∑
e∈E

∫
I(e)

f ′(x)g′(x)p(e)m(dx).

The closedness of the form E is implied by the completeness of the Sobolev spaces
W k,p(I), where I is a finite interval.

The process associated with the Dirichlet form on this space is Brownian motion
on X (Γ, �, p, ω), which we denote by (Yt)t≥0. From this construction, (Yt)t≥0 is a
Hunt process, and consequently (Yt)t≥0 is strong Markov.

By the Gauss-Green formula, one may recover conditions for the generator of
(Yt)t≥0, LY . The domain of LY is the set of functions u such that

u ∈ W 2,2
0 (X (Γ, �, p, ω), μ)

and, for each x ∈ G,

(2.1)
∑

e∈E(x)

p(e)u′
e(x) = 0,

where u′
e(x) denotes the directional derivative of u at x in the direction of the edge

e. On each edge I(e), the generator LY is given by

LY

∣∣∣
I(e)

u
∣∣∣
I(e)

=
1

2ω(e)
u
∣∣∣′′
I(e)

.

One may view the Brownian motion on X (Γ, �, p, ω) as being obtained from a
single standard Brownian motion on R, (Wt)t≥0, in the following way. We start the
Brownian motion at some vertex x ∈ G. By a standard result for Brownian motion
on R, the excursion set {Wt 	= 0} consists of countably many intervals. For each
excursion, we pick an adjacent edge f with probability p(f)(

∑
e∈E(x) p(e))

−1, and

move like |Wω(f)−1t| along this edge. This is done until we reach a new vertex, at
which point we use the strong Markov property and continue.

We briefly discuss the changes necessary to consider Brownian motion on
Xloop(Γ, �, p, ω) instead of X (Γ, �, p, ω). The definition via Dirichlet spaces goes
through unchanged if one replaces E with Eloop. For the generator, the compatib-
lity condition (2.1) becomes

(2.2)
∑

e∈E(x)

p(e)u′
e(x) + p(xloop)u

′
1(xloop) + p(xloop)u

′
2(xloop) = 0,

where u′
1(xloop), u

′
2(xloop) are the directional derivatives of u at x in the direction

of either of the two possible orientations of the loop edge xloop. Similarly, if one
views the Brownian motion on Xloop(Γ, �, p, ω) as being obtained from a single
standard Brownian motion (Wt)t≥0, then for each interval, we pick a non-loop edge

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VOLUME GROWTH AND STOCHASTIC COMPLETENESS OF GRAPHS 2095

f with probability p(f)(
∑

e∈E(x) p(e) + 2p(xloop))
−1, and each of the two possible

orientations of the loop edge is chosen with probability p(xloop)(
∑

e∈E(x) p(e) +

2p(xloop))
−1.

The study of Brownian motion on metric graphs began with the paper of Walsh
[32] and deals with the particular case where x is a vertex connected to some (pos-
sibly infinite) number of finite or infinite rays emanating from x. Various construc-
tions of this process have been given by Rogers [28] (using resolvents), by Baxter
and Chacon [6] (using the generator), by Varopoulos [31] (using Dirichlet form the-
ory), and by Salisbury [29] (using excursion theory). The paper of Varopoulos is of
particular interest, as it discusses the present setting of Brownian motion on metric
graphs (with finite edge lengths), and relates this to the study of continuous time
Markov chains. Recently, there have been several papers by Kostrykin, Potthoff,
and Schrader (see in particular [23], [24], [25]) discussing Brownian motions on
metric graphs. They consider a more general boundary condition at vertices than
the one imposed here, and they allow edges of infinite length.

Brownian motion on metric graphs was initially studied as an object in the
theory of diffusions, and since has been examined as an analytic object in its own
right. It has been used on previous occasions as a tool in the study of random
walks. Varopoulos’ paper [31] establishes estimates for discrete time simple random
walks using Brownian motion on metric graphs, and the paper of Barlow and Bass
([3]) uses Brownian motion on metric graphs to study a continuous time simple
random walk. From an analytic perspective, Brownian motion on metric graphs has
many desirable properties, due to the panoply of existing results on one-dimensional
Brownian motion, as well as the applicability of general results on diffusions or local
Dirichlet spaces.

2.2. Hitting probabilities and hitting times. This section collects several re-
sults on the hitting probabilities and hitting times of Brownian motion on met-
ric graphs. We will work exclusively with the augmented weighted metric graph
Xloop(Γ, �, p, ω). We set

q(e) :=

{
p(e) if e is not a loop edge,

2p(e) if e is a loop edge.

Using this definition, (2.2) becomes

(2.3)
∑

e∈E(x)

q(e)u′
e(x) +

1

2
q(xloop)u

′
1(xloop) +

1

2
q(xloop)u

′
2(xloop) = 0.

Our results for hitting probabilities and hitting times will be stated strictly in
terms of q because Theorem 2.2 and Theorem 2.3 are simpler to express in terms
of the q conductances.

Denote Brownian motion on Xloop(Γ, �, p, ω) by (Yt)t≥0. As we will not be using
the VSRW in this section, there is no ambiguity in writing L := LY .

Let the vertex x be adjacent to the vertices x1, . . . , xk via the edges e1, . . . , ek,
and to itself through the loop xloop. We use B to denote the part of the graph
containing x, x1, . . . , xk, as well as the metric edges I(e1), . . . , I(ek), I(xloop). We
also introduce coordinates on B, rooted at x; given 1 ≤ j ≤ k and 0 ≤ z ≤ �(ej),
we write (j, z) for the unique point on I(ej) which is at a distance z from x. On the
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loop, we choose an arbitrary orientation and write (loop, z) for the unique point on
I(xloop) which is at a positive distance of z from x (according to the orientation of
the loop).

We write T = TY := inf{t ≥ 0 : Yt 	∈ B} for the first time that (Yt)t≥0, started
at y, hits any of x1, . . . , xk. Given y ∈ B, we write P

y for the probability law of
(Yt)t≥0 started at y, and E

y for expectations with respect to this probability law.
We also remark that all results in this section are valid for loopless metric graphs;

one needs only to replace all sums over Eloop(x) with sums over E(x).

Theorem 2.1. For 1 ≤ j ≤ k,

P
x(YT = xj) =

q(ej)
�(ej)∑

e∈E(x)
q(e)
�(e)

.

Proof. Let u(y) := P
y(YT = xj). By general Markov process theory, u satisfies

⎧⎪⎨⎪⎩
Lu = 0 in B,

u = 1 at xj ,

u = 0 on ∂B \ {xj}.

By solving the differential equation along each edge, we obtain the constants
(ai)1≤i≤k and (bi)1≤i≤k such that u((i, y)) = aiy + bi. By letting y ↓ 0, we get
that bi = b for 1 ≤ i ≤ k. On the loop, u is linear and satisfies u((loop, 0)) =
u((loop, �(xloop))) = b, so u is identically equal to b along the loop.

Plugging in the boundary condition shows that, for 1 ≤ i ≤ k,

(2.4)

{
ai�(ei) + b = 1 if i = j,

ai�(ei) + b = 0 if i 	= j.

By (2.3), since the terms corresponding to the loop vanish, we have

k∑
i=1

q(ei)ai = 0.

By multiplying the i−th equation in (2.4) by q(ei)
�(ei)

and summing over 1 ≤ i ≤ k,

we obtain that

k∑
i=1

q(ei)ai + b
k∑

i=1

q(ei)

�(ei)
=

q(ej)

�(ej)
,

and hence

P
x(YT = xj) = b =

q(ej)
�(ej)∑

e∈E(x)
q(e)
�(e)

.
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With this in hand, we may also compute from (2.4) that for 1 ≤ i ≤ k,

P
(i,y)(YT = xj) = u((i, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y

�(ei)
+

�(ei)− y

�(ei)

q(ej)
�(ej)∑

e∈E(x)
q(e)
�(e)

if i = j,

�(ei)− y

�(ei)

q(ej)
�(ej)∑

e∈E(x)
q(e)
�(e)

if i 	= j,

q(ej)
�(ej)∑

e∈E(x)
q(e)
�(e)

if i = loop.

�

Note that in the above the edge densities (ω(e))e∈E do not appear. This is to
be expected, given that changing the edge densities only causes a time-change of
the Brownian motion (Yt)t≥0, which cannot change the probabilities of exiting B
through the vertices x1, . . . , xk. Similarly, none of the quantities related to the
loop edge xloop appear, since traversing the loop does not change the probability
of exiting B at a specified vertex.

Theorem 2.2. The first moment of the hitting time T satisfies

E
xT =

∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

.

Proof. Let v(y) := E
yT . By general Markov process theory, v satisfies{

Lv = −1 in B,

v = 0 on ∂B.

Thus, we obtain that v((i, y)) = −ω(ei)y
2+aiy+bi for some constants (ai)1≤i≤k

and (bi)1≤i≤k. Letting y ↓ 0, we get that bi = b for 1 ≤ i ≤ k. Since v((i, �(ei))) = 0
for 1 ≤ i ≤ k, we have that

(2.5) −ω(ei)�
2(ei) + ai�(ei) + b = 0.

On the loop edge, since v((loop, 0)) = v((loop, �(xloop))) = b, we have that

v((loop, y)) = ω(xloop)y(�(xloop)− y) + b.

The compatibility condition (2.3) gives

k∑
i=1

q(ei)ai + q(xloop)ω(xloop)�(xloop) = 0.

As before, we multiply the i−th equation in (2.5) by q(ei)
�(ei)

, and sum over 1 ≤ i ≤ k

to obtain

E
xT = b =

∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

.
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Once we have computed b, we may compute from (2.5) that for 1 ≤ i ≤ k,

v((i, y)) = −ω(ei)y
2 +

⎛⎝ω(ei)�(ei)−
1

�(ei)

∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

⎞⎠ y

+

∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

.

�

Theorem 2.3. The second moment of the hitting time T and the variance of T
are given by

E
xT 2 =

1

3

∑
e∈Eloop(x)

ω2(e)q(e)�3(e)∑
e∈E(x)

q(e)
�(e)

+
4

3

⎛⎝∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

⎞⎠2

+ 2ω(xloop)q(xloop)�(xloop)

∑
e∈Eloop(x)

ω(e)q(e)�(e)(∑
e∈E(x)

q(e)
�(e)

)2 ,

Var T =
1

3

∑
e∈Eloop(x)

ω2(e)q(e)�3(e)∑
e∈E(x)

q(e)
�(e)

+
1

3

⎛⎝∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

⎞⎠2

+ 2ω(xloop)q(xloop)�(xloop)

∑
e∈Eloop(x)

ω(e)q(e)�(e)(∑
e∈E(x)

q(e)
�(e)

)2 .

Proof. Set w(y) = E
yT 2. Given ε � 1 and a point (i, y) which is not one of the

vertices x, x1, . . . , xk, we use the strong Markov property to obtain

w((i, y)) := E
(i,y)T 2 = E

(i,y)(ET 2|Fσ) = E
(i,y)(EYσ(T + σ)2)

= E
(i,y)(EYσ(T 2 + 2σT + σ2))

= E
(i,y)(EYσT 2) + 2E(i,y)(σEYσT ) + E

(i,y)(EYσσ2)

=
1

2
(w((i, y + ε)) + w((i, y − ε))) + 2ε2ω(ei)

1

2
(v((i, y + ε)) + v((i, y − ε)))

+
5

3
ω2(ei)ε

4.

Rearranging as before and letting ε ↓ 0, we get that w′′((i, y)) = −4ω(ei)v((i, y)),
or Lw = −2v, so that the function w satisfies{

Lw = −2v in B,

w = 0 on ∂B.

The explicit form for v was worked out in the proof of Theorem 2.2, and hence,
using the same techniques as before, one obtains the desired formulae. �

3. Metrics for the VSRW and for Brownian motion

on metric graphs

In this section, we define and compare several metrics for graphs and metric
graphs. We begin with several conventions. In this section, we begin with a
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weighted graph (Γ, (π(e))e∈E) and the associated VSRW (Xt)t≥0. We will also
analyze the weighted metric graph X (Γ, �, p, ω), which has the associated Brownian
motion (Yt)t≥0. The case of weighted metric graphs with loops, which requires
virtually no changes from the regular metric graph setting, is discussed at the end
of this chapter.

Given an edge e ∈ E, we use e and e to denote the initial and terminal vertices,
respectively. In many situations, the orientation one chooses for edges may not
matter (and one may choose an arbitrary orientation); in other situations, such as
consecutive edges in a path, there will be a natural orientation.

We have already defined geodesic metrics on both (Γ, π) and X (Γ, �, p, ω). In
our following work, we will need to consider metrics which arise from consideration
of the stochastic processes on these spaces.

3.1. Intrinsic metrics. Both the VSRW on weighted graphs and Brownian motion
on metric graphs may be defined through the theory of Dirichlet spaces. Such
processes have an intrinsic notion of distance associated with them.

We work first with the case of Brownian motion on X (Γ, �, p, ω), and view
it as the process associated with the strongly local Dirichlet form (E ,D(E)) on
L2(X (Γ, �, p, ω), μ). According to Dirichlet form theory (see [30]), there exists a
measure Γ(f, g) satisfying

E(f, g) =
∫
X (Γ,�)

dΓ(f, g).

Set LY := {f ∈ W 1,2
loc (X (Γ, �, p, ω), μ) : dΓ(f, f) ≤ dμ}. The intrinsic metric for

Y is defined by d̃I(x, y) := sup{f(x)− f(y) : f ∈ LY }. For x ∈ I(e), we have

dΓ(f, f)(x) = (f ′(x))2p(e)dm(x),

dμ(x) = p(e)ω(e)dm(x).

Suppose that f ∈ LY . Consider the edge e. If x ∈ I(e), then |f ′(x)|2 ≤ ω(e),
so that (f(e)− f(e))2 ≤ ω(e)�2(e). Consequently, if we restrict ourselves to points
x, y ∈ G, the intrinsic metric satisfies

d̃I(x, y) := sup{|f(x)− f(y)| : f ∈ EY },

where EY := {f ∈ C(G) : for all e ∈ E, (f(e)− f(e))2 ≤ ω(e)�2(e)}.
The situation is slightly more complicated when one considers the VSRW on

(Γ, π). Here, the associated Dirichlet form is non-local. However, we can make
analogous calculations to those in the local case. The Dirichlet form is given by

E(f, g) = 1

2

∑
x,y∈G

πxy(f(y)− f(x))2,

and in analogy with the local case we set

Γ(f, f)(x) =
1

2

∑
y∼x

πxy(f(y)− f(x))2,

so that ∑
x∈G

Γ(f, f)(x) = E(f, f).
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Set LX := {f ∈ C(G) : Γ(f, f) ≤ 1} and define the intrinsic metric for X by
dI(x, y) := sup{f(x)− f(y) : f ∈ LX}. Equivalently, we have

dI(x, y) := sup{|f(x)− f(y)| : f ∈ EX},

where EX :=
{
f ∈ C(G) : for all x ∈ G, 1

2

∑
y∼x πxy(f(y)− f(x))2 ≤ 1

}
.

3.2. Adapted metrics for the VSRW. We call a metric ρ adapted to the VSRW
X on (Γ, π) if there exists Cρ ≥ 0 such that for all x ∈ G,∑

y∼x

πxyρ
2(x, y) ≤ Cρ.

This condition has appeared previously in [10], [12], and [17], and it has appar-
ently close connections to the condition in the definition of EX . All weighted graphs
admit an adapted metric (see the metric dV in the following section).

In a similar vein, suppose that (α(e))e∈E are positive edge weights. We say that
(α(e))e∈E are adapted to the VSRW if there exists Cα ≥ 0 such that, for each
x ∈ G, ∑

e∈E(x)

π(e)α2(e) ≤ Cα.

Any choice of edge weights (even for edge weights which are not adapted) induce
metrics in the following ways:

d1,α(x, y) := sup{|f(x)− f(y)| : f ∈ Eα},

d2,α(x, y) := inf

{∑
e∈γ

α(e)1/2 : γ is a path joining x and y

}
,

where Eα := {f ∈ C(G) : for all e ∈ E, (f(e) − f(e))2 ≤ α(e)}. Note that for

any x, y ∈ G, d1,α(x, y) = d̃I(x, y), where d̃I is the intrinsic metric for Brownian
motion (Yt)t≥0 on some weighted metric graph X (Γ, �, p, ω) satisfying �(e) = 1 and
ω(e) = α(e) for each e ∈ E.

These metrics coincide:

Lemma 3.1. For all x, y ∈ G, d1,α(x, y) = d2,α(x, y).

Proof. Pick x0 ∈ G and set fx0
(x) := d2,α(x, x0). Then for e ∈ E,

(fx0
(e)− fx0

(e))2 ≤ d22,α(e, e) ≤ α(e),

so that fx0
∈ Eα, and consequently for x, y ∈ G, d1,α(x, y) ≥ |fx(x) − fx(y)| =

d2,α(x, y).
For the reverse inequality, given any ε > 0 and any f ∈ EX , by the definition of

d2,α, there is a path γε = (e0, . . . , en) with e0 = x, en = y such that

d2,α(x, y) + ε ≥
n∑

i=0

α1/2(ei) ≥
n∑

i=0

|f(ei)− f(ei)| ≥ |f(x)− f(y)|.

Taking the supremum over f ∈ EX and noting that ε > 0 was arbitrary, we get
that for x, y ∈ G, d2,α(x, y) ≥ d1,α(x, y), and consequently d1,a = d2,a. �

Consequently, we write dα to denote the common value of d1,a and d2,a, and
refer to it as the metric induced by the weights (α(e))e∈E. Since dα(e, e) ≤ α(e),
the induced metric associated with a set of adapted edge weights is also adapted.
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Any metric ρ induces edge weights by setting α(e) := ρ(e) := ρ(e, e); if the
metric ρ is adapted, then the induced edge weights are also adapted. In turn, these
edge weights induce a metric, which we denote by dρ. We refer to dρ as the metric
induced by the metric ρ. It is not necessarily the case that ρ and dρ coincide. For
example, if p > 1 and d ≥ 2 and ρ is the p−norm on the d−dimensional lattice
(Zd,Ed), then dρ is the 1−norm on (Zd,Ed).

Lemma 3.2. Let ρ be any metric (not necessarily adapted), and let dρ be the
induced metric. Then for all x, y ∈ G, ρ(x, y) ≤ dρ(x, y).

Proof. We have that dρ(x, y) := sup{|f(x) − f(y)| : f ∈ Eρ}. Given x0 ∈ G, set
fx0

(x) := ρ(x, x0). Since

(fx0
(e)− fx0

(e))2 ≤ ρ(e, e) = ρ(e),

we conclude that fx0
∈ Eρ, and consequently for x, y ∈ G, dρ(x, y) ≥ |fx(x) −

fx(y)| = ρ(x, y). �

The intrinsic metric for the VSRW is not, in general, adapted; see Example 2 in
Section 3.4.

Remark. We say that a metric is strongly adapted to the VSRW on (Γ, π) if there
exist positive constants cρ, Cρ such that for each x ∈ G,

cρ ≤
∑
y∼x

πxyρ
2(x, y) ≤ Cρ.

Similarly, we say that the edge weights (α(e))e∈E are strongly adapted to the
VSRW on (Γ, π) if there exist positive constants cα, Cα such that for each x ∈ G,

cα ≤
∑
y∼x

πxyα
2(e) ≤ Cα.

These conditions will occasionally be useful in our study of stochastic complete-
ness. In contrast to the condition of adaptedness, strongly adapted metrics (or
strongly adapted edge weights) do not always exist for a given weighted graph, as
will be shown in a subsequent example. While strongly adapted metrics induce
strongly adapted edge weights, it is not always true that the induced metric for a
given set of strongly adapted edge weights is strongly adapted.

3.3. Other metrics. We define the following additional metrics on X:

dE(x, y) := inf

{∑
e∈γ

π(e)−1/2 : γ is a path joining x and y

}
,

dV (x, y) := inf

{∑
e∈γ

π
−1/2
e ∧ π−1/2

e : γ is a path joining x and y

}
.

These are the metrics induced by the edge weights (π(e)−1/2)e∈E and (π
−1/2
e ∧

π
−1/2
e )e∈E , respectively. The letters E and V reflect the fact that the metrics dE

and dV are constructed using the edge weights (π(e))e∈E and the vertex weights
(πx)x∈G, respectively. The metric dE was first considered by Davies in [8]; he
used this metric in his study of heat kernel bounds for random walks on graphs.
The metric dV is a slight modification of a metric introduced independently by
the author in [10], who used this metric to obtain Gaussian upper bounds for heat
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kernels of general continuous time simple random walks, and by Grigor’yan, Huang,
and Masamune in [17].

The following results, which are so simple that we state them without proof, give
simple criteria to determine when the metrics dE and dV are induced by adapted
edge conductances:

Lemma 3.3. Let (Γ, π) be a weighted graph. Then the edge weights (π(e)−1/2)e∈E

are strongly adapted (or adapted) to the VSRW if and only if vertex degrees on Γ
are uniformly bounded.

Lemma 3.4. Let (Γ, π) be a weighted graph. The edge weights (π
−1/2
e ∧ π

−1/2
e )e∈E

are adapted to the VSRW. In particular, the metric dV is always adapted.

3.4. Comparing metrics. This section clarifies the relationship between the met-
rics dI , dE , and dV . These estimates are most useful in understanding the intrinsic
metric dI , which is difficult to calculate explicitly due to its non-local nature.

Lemma 3.5. For all x, y ∈ G, dI(x, y) ≤ 2dE(x, y).

Proof. It is immediate from the definition of EX that whenever x ∼ y and f ∈ EX ,

|f(x) − f(y)| ≤ 2π
−1/2
xy . For any ε > 0 and any f ∈ EX , by the definition of dE ,

there is a path γε = (x0, . . . , xn) such that

dE(x, y) + ε ≥
n−1∑
i=0

π−1/2
xixi+1

≥ 1

2

n−1∑
i=0

|f(xi)− f(xi+1)| ≥
1

2
|f(y)− f(x)|.

We conclude that for all x, y ∈ G, dI(x, y) ≤ 2dE(x, y). �

Lemma 3.6. For all x, y ∈ G, 21/2dV (x, y) ≤ dI(x, y).

Proof. Fix x0 ∈ G. Note that fx0
(x) := 21/2dV (x, x0) satisfies, for any x ∈ G,

1

2

∑
y∼x

πxy(fx0
(y)− fx0

(x))2 ≤
∑
y∼x

πxyd
2
V (x, y) ≤ 1,

so that fx0
∈ EX . Fix x, y ∈ G; we calculate that dI(x, y) ≥ |fx(x) − fx(y)| =

21/2dV (x, y). �

Now, we impose additional conditions on the structure of (Γ, π).

Lemma 3.7. Suppose that vertex degrees in (Γ, π) are uniformly bounded by CG.
Then for all x, y ∈ G,

2

CG
dE(x, y) ≤ dI(x, y) ≤ 2dE(x, y).

Proof. The rightmost inequality was proven in Lemma 3.5. For the other, we note
that for x0 ∈ G, fx0

(x) := 2
CG

dE(x, x0) ∈ EX , which implies that 2
CG

dE(x, y) ≤
dI(x, y). �

Lemma 3.8. Suppose that there exists C > 0 such that for each e ∈ E,

(3.1)
1

πe
≤ C

(
1

πe
∨ 1

πe

)
.

Then

21/2dV ≤ dI ≤ 2dE ≤ 2C1/2dV .
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Proof. Trivially, (3.1) implies dE ≤ C1/2dV . Combining this with Lemma 3.5 and
Lemma 3.6 gives the desired result. �

The condition (3.1) is sometimes referred to as ‘controlled weights’ (see [1]). It
is a stronger condition than the uniformly bounded vertex degree.

We now give two families of graphs, both of which will be useful in our study
of stochastic completeness. The first family of graphs shows that it is not always
possible to find a strongly adapted metric on a graph. The second family shows
that on graphs with unbounded vertex degree, the intrinsic metric dI may be very
different from (for example) the adapted metric dV . In particular, this example
shows that the intrinsic metric may fail to be adapted.

Example 1. A graph which does not admit a strongly adapted metric.
Fix an unbounded function r : Z+ → Z+, and let (An)n∈Z+

be disjoint sets with
|An| = r(n) and such that Z+ ∩An = ∅ for each n ∈ Z+. Let Γr := (Gr, Er) be as
follows:

Gr := Z+ ∪
⋃

n∈Z+

An,

Er :=
⋃

n∈Z+

⋃
x∈An

{n, x} ∪
⋃

n∈Z+

⋃
x∈An

{n+ 1, x}.

Equip this graph with the standard weights. Suppose that Γr admits a strongly
adapted metric ρ. Then there exist positive constants cρ, Cρ such that for each
x ∈ Gr,

cρ ≤
∑

e∈E(x)

π(e)ρ2(e, e) ≤ Cρ.

On the other hand, for each n ∈ Z+,

2Cr ≥
∑

e∈E(n)

π(e)ρ2(e, e) +
∑

e∈E(n+1)

π(e)ρ2(e, e)

≥
∑
x∈An

∑
e∈E(x)

π(e)ρ2(e, e)

≥ r(n)cr,

which is impossible since r is unbounded.
Note also that this graph is always stochastically complete, regardless of the

choice of r. Every other jump is to a vertex in some An, and at such vertices, since
there are only two neighbors, the mean jump time of the VSRW is 1/2. Conse-
quently, the lifetime of the VSRW on this graph is infinite. This example shows
that there exist stochastically complete graphs with arbitrarily large volume growth
(this was observed earlier using a different construction in [34]). In particular, it
is not possible to obtain results for general graphs showing that sufficiently large
volume growth implies stochastic incompleteness.

Example 2. Spherically symmetric trees with increasing rate of branching.
Let Γα (0 < α < 2) be a tree rooted at x0, with all vertices at a graph distance

of r from x0 having k(r) := �rα� neighbors at a graph distance of r + 1 from x0;
we equip these graphs with the standard weights.
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We compute that if xR ∈ Γα satisfies d(x0, xR) = R, then

dV (x0, xR) �
R∑

j=1

1

jα/2
� R1−α/2.

Let γ := (x0, . . . , xR) be the geodesic (minimal length) path joining x0 and
xR; we use V (γ) to denote the set of vertices in γ. For 0 ≤ j ≤ R, we set
f(xj) = j/2. For x ∈ Γα \ V (γ), let n(x) denote the unique y ∈ V (γ) satisfying
d(x, V (γ)) = d(x, y), and set f(x) := f(n(x)). It is clear that f ∈ EX , and hence
that dI(x0, xR) ≥ R/2.

In particular, this example shows that in general, one cannot find a constant
C > 0 such that dV (x, y) ≥ CdI(x, y), even if we restrict ourselves to x, y ∈ G such
that d(x, y) ≥ R for some constant R > 0. We will revisit this setting in Example
2 of Section 5.3.

3.5. Measures. Consider the general continuous time simple random walk on
(Γ, (π(e))e∈E, (θx)x∈G) given by

(Lθf)(x) :=
1

θx

∑
y∼x

πxy(f(y)− f(x)).

This process is a time-change of the VSRW, depending on the choice of the
vertex measure (θx)x∈G. The invariant measure associated with this process is
simply (θx)x∈G. Hence for the VSRW we have that the measure of U ⊂ G is

mG(U) := |U |.

We have already defined the measure associated with Brownian motion on
X (Γ, �, p, ω); given V ⊂ X (Γ, �), we have that

mMG(V ) :=

∫
V

μ(dx).

Notably, for an edge e, we have

mMG(e) =

∫
I(e)

∑
f∈E

1I(f)p(f)ω(f)m(dx) = ω(e)p(e)�(e).

3.6. Loops. Here we work with Brownian motion (Yt)t≥0 on X (Γ, �, p, ω) and
Brownian motion (Zt)t≥0 on the augmented graph Xloop(Γ, �, p, ω). We have al-
ready noted that the Dirichlet space formulation of Brownian motion goes through
unchanged when loops are added. In particular, if mMGloop

denotes the measure
on Xloop(Γ, �, p, ω), then the restriction of mMGloop

to subsets of X (Γ, �) is equal
to mMG. As such, there is no need to distingush between mMG and mMGloop

. As
before, for any e ∈ Eloop, we have mMGloop

(e) = ω(e)p(e)�(e).

Loops also have very little impact on the intrinsic metrics. Let d̃I,Y denote the in-

trinsic metric on X (Γ, �, p, ω) and d̃I,Z denote the intrinsic metric on Xloop(Γ, �, p, ω).
As before, we have that for x, y ∈ X (Γ, �) and u, v ∈ Xloop(Γ, �),

d̃I,Y (x, y) := sup{|f(x)− f(y)| : f ∈ EY },
d̃I,Z(u, v) := sup{|g(u)− g(v)| : g ∈ EZ},
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where

EY := {f ∈ W 1,2
loc (X (Γ, �, p, ω), μ) : for all e ∈ E, if x ∈ I(e), |f ′(x)|2 ≤ ω(e)},

EZ := {f ∈ W 1,2
loc (Xloop(Γ, �, p, ω), μ) : for all e ∈ Eloop, if x ∈ I(e), |f ′(x)|2≤ω(e)}.

Lemma 3.9. If x, y ∈ X (Γ, �), then d̃I,Y (x, y) = d̃I,Z(x, y).

Proof. First, the restriction of any g ∈ EZ to X (Γ, �) is in EY ; as an immediate

consequence, d̃I,Z(x, y) ≤ d̃I,Y (x, y). On the other hand, given f ∈ EY , one may
extend f to Xloop(Γ, �) by setting, at each x ∈ G, f(y) = f(x) for each y ∈
I(xloop). This extension is in EZ . Consequently d̃I,Y (x, y) ≤ d̃I,Z(x, y), and hence

d̃I,Y (x, y) = d̃I,Z(x, y) for all x, y ∈ X (Γ, �). �

In particular, d̃I,Y and d̃I,Z are equal when evaluated between points of G.

4. Synchronizing Brownian motion on metric graphs

with the VSRW

In this section, we begin with a weighted graph (Γ, (π(e))e∈E) and the associated
VSRW (Xt)t≥0. We investigate the question of when it is possible to find a weighted
metric graph X (Γ, �, p, ω) or Xloop(Γ, �, p, ω) such that Brownian motion (Yt)t≥0 on
this space behaves similarly to the VSRW (Xt)t≥0 with respect to certain properties.

Let T be the hitting time for Y described in Section 2; it is the time it takes Y

to hit a vertex different from the last one visited. Let T̃ be the jump time of the

VSRW. We write P
x for the law of (Yt)t≥0 started at x ∈ G, and P̃

x for the law of
(Xt)t≥0 started at x ∈ G.

Our first result concerns jump probabilities only:

Theorem 4.1. X and Y have the same jump probabilities if and only if (�(e))e∈E

and (p(e))e∈E are chosen such that there exists λ > 0 such that for each e ∈ E,
λπ(e) = p(e)/�(e).

Proof. Fix x ∈ G. Setting P
x(YT = xj) = P̃

x(X
˜T = xj), we obtain

p(ej)
�(ej)∑

e∈E(x)
p(e)
�(e)

=
π(ej)∑

e∈E(x) π(e)
.

This implies that there exists λ = λ(x) such that λπ(e) = p(e)/�(e) for e ∈ E(x).

Given an edge e := {u, v}, by comparing the equalities P
u(YT = xj) = P̃

u(X
˜T =

xj) and P
v(YT = xj) = P̃

v(X
˜T = xj), we obtain that λ(u) = λ(v). Since G is

connected, we conclude that λ is constant. �

The situation for synchronizing expected jump times is more complex. We have
the following necessary and sufficient criteria which shows when it is possible to
synchronize the jump probabilities and expected jump times using a loopless metric
graph:

We begin with a definition from graph theory:
A disjoint cycle cover of Γ = (G,E) is a collection of vertex-disjoint cycles in G

such that every vertex in G is incident to some edge in one of the cycles. A single
edge is considered a cycle.
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Theorem 4.2. It is possible to choose (�(e))e∈E, (p(e))e∈E, and (ω(e))e∈E so that
X and Y satisfy, for each x ∈ G,

P
x(YT = xj) = P̃

x(X
˜T = xj),

E
xT = Ẽ

xT̃

if and only if, for every e ∈ E, there exists a disjoint cycle cover of (G,E) which
uses the edge e.

Proof. First, by the previous result, we know that there exists λ > 0 such that
(p(e))e∈E and (�(e))e∈E satisfy p(e)/�(e) = λπ(e) for each e ∈ E.

Fix x ∈ G. Setting E
xT = Ẽ

xT̃ , we get that

∑
e∈E(x) ω(e)p(e)�(e)∑

e∈E(x)
p(e)
�(e)

=
1∑

e∈E(x) π(e)
.

Given that (p(e))e∈E and (�(e))e∈E have been chosen, we set

ω(e) := c(e)(p(e)�(e))−1.

We then get that ∑
e∈E(x) c(e)∑
e∈E(x) π(e)

=
1∑

e∈E(x) π(e)
.

In other words, the problem is to determine when it is possible to assign edge
weights (c(e))e∈E to each edge of the graph so that the edge weights incident to
each vertex sum to 1. By the following lemma, we see that this happens if and only
if, for each e ∈ E, there is a disjoint cycle cover containing e in one of its cycles. �

Lemma 4.3. Suppose that Γ = (G,E) is a locally finite graph. It is possible to
assign edge weights to each edge of the graph (G,E) so that the edge weights incident
to each vertex sum to 1 if and only if, for each e ∈ E, there is a disjoint cycle cover
containing e in one of its cycles.

Proof. We reproduce the proof in [26]. Suppose that for each e ∈ E, there is a
disjoint cycle cover containing e in one of its cycles. Fix an edge f , and pick a
disjoint cycle cover containing that edge. For each e ∈ E, we define cf (e) := 1 if
the edge f appears as an isolated edge in the disjoint cycle cover, cf (e) := 1/2 if the
edge e is part of a proper cycle in the disjoint cycle cover, and cf (e) = 0 otherwise.
For any x ∈ G, we have

∑
e∈E(x) cf (e) = 1, and cf (f) > 0, but not necessarily that

cf (e) > 0 for all edges e.
Now, let (α(e))e∈E be any collection of positive numbers satisfying

∑
e∈E α(e) =

1, and set, for each e ∈ E, c(e) =
∑

f∈E α(f)cf (e).
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Note that since α(f)cf (e) > 0, c(e) > 0, and for any vertex x ∈ G with neighbors
e1, . . . , ek, we have that ∑

e∈E(x)

c(e) =
∑

e∈E(x)

∑
f∈E

α(f)cf (e)

=
∑
f∈E

∑
e∈E(x)

α(f)cf (e)

=
∑
f∈E

α(f)

= 1,

as desired.
On the other hand, suppose that for each x ∈ G, the sum of the edge weights

incident to x is 1. It is clear that the (possibly infinite) weighted adjacency matrix
A is doubly stochastic, and by the Birkhoff-von Neumann theorem is a (possibly
infinite) convex combination of permutation matrices, which we denote by (Pn)n∈I .
Write

A =
∑
n∈I

anPn

with an > 0,
∑

n∈I an = 1. Fix e ∈ E. Then the corresponding entry of A is non-
zero, so some Pj must have a non-zero entry in the same place. A has zero entries
on its diagonal (as (G,E) has no loops), so each Pj must as well. By considering
the cycle decomposition of the permutation corresponding to the matrix Pj , we see
that Pj naturally corresponds to a disjoint cycle cover containing the edge e. �

Remarks. 1. The condition arising in Theorem 4.2 is very unstable, as it can be
destroyed by perturbing a graph very slightly. Modifying any graph so that it has
at least one vertex of degree 1 will make it impossible to synchronize the VSRW
with a Brownian motion as in Theorem 4.2.

2. It is not difficult to see that it is always possible to synchronize the jump
probabilities and jump times on Xloop(Γ, �, p, ω). One proceeds as above and sets

c(e) := 1
2 (π

−1/2
e ∧π

−1/2
e ) for all non-loop edges, so that

∑
e∈E(x) c(e) ≤ 1

2 for all x ∈
G. One then chooses the edge weights on loops so that ω(xloop)p(xloop)�(xloop) =
1−

∑
e∈E(x) c(e) ≤ 1

2 for all x ∈ G. However, the intrinsic metric for the Brownian

motion that one obtains from this process may have undesirable properties.
In applications, we may be studying the VSRW on (Γ, π) with a particular

adapted metric in mind. The following result allows us to construct Brownian
motion on a weighted metric graph Xloop(Γ, �, p, ω) such that the VSRW and the
Brownian motion have the same jump probabilities and approximately the same
expected jump times, and with the additional property that the intrinsic metric for
the Brownian motion is closely related to the adapted metric for the VSRW.

Theorem 4.4. Let (Γ, π) be a weighted graph with adapted edge weights (α(e))e∈E.
Let X (Γ, �, p, ω) be the metric graph such that, for e ∈ E,

�(e) := 1,

p(e) := π(e),

ω(e) := α2(e),
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and for each x ∈ G,

�(xloop) := 1, p(xloop) :=
1

2
, ω(xloop) := 1.

There exists Cα > 0 such that for any x ∈ G,

P
x(YT = xj) = P̃

x(X
˜T = xj),(4.1)

Ẽ
xT̃ ≤ E

xT ≤ (Cα + 1)ẼxT̃ .(4.2)

Proof. The relation (4.1) follows immediately from Theorem 4.1. By adaptedness
of (α(e))e∈E, there exists a positive constant Cα such that for any x ∈ G,

0 ≤
∑

e∈E(x)

πeα
2(e) ≤ Cα,

from which it follows immediately that

(4.3) 1 ≤
∑

e∈Eloop(x)

ω(e)p(e)�(e) ≤ Cα + 1,

so that (4.2) follows from (4.3) and (2.2). �

Corollary 4.5. Let (Γ, π) be a weighted graph, and let ρ be a metric adapted to
the VSRW. Let X (Γ, �, p, ω) be the metric graph such that, for e ∈ E,

�(e) := 1,

p(e) := π(e),

ω(e) := ρ2(e, e),

and for each x ∈ G,

�(xloop) := 1, p(xloop) :=
1

2
, ω(xloop) := 1.

There exist positive constants cρ, Cρ such that for any x ∈ G,

P
x(YT = xj) = P̃

x(X
˜T = xj),(4.4)

Ẽ
xT̃ ≤ E

xT ≤ (Cα + 1)ẼxT̃ .(4.5)

Additionally, if dρ is the metric induced by the edge weights ρ(e) := ρ(e, e), then
for all x, y ∈ G, ρ(x, y) ≤ dρ(x, y).

Proof. This follows immediately from Lemma 3.2, Lemma 3.9, and Theorem 4.4.
�

Remarks. 1. Theorem 4.4 is our first result where use of the augmented graph
Xloop(Γ, �, p, ω) is essential. If one wishes to prove an analogue of this result on
the loopless metric graph X (Γ, �, p, ω) while still having control over the intrinsic
metric for the associated Brownian motion, then the necessary condition on the
edge weights (α(e))e∈E is not adaptedness but rather strong adaptedness. This
is undesirable since strongly adapted edge weights do not exist for every weighted
graph (cf. Example 1 of Section 3.4).

2. Note that the choice that �(e) = 1 for all e ∈ E is somewhat arbitrary.
Take any ϕ : E → (0,+∞). If one replaces (�(e))e∈E, (p(e))e∈E, (ω(e))e∈E

with (�ϕ(e))e∈E , (pϕ(e))e∈E , (ωϕ(e))e∈E satisfying �ϕ(e) := �(e)ϕ(e), pϕ(e) :=
�(e)(ϕ(e))−1, ωϕ(e) := ω(e)(ϕ(e))2, then the Brownian motion on the new weighted
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graph behaves identically to the Brownian motion on the original weighted graph
with respect to hitting probabilities and moments of hitting times.

5. Stochastic completeness of graphs

In this section we present general results relating volume growth in adapted met-
rics to stochastic completeness of (Γ, π), and corollaries specializing to the intrinsic
metric dI and the adapted metric dV . These results are analogous to Grigor’yan’s
result on stochastic completeness on manifolds, and will be seen to produce sharp
results when applied to specific graphs for which exact criteria for stochastic com-
pleteness are known. Additionally, we present an example showing that in contrast
to the setting of local Dirichlet spaces, the intrinsic metric dI may be a poor metric
for analyzing stochastic completeness of graphs.

We begin by compiling two results on the convergence of random series which
will be used in the proof of our main results.

5.1. Convergence of random series. In this section, we let (Ω,F ,P) be a prob-
ability space on which we have the sequence of random variables (Xn)n∈Z+

and the
associated filtration Fn := σ(X0, . . . , Xn). We define the following events:

A :=

{ ∞∑
n=0

Xn < +∞
}
,

B :=

{ ∞∑
n=0

P(|Xn| > 1|Fn−1) < +∞
}
,

C :=

{ ∞∑
n=0

E(Xn1{Xn≤1}|Fn−1) < +∞
}
,

D :=

{ ∞∑
n=0

Var(Xn1{Xn≤1}|Fn−1) < +∞
}
.

Two events are said to be equivalent if their symmetric difference has probability
0. We have the following two results:

Theorem 5.1 (Doob, [9]). Suppose that the sequence of random variables (Xn)n∈Z+

is non-negative and that there exists C > 0 such that P(0 ≤ Xn ≤ C) = 1 for all
n ∈ Z+. Then the events A and C are equivalent.

Theorem 5.2 (Brown, [7]). The event B ∩ C ∩ D is almost surely a subset of A
(i.e., P((B ∩ C ∩ D) \ A) = 0). That is, if each of the series associated with B, C,
and D converge, then the series associated with A also converges.

Remark. The paper [7] claims to prove a generalization of the Kolmogorov three-
series theorem for dependent random variables. While [7] does correctly prove that
simultaneous convergence of the series associated with the events B, C, and D is
sufficient for the convergence of the original series (which yields Theorem 5.2), the
proof of necessity is incorrect, and in [13] it is shown that there can be no general
three-series theorem of this type.
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5.2. Proof of the main result. Our proof uses the following criterion of Sturm
which relates stochastic completeness to volume growth on local Dirichlet spaces:

Theorem 5.3 (Sturm, [30]). Let (Yt)t≥0 be the stochastic process associated with
the strongly local Dirichlet form (E ,D(E)) on L2(X,m), and denote the intrinsic
metric on this space by ρ. Suppose that there exists x0 ∈ X and r0 > 0 such that∫ ∞

r0

r

logm(Bρ(x0, r))
dr = +∞.

Then (Yt)t≥0 is non-explosive.

In this section, T and T̃ will denote jump times for Y and X as in previous
sections.

Theorem 5.4. Let (Γ, π) be a weighted graph, and let (α(e))e∈E be edge weights
adapted to the VSRW on (Γ, π) such that there exists Dα > 0 satisfying α(e) ≤ Dα

for all e ∈ E. Let ρ be any metric satisfying ρ(x, y) ≤ dα(x, y). If there exists
x0 ∈ G and r0 > 0 such that∫ ∞

r0

r

logmG(Bρ(x0, r))
dr = +∞,

then (Γ, π) is stochastically complete.

Proof. Let (Xt)t≥0 denote the VSRW on (Γ, π), which has the natural filtration
(GX

t )t≥0, let (σn)n∈Z+
denote the jump times for X, and set HX(n) :=

∑n
j=0 σj

and FX
n := GX

HX(n).

We begin with the following lemma:

Lemma 5.5. Under the hypotheses of Theorem 5.4, P−a.s.,
∞∑

n=0

E(σn|FX
n−1) = +∞.

Proof. By adaptedness, there exists Cα > 0 such that for all x ∈ G,∑
e∈E(x)

π(e)α2(e) ≤ Cα.

We will work with the metric graph Xloop(Γ, �, p, ω), where for e ∈ E,

�(e) := 1,

p(e) := π(e),

ω(e) := α2(e),

and for each x ∈ G,

�(xloop) := 1, p(xloop) :=
1

2
, ω(xloop) := 1.

Let X denote the VSRW on (Γ, π) and let Y denote Brownian motion on
Xloop(Γ, �, p, ω). By Theorem 4.4, X and Y have the same jump probabilities.
We begin with the process (Yt)t≥0. By sampling Y each time it hits a vertex dif-
ferent from the last visited vertex, we obtain a discrete time simple random walk
on (Γ, π), which we denote by (Zn)n∈Z+

, and we use this simple random walk to
construct the VSRW (Xt)t≥0; this is a coupling of X and Y . In particular X and
Y exist on the same probability space, so there is no need to distinguish between
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P and P̃ (or E and Ẽ). Let (σn)n∈Z+
and (τn)n∈Z+

be the jump times for X and
Y , respectively. Setting HX(n) := inf{t ≥ HX(n − 1) : Xt ∈ G \ {Zn−1}} and
HY (n) := inf{t ≥ HY (n− 1) : Yt ∈ G \ {Zn−1}}, we have that

σn := HX(n)−HX(n− 1),

τn := HY (n)−HY (n− 1).

Let (FX
n )n∈Z+

be the filtration such that for each n ∈ Z+, FX
n := GX

HX(n), where

(GX
t )t≥0 is the natural filtration for X. Similarly, let (FY

n )n∈Z+
be the filtration

such that for each n ∈ Z+, FY
n := GY

HY (n), where (GY
t )t≥0 is the natural filtration

for Y .
From Theorem 4.4, for n ∈ Z+,

(5.1) E(σn|FX
n−1) ≤ E(τn|FY

n−1) ≤ (Cα + 1)E(σn|FX
n−1),

and for x, y ∈ G, ρ(x, y) ≤ dα(x, y). By Lemma 3.9, dα agrees with d̃I when
evaluated between points of G. Thus, for all r ≥ 0, Bρ(x0, r) ⊇ G∩B

˜dI
(x0, r). We

have that

mG(Bρ(x0, r)) := |Bρ(x0, r)|,

mMG(B˜dI
(x0, r)) ≤

∑
e∈Eloop such that e∩B

˜dI
(x0,r) 	=∅

mMG(e)

≤
∑

x∈G∩B
˜dI
(x0,r)

∑
e∈Eloop(x)

mMG(e)

=
∑

x∈G∩B
˜dI
(x0,r)

∑
e∈Eloop(x)

ω(e)p(e)�(e)

≤
∑

x∈G∩B
˜dI
(x0,r)

(Cα + 1)

≤ (Cα + 1)|Bρ(x0, r)|.

In particular, since (Cα + 1)mG(Bρ(x0, r)) ≥ mMG(B˜dI
(x0, r)), the hypothesis

∫ ∞

r0

r

logmG(Bρ(x0, r))
dr = +∞

implies that ∫ ∞

r0

r

logmMG(B˜dI
(x0, r))

dr = +∞.

By Theorem 5.3, this implies non-explosiveness of Y , and hence, P−a.s.,

∞∑
n=0

τn = +∞.
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By Theorem 5.2, for any K > 0, P−a.s., at least one of the following equalities
holds:

∞∑
n=0

P(τn ≥ K|FY
n−1) = +∞,(5.2)

∞∑
n=0

E(τn1{τn≤K}|FY
n−1) = +∞,(5.3)

∞∑
n=0

Var(τn1{τn≤K}|FY
n−1) = +∞.(5.4)

Fix K > 0. We will show that any of (5.2), (5.3), (5.4) implies

(5.5)

∞∑
n=0

E(τn|FY
n−1) = +∞.

If (5.2) holds, by Markov’s inequality,

∞∑
n=0

P(τn ≥ K|FY
n−1) ≤

1

K

∞∑
n=0

E(τn1{τn≥K}|FY
n−1)

≤ 1

K

∞∑
n=0

E(τn|FY
n−1).

If (5.3) holds, we use the trivial estimate

∞∑
n=0

E(τn1{τn≤K}|FY
n−1) ≤

∞∑
n=0

E(τn|FY
n−1).

If (5.4) holds, we begin by noting that

Var(τn|FY
n−1)− Var(τn1{τn≤K}|FY

n−1)

= E(τ2n|FY
n−1)− E(τ2n1{τn≤K}|FY

n−1)

− (E(τn|FY
n−1))

2 + (E(τn1{τn≤K}|FY
n−1))

2

= E(τ2n1{τn>K}|FY
n−1) + (E(τn1{τn≤K}|FY

n−1))
2

− (E(τn|FY
n−1))

2

≥ (E(τn1{τn>K}|FY
n−1))

2 + (E(τn1{τn≤K}|FY
n−1))

2

− (E(τn|FY
n−1))

2

≥ −1

2
(E(τn|FY

n−1))
2.

Hence

Var(τn|FY
n−1) +

1

2
(E(τn|FY

n−1))
2 ≥ Var(τn1{τn≤K}|FY

n−1).
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We conclude that (5.4) implies that one of the following equalities holds:

∞∑
n=0

Var(τn|FY
n−1) = +∞,(5.6)

∞∑
n=0

(E(τn|FY
n−1))

2 = +∞.(5.7)

Suppose that (5.6) holds. Note that if τn is the jump time for (Yt)t≥0 started at
the vertex x, then by Theorem 2.3,

Var(τn|YHY (n−1) = x)

=
1

3

∑
e∈Eloop(x)

ω2(e)q(e)�3(e)∑
e∈E(x)

q(e)
�(e)

+
1

3

⎛⎝∑
e∈Eloop(x)

ω(e)q(e)�(e)∑
e∈E(x)

q(e)
�(e)

⎞⎠2

+ 2ω(xloop)q(xloop)�(xloop)

∑
e∈Eloop(x)

ω(e)q(e)�(e)(∑
e∈E(x)

q(e)
�(e)

)2

≤ 1

3

∑
e∈Eloop(x)

ω2(e)q(e)�3(e)∑
e∈E(x)

q(e)
�(e)

+
7

3
(E(τn|YHY (n−1) = x))2

≤ 1

3πx

⎛⎝D2
α

∑
e∈E(x)

ω(e)p(e)�(e) + 1

⎞⎠+
7

3
(E(τn|YHY (n−1) = x))2

≤ 1

3
(D2

α ∨ 1)E(τn|YHY (n−1) = x) +
7

3
(E(τn|YHY (n−1) = x))2,

and hence

Var(τn|FY
n−1) ≤

1

3
(D2

α ∨ 1)E(τn|FY
n−1) +

7

3
(E(τn|FY

n−1))
2.

From this estimate, it is clear that if (5.6) holds, then either (5.5) holds, in
which case we are done, or (5.7) holds. In the latter case, either the positive
sequence (E(τn|FY

n−1))n∈Z+
converges to 0, in which case eventually E(τn|FY

n−1) ≥
(E(τn|FY

n−1))
2 (implying that (5.5) holds), or it does not converge to 0, in which

case it is clear that (5.5) also holds. Thus, we conclude that (5.4) implies (5.5).
We conclude that

∑∞
n=0 τn = +∞ P−a.s. implies

∑∞
n=0 E(τn|FY

n−1) = +∞
P−a.s. By (5.1), this also implies

∑∞
n=0 E(σn|FX

n−1) = +∞ P−a.s. �

At this point, we assume that the vertex weights (πx)x∈G are bounded below
by Cπ > 0. We will subsequently discharge this assumption by a probabilistic
argument.

Lemma 5.6. Under the hypotheses of Theorem 5.4 and the additional hypothesis
that the vertex weights (πx)x∈G are bounded below by Cπ > 0, (Γ, π) is stochastically
complete.

Proof. By Lemma 5.5, we have that P-a.s.,

∞∑
n=0

E(σn|FX
n−1) = +∞.
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Note that E(σn|XHX(n−1) = x) = 1
πx

and that the jump time from the vertex x
is exponential with parameter πx. Clearly, πx ≥ Cπ > 0. Then we have that

E(σn1{σn≤1}|YHY (n−1) = x) =

∫ 1

0

πxue
−πxudu

=
1

πx
(1− (πx + 1)e−πx)

≥ 1

πx
(1− (Cπ + 1)e−Cπ )

≥ C ′
π

πx

= C ′
πE(σn|XHX(n−1) = x).

Note that C ′
π := 1−(Cπ+1)e−Cπ =

∫ Cπ

0
ve−vdv > 0. It follows that for n ∈ Z+,

E(σn1{σn≤1}|FX
n−1) ≥ C ′

πE(σn|FX
n−1),

and hence P−a.s.,
∑∞

n=0 E(σn1{σn≤1}|FX
n−1) = +∞. Since (σn1{σn≤1})n∈Z+

is a
uniformly bounded sequence of non-negative random variables, Theorem 5.1 implies
that P−a.s.,

∞∑
n=0

σn1{σn≤1} = +∞.

Since 0 ≤ σn1{σn≤1} ≤ σn pointwise, we conclude that P−a.s.,

∞∑
n=0

σn = +∞,

and hence (Γ, π) is stochastically complete. �

Finally, we remove the hypothesis that the vertex weights are bounded below.
Suppose that (Γ, π) is a stochastically incomplete graph which satisfies the hypothe-
ses of Theorem 5.4, but has vertex weights which are not bounded below.

Let H := {x ∈ G : πx ≤ 1}. Consider the augmented graph (Γ̃, π̃), where

Γ̃ = (G̃, Ẽ) is obtained from (G,E) by adding, for each x ∈ H, a vertex x̃ connected
to the rest of the graph only by the edge {x, x̃}; denote these additional vertices by
H̃. The edges of the form {x, x̃} are given weight 1.

Let (X̃t)t≥0 denote the VSRW on (Γ̃, π̃). We use this to construct the VSRW on

(Γ, π) via a coupling, as follows: At each vertex in G\H, X̃ and X move identically.

At a vertex x ∈ H, X̃ eventually jumps to some vertex in G̃ \ {x, x̃}. X jumps to
the same vertex after waiting an exponential time with parameter πx.

We define ρ̃ on (Γ̃, π̃) as follows. Given x, y ∈ G with x 	= y, we set

ρ̃(x, y) = ρ(x, y),

ρ̃(x, ỹ) = ρ(x, y) + 1,

ρ̃(x̃, ỹ) = ρ(x, y) + 2.

Since ρ was adapted and πxx̃ρ̃
2(x, x̃) = 1 for all x ∈ H, ρ̃ is an adapted metric

on (Γ̃, π̃) with constant at most Cρ + 1.
For any x0 ∈ G and r ≥ 0, we have that

|Bρ(x0, r)| ≤ |Bρ̃(x0, r)| ≤ |Bρ(x0, r)|+ |{x̃ ∈ H̃ : dρ(x0, x) ≤ r}| ≤ 2|Bρ(x0, r)|.
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Consequently, (Γ̃, π̃) satisfies the hypotheses of Lemma 5.6, so (Γ̃, π̃) is stochas-

tically complete and X̃ is non-explosive.
By hypothesis, X explodes with positive probability, and we denote the event

on which this occurs by SIX . Given U ⊂ G and V ⊂ G̃, TX
U is the total amount

of time X spends at vertices of U , and similarly T
˜X
V is the total amount of time X̃

spends at vertices of V .
On SIX , we have that

TX
G\H + TX

H = TX
G < ∞.

Clearly TX
G\H < ∞ on SIX . Since X and X̃ move identically on G \ H, this

implies that T
˜X
G\H < ∞ on SIX .

Next, we use the fact that TX
H < ∞ on SIX . Since the times between jumps

for the VSRW are independent of the jump directions, the times between jumps
from vertices in H are independent exponentially distributed random variables with
mean at least 1. By the second Borel-Cantelli Lemma, an infinite number of visits
to H would cause X to spend an infinite amount of time at vertices of H, and have
infinite lifetime, which would be impossible. So on SIX , X visits H only finitely
many times.

Using the coupling, each visit to a vertex x ∈ H by X is associated with an initial

visit to x by X̃, as well as a geometrically distributed (finite) number of additional

visits to x and x̃ by X̃ (before X̃ visits G̃ \ {x, x̃} again). The times between all

of these jumps for X̃ are independent exponentially distributed random variables

with mean at most 1; consequently, their sum is finite. Since X̃ only visits H and

H̃ finitely many times on SIX , we conclude that on SIX , T
˜X
H < ∞ and T

˜X
˜H

< ∞.

Thus, on SIX ,

T
˜X
˜G

= T
˜X
G\H + T

˜X
H + T

˜X
˜H

< ∞.

Consequently, X̃ explodes with positive probability, contradicting the stochastic

completeness of (Γ̃, π̃).
Combining this argument with Lemma 5.6, we conclude that under the hypothe-

ses of Theorem 5.4, (Γ, π) is stochastically complete. �

Corollary 5.7. Let (Γ, π) be a weighted graph, and let ρ be a metric adapted to
the VSRW on (Γ, π) such that there exists Dρ > 0 satisfying ρ(x, y) ≤ Dρ whenever
x ∼ y. If there exists x0 ∈ G and r0 > 0 such that∫ ∞

r0

r

log |Bρ(x0, r)|
dr = +∞,

then (Γ, π) is stochastically complete.

Proof. Upon noting that the edge conductances ρ(e) := ρ(e, e) are adapted and
uniformly bounded above, this follows from Corollary 4.5 and Theorem 5.4. �

Corollary 5.8. Let (Γ, π) be a weighted graph with uniformly bounded vertex de-
grees and edge weights uniformly bounded below. If there exists x0 ∈ G and r0 > 0
such that ∫ ∞

r0

r

log |BdI
(x0, r)|

dr = +∞,

then (Γ, π) is stochastically complete.
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Proof. Set α(e) := π(e)−1/2 for e ∈ E. By Lemma 3.3 and the hypothesis of edge
weights uniformly bounded below, the hypotheses of Theorem 5.4 are satisfied, and
by Lemma 3.5, for x, y ∈ G, dI(x, y) ≤ dE(x, y) = dα(x, y), so the result follows
from Theorem 5.4. �

Corollary 5.9. Let (Γ, π) be a weighted graph such that the vertex weights (πx)x∈G

are bounded below. If there exist x0 ∈ G and r0 > 0 such that∫ ∞

r0

r

log |BdV
(x0, r)|

dr = +∞,

then (Γ, π) is stochastically complete.

Proof. This is an immediate consequence of Lemma 3.4 and Corollary 5.7. �

Given a weighted graph (Γ, π), we define dW to be the metric induced by the

edge weights (1 ∧ π
−1/2
e ∧ π

−1/2
e )e∈E . It is clear that dW ≤ dV , so dW is always

adapted, and also that dW (x, y) ≤ 1 whenever x ∼ y.

Corollary 5.10. Let (Γ, π) be a weighted graph. If there exists x0 ∈ G and r0 > 0
such that ∫ ∞

r0

r

log |BdW
(x0, r)|

dr = +∞,

then (Γ, π) is stochastically complete.

Proof. This is an immediate consequence of Corollary 5.7. �

Remarks. 1. The analogue of Sturm’s result relating stochastic completeness with
volume growth in the intrinsic metric is false. See Example 2 in Section 5.3 for an
example where the VSRW is stochastically incomplete but where log |BdI

(x, r)| �
r log r. On graphs with unbounded vertex degree and sufficiently poor connectivity
properties (in the sense that there are very few geodesic paths joining vertices),
the intrinsic metric is not adapted to the VSRW. Indeed, in Section 3.4 we gave
an example in which the VSRW moves very quickly but the intrinsic metric is
approximately equal to the graph metric. Consequently, it appears that the intrinsic
metric is not the right metric to use for studying stochastic completeness of graphs,
and that adaptedness or strong adaptedness is the relevant condition, particularly
in light of Corollary 5.7. It would be interesting to determine conditions under
which the intrinsic metric is adapted to the VSRW for graphs with unbounded
vertex degree.

2. None of the theorems and corollaries in this section use the notion of strong
adaptedness. However, the lower bound appearing in the definition of strong adapt-
edness ensures that the metric cannot be unnecessarily small, which would in turn
cause the volume growth to be unnecessarily large. If the metric ρ fails to be
strongly adapted, the resulting criteria one obtains for stochastic completeness may
be far from optimal. See the remark following Example 2 in Section 5.3.

3. These techniques and results are also applicable to the general continuous
time simple walk with generator Lθ defined in Section 3.5; call this process (Zt)t≥0.
Here one works with edge weights (β(e))e∈E which are bounded above and adapted
to this random walk, i.e., weights satisfying, for all x ∈ G,

1

θx

∑
e∈E(x)

π(e)β2(e) ≤ Cβ .
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One constructs the associated Brownian motion as in Theorem 4.4, and sets
�(xloop) = 1, p(xloop) =

1
2θx, ω(xloop) = 1 for x ∈ G. The techniques of this section

allow one to prove the analogue of Theorem 5.4 for (Zt)t≥0, using the invariant
measure described in Section 3.5 and considering volume growth in any metric ρ
such that ρ(x, y) ≤ dβ(x, y) for all x, y ∈ G. However, this criteria may not be very
useful. For example, if θx = πx, the associated random walk (which is referred to
as the constant-speed continuous time simple random walk, or CSRW, and which
jumps at exponentially distributed times with mean 1) is always stochastically
complete, regardless of volume growth.

5.3. Examples. In this section, we present several examples which demonstrate
how one can use Theorem 5.4 and its various corollaries to quickly determine sharp
stochastic completeness criteria for various graphs.

Example 1. Stochastic completeness of the birth-death chain. We have Γ :=
(Z+, Enn), where Enn := {{n, n + 1} : n ∈ Z+}, and we assign weights (π(e))e∈E

satisfying πn,n+1 = (n+1)2 logβ+(n+1) for 0 ≤ β < 2, where log+(x) := log(x)∨ 1.
We use the metric dV for ease of computation. As R → ∞,

dV (0, R) ∼
R∑

j=1

1

2j log
β/2
+ (j)

∼ 1

2
log1−β/2(R),

and hence |BdV
(0, r)| � e(2r)

2/(2−β)

. By Corollary 5.8 or Corollary 5.9, we conclude
that if 0 ≤ β ≤ 1, then (Γ, π) is stochastically complete. This result may be seen
to be sharp; by Example 4.12 of [34], (Γ, π) is stochastically incomplete if and only
if

(5.8)

∞∑
r=0

r

πr,r+1
< +∞.

Plugging in πn,n+1 = (n + 1)2 logβ+(n + 1) with 0 ≤ β < 2, we see that (5.8)
occurs precisely when 1 < β < 2.

Example 2. Stochastic completeness of spherically symmetric trees.
The construction of these objects was done in Example 2 in Section 3.4. Let Γα

be a tree rooted at x0, with all vertices at a graph distance of r from x0 having
k(r) := �rα� neighbors at a graph distance of r+1 from x0 for 0 < α < 2. We equip
these graphs with the standard weights. Clearly vertex degrees are unbounded in
this setting.

As before, we use the adapted metric dV for ease of computation. We pre-
viously computed that if xR ∈ Γα satisfies d(x0, xR) = R, then dV (x0, xR) �
R1−α/2. Hence if dV (x0, y) � r, then d(x0, y) � r2/(2−α). As well, |Bd(x0, r)| =∑r

j=0

∏j
i=0 k(i), so that

log |BdV
(x0, r)| �

r2/(2−α)∑
j=1

log jα � r2/(2−α) log r.

From Corollary 5.8, we conclude that Γα is stochastically complete if α ≤ 1. By
Remark 4.3 of [34], the exponent 1 is sharp; if α > 1, then Γα is stochastically
incomplete.

Note that in this setting the metric dV is strongly adapted. Now, suppose that
we work on Γ1 with a different choice of metric. Given 1 < β < 2, we consider the
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metric dβ induced by the edge weights cβ(e) = r−β/2 if d(x0, e)∧d(x0, e) = r; these
weights are adapted but not strongly adapted. Proceeding as above, we obtain that
log |Bdβ

(x0, r)| � r2/(2−β) log r. This gives∫ ∞

r0

r

log |Bdβ
(x0, r)|

dr < +∞,

even though Γ1 is stochastically complete. Consequently, this adapted metric does
not give sharp volume growth criteria.

This family of graphs also yields an interesting counterexample. We previously
computed that dI(x0, xR) � R, and it follows that for any α > 1

log |BdI
(x0, r)| �

r∑
j=1

log jα � r log r,

from which it follows that∫ ∞

r0

r

log |BdI
(x0, r)|

dr = +∞,

even though Γα is stochastically incomplete. Comparing this result with Theo-
rem 5.3 shows that the relationship between volume growth in the intrinsic metric
and stochastic completeness on graphs is different from the corresponding result for
local Dirichlet spaces.
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