VOLUME GROWTH IN THE COMPONENT OF
THE DEHN-SEIDEL TWIST

U. FRAUENFELDER AND F. SCHLENK

Abstract. We consider an entropy-type invariant which measures the
polynomial volume growth of submanifolds under the iterates of a map,
and we show that this invariant is at least 1 for every diffeomorphism in
the symplectic isotopy class of the Dehn—Seidel twist.

1 Introduction and Main Results

The complexity of a compactly supported smooth diffeomorphism ¢ of a
smooth manifold M can be measured in the following way: Fix a Rieman-
nian metric g on M. For ¢ € {1,...,dim M} denote by %; the set of smooth
embeddings o of the cube Q" = [0, 1]’ into M, and by p,(c) the volume of
(Q") € M computed with respect to the measure on o(Q*) induced by g.
Following [KT], we define for each i € {1,...,dim M} the i-dimensional
slow volume growth s;(¢) € [0, 00] by

1 n
si(¢) = sup liminf 0 119(" (7)) .
e

This is the polynomial volume growth of the iterates of the most distorted
smooth ¢-dimensional family of initial data. Since ¢ is compactly sup-
ported, s;(¢) does not depend on the choice of g, and sqim as(¢) = 0.

Uniform lower bounds of s; () were first obtained in a beautiful paper of
Polterovich [P1] for a class of symplectomorphisms ¢ # id in the identity
component Sympy(M) of the group of symplectomorphisms of a closed
symplectic manifold with vanishing second homotopy group. E.g. s1(¢) > 1
for every symplectomorphism ¢ € Symp,(M,w) \ {id} of a closed oriented
surface of genus > 2, and

51(90)2{ i i 32;:
for every non-identical Hamiltonian diffeomorphism of the standard 2d-
dimensional torus. We endow the cotangent bundle T*B over a closed
base B with the canonical symplectic structure w = dA, and denote by



810 U. FRAUENFELDER AND F. SCHLENK

Sympg§(T*B) the identity component of the group Symp®(T*B) of com-
pactly supported C*°-smooth symplectomorphisms of (7B, d\). Combin-
ing a result in [FrS1] with the arguments in [P1], one finds

REMARK 1. For every non-identical symplectomorphism ¢ € Sympg(1*B)
it holds true that si(p) > 1.

We refer to [FrS2] for a proof.

In this paper, we address a question of Polterovich in [P2] and study
the slow volume growth of certain compactly supported symplectomor-
phisms outside the identity component. The spaces we shall consider are
the cotangent bundles (7B, d\) over compact rank one symmetric spaces
(CROSSes, for short), and the diffeomorphisms are Dehn twist like sym-
plectomorphisms. These maps were introduced to symplectic topology by
Arnol’d [Ar] and Seidel [S2,3]. They play a prominent role in the study of
the symplectic mapping class group of various symplectic manifolds, [KhS],
[S1,2,3,8], and generalized Dehn twists along spheres can be used to de-
tect symplectically knotted Lagrangian spheres, [S2,3], and (partly through
their appearance in Seidel’s long exact sequence in symplectic Floer homol-
ogy, [S7]) are an important ingredient in attempts to prove Kontsevich’s
homological mirror symmetry conjecture, [KhS], [S4,5,6,9], [ST].

Let (B, g) be a CROSS of dimension d, i.e. B is a sphere S¢, a projective
space RP?, ('P", HHP™, or the exceptional symmetric space Fy / Sping diffeo-
morphic to the Cayley plane (!aP2. All geodesics on (B, g) are embedded
circles of equal length. We define 9 to be the compactly supported diffeo-
morphism of T*B whose restriction to the cotangent bundle T*y C T*B
over any geodesic circle v C B is the square of the ordinary left-handed
Dehn twist along « depicted in Figure 1. We call ¥ a twist. A more analytic
description of twists is given in section 2.3. It is known that twists are sym-
plectic, and that the class of a twist generates an infinite cyclic subgroup
of the mapping class group mo(Symp®(7™*B)), see [S3].

A d-dimensional submanifold L of T*B is called Lagrangian if w van-
ishes on T'L x T'L. Lagrangian submanifolds play a fundamental role in
symplectic geometry. For each ¢ € Symp“(T*B) we therefore also consider
its Lagrangian slow volume growth

1 n
l(p) = sup lim inf 0g g (" (0))
geN 00 IOgn

where A is the set smooth embeddings o : Q% < T*B for which o(Q?) is a
Lagrangian submanifold of T*B. Of course, (¢) < sq4(¢). As we shall see
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Figure 1: The map ¢|7+~.

in section 2.3, s;(9™) = (™) =1 for every i € {1,...,2d — 1} and every
m € 7.\ {0}.

Theorem 1. Let B be a d-dimensional compact rank one symmetric
space, and let ¥ be the twist of T*B described above. Assume that
¢ € Symp®(T*B) is such that [p] = [V™] € mo(Symp“(T*B)) for some
m € 7.\ {0}. Then sq(p) > l(p) > 1.

Theorem 1 is of particular interest if B is S?® or ("P", n > 1, since in
these cases it is known that (a power of) ¥ can be deformed to the iden-
tity through compactly supported diffeomorphisms, see [KaK], [S3] and
Proposition 2.23 below. If B is §?*t! or RP?"*! then the variation ho-
momorphism of ¥ does not vanish, and so Theorem 1 already holds for
homological reasons in this case, see Corollary 2.21 below. Twists can be
defined on the cotangent bundle of any Riemannian manifold with periodic
geodesic flow, and we shall prove Theorem 1 for all known such manifolds.

In the case that B is a sphere S¢, one can use the fact that all geodesics
emanating from a point meet again in the antipode to see that the twist
admits a square root 7 € Symp®(T*S%). For d = 1, 7 is the ordinary left-
handed Dehn twist along a circle, and for d > 2 it is (the inverse of) the
generalized Dehn twist thoroughly studied in [S1,2,3,8]. Given any great
circle v in S%, the restriction of 7 to T*y C T*S% is the ordinary left-handed
Dehn twist along v depicted in Figure 2.

COROLLARY 1. Let 7 be the (generalized) Dehn twist of T*S% des-

cribed above, and assume that ¢ € Symp®(T*S9) is such that [p] =
[7™] € mo(Symp®(T*S?)) for some m € 7.\ {0}. Then sy(p) > 1(p) > 1.
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Figure 2: The map 7|p+~.

Since [72] = [J] has infinite order in m(Symp®(7T*5%)), so has [r]. In
the case d = 2 it is known that [7] generates mo(Symp®(T*S?)), see [S1,8].
Remark 1 and Corollary 1 thus give a nontrivial uniform lower bound of
the slow volume growth

s(p) = maxsi(p)

for each ¢ € Symp®(T*S?) \ {id}.

Following Shub [Sh], we consider a symplectomorphism ¢ € Symp®(1T™*B)
as a best diffeomorphism in its symplectic isotopy class if ¢ minimizes both
s(¢) and I(y). We shall show that s;(7™) = I(7") = 1 and s;(9™) =
[(9™) =1 for every i € {1,...,2d — 1} and every m € 7\ {0}. In view of
Theorem 1 and Corollary 1, the twists 7" and ¥ are then best diffeomor-
phisms in their symplectic isotopy classes.

Acknowledgements. This paper owes very much to Leonid Polterovich
and Paul Seidel. We cordially thank both of them for their help. We are
grateful to Yuri Chekanov, Anatole Katok, Nikolai Krylov, Janko Latschev
and Dietmar Salamon for useful discussions. Much of this work was done
during the stay of both authors at the Symplectic Topology Program at
Tel Aviv University in Spring 2002 and during the second authors stay at
FIM of ETH Ziirich and at Leipzig University. We wish to thank these
institutions for their kind hospitality, and the Swiss National Foundation
and JSPS for their generous support.



2 Proofs

We shall first outline the proof of Theorem 1. We then describe the known
Riemannian manifolds with periodic geodesic flow and define twists on such
manifolds. We next prove Theorem 1 and Corollary 1, and notice that these
results continue to hold for C'-smooth symplectomorphisms. We finally
study twists from a topological point of view.

2.1 Idea of the proof of Theorem 1. Consider the cotangent bundle
T*B over a CROSS (B, g). We denote canonical coordinates on T*B by
(¢,p) and denote by g* the Riemannian metric on 7*B induced by g. For
r > 0 we abbreviate
B ={(ap) €T"B | |p| <7}.

To fix the ideas, we assume B = S% and that ¢ is isotopic to ¥ through
symplectomorphisms supported in T7S%. For z € S? we denote by D, the
I-disc in T} S?. Consider first the case d = 1. We fix z. For a twist 9 as in
Figure 1 and n > 1, the image ¥"(D,) wraps 2n times around the base S'.
For topological reasons the same must hold for ¢, and so

s (#"(Dx)) > 2np4(S") .
In particular, si(¢) > 1. For odd-dimensional spheres, Theorem 1 fol-
lows from a similar argument. For even-dimensional spheres, however,
Theorem 1 cannot hold for topological reasons, since then a power of ¥
is isotopic to the identity through compactly supported diffeomorphisms.
In order to find a symplectic argument, we rephrase the above proof for S!
in symplectic terms: For every y # = the Lagrangian submanifold ¥"(D,,)
intersects the Lagrangian submanifold D, in 2n points, and under sym-
plectic deformations of ¥ these 2n Lagrangian intersections persist. This
symplectic point of view generalizes to even-dimensional spheres: For a
twist 9 on S? as in Figure 1, n > 1 and y # z, the Lagrangian subman-
ifolds ¥"(D,) and D, intersect in exactly 2n points. We shall prove that
the Lagrangian Floer homology of ¥"(D,) and D, has rank 2n. The iso-
topy invariance of Floer homology then implies that ¢"(D,) and D, must
intersect in at least 2n points. Since this holds true for every y # z, we
conclude that

pg- (" (Dz)) > 2”“9(5{1) .
In particular, sq(@) > (@) > 1.
2.2  P-manifolds. Geodesics of a Riemannian manifold will always be

parametrized by arc-length. A P-manifold is by definition a connected
Riemannian manifold all of whose geodesics are periodic. It follows from
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Wadsley’s theorem that the geodesics of a P-manifold admit a common
period, see [W] and [B, Lemma 7.11]. We normalize the Riemannian metric
such that the minimal common period is 1. Every P-manifold is closed,
and besides S' every P-manifold has finite fundamental group, see [B, 7.37].
The main examples of P-manifolds are the CROSSes

Ss¢ RPY P", HP", (aP?

with their canonical Riemannian metrics suitably normalized. The simplest
way of obtaining other P-manifolds is to look at Riemannian quotients of
CROSSes. The main examples thus obtained are the spherical space forms
S2n+1 /G where G is a finite subgroup of O(2n + 2) acting freely on S$2"+1,
These spaces are classified in [Wo|, and examples are lens spaces, which
correspond to cyclic G. According to [AM, p.11-12] and [B, 7.17 (¢)], the
only other Riemannian quotients of CROSSes are the spaces ('P?*~1 /7,;
here, the fixed point free involution on ("P?"~! is induced by the involution

(zlvziv---azmz;z)H(Eiv_zlv"'v'g;w_zn) (1)

of 12", Notice that ('P'/7, = RP?. We shall thus assume n > 2.
On spheres, there exist P-metrics which are not isometric to the round
metric gean. We say that a P-metric on S? is a Zoll metric if it can be
joined with gcan by a smooth path of P-metrics. All known P-metrics on
S% are Zoll metrics. For each d > 2, the Zoll metrics on S? form an infinite
dimensional space. For d > 3, the known Zoll metrics admit SO(d) as isom-
etry group, but for d = 2, the set of Zoll metrics contains an open set all
of whose elements have trivial isometry group. We refer to [B, Chapter 4]
for more information about Zoll metrics.

CROSSes, their quotients and Zoll manifolds are the only known P-
manifolds. It would be interesting to know whether this list is complete.
As an aside, we mention that for the known P-manifolds all geodesics are
simply closed. Whether this is so for all P-manifolds is unknown, [B, 7.73
(f7)], except for P-metrics on S2, for which all geodesics are simply closed
and of length 1, see [GrG].

An SC-manifold is a P-manifold all of whose closed geodesics are em-
bedded circles of equal length. Among the known P-manifolds the SC-
manifolds are the CROSSes and the known Zoll manifolds, see [B, 7.23].
For a geodesic v : R — B of an SC-manifold (B, g) and ¢t > 0 we let ind ~(¢)
be the number of linearly independent Jacobi fields along ~(s), s € [0,¢],
which vanish at v(0) and ~(¢). If indv(¢) > 0, then ~(¢) is said to be



conjugate to v(0) along v. The index of v defined as
indvy = Z ind~(t)
te€]0,1]
is a finite number. According to [B, 1.98 and 7.25|, every geodesic on
(B, g) has the same index, say k. We then call (B,g) an SCy-manifold.
The following result is well known, see [B, 3.35 and 3.70].
ProrosITION 2.1. For CROSSes, the indices of geodesics are as follows:

(B,g) S* RPY CP" HP" CaP?
k  d—1 0 1 3 /)

2.3 Twists. Consider a P-manifold (B,g). As before, we choose co-
ordinates (¢,p) on T*B, and using g we identify the cotangent bundle
T*B with the tangent bundle TB. The Hamiltonian flow of the function
%|p|2 corresponds to the geodesic flow on T'B. For any smooth function
f 0,00 — [0, 00[ such that
f(r)=0for rnear 0 and f'(r)=1forr>1, (2)

we define the twist 9 as the time-1-map of the Hamiltonian flow generated
by f(|p|). Since (B,g) is a P-manifold, ¥ is the identity on T*B \ T} B,
and so ¥ € Symp®(T*B).
PROPOSITION 2.2. (i) The class [¥;] € mo(Symp®(1™*B)) does not depend
on the choice of f.

(ii) si(VF) = 1(WF) =1 for every i € {1,...,2d — 1}, every m € 7.\ {0}
and every f.

Proof. (i) Let f; : [0,1] — [0,1], i = 1,2, be two functions as in (2). Then
the functions fs = (1 — s)f1 + sfe, s € [0,1], are also of this form, and
s+ Uy, is an isotopy in Symp®(1T™*B) joining 97, with 9, .

(i) Without loss of generality we assume m = 1. Let 9! be the Hamil-
tonian flow of f(|p|). Then ¥; = ¥'. For each r > 0 the hypersurface
S, = OT}B is invariant under 9¥'. We denote by 9! the restriction of ¥°
to Sy. As before, we endow T*B with the Riemannian metric ¢g*. For
z € S, let ||dV(z)] be the operator norm of the differential of 9! at z in-
duced by g*. Since ¥} is 1-periodic, we find C' < oo such that ||ddt (z)]| < C
for all t and all z € S;. Since

I (z) = rﬁ{,(r)t (")

T
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forall t € R, r > 0 and x € S, we conclude that
Javt @) = |lav] " (5)] < © (3)

forallt € R, r >0 and = € S,. We next fix (¢,p) € T*B\ B and consider
the line F, = Rp C Ty B orthogonal to S|, through (g,p). We denote by
¥, the restriction of ¥ to Fj,. Let 7 be the geodesic on B with ~(0) = ¢
and 4(0) = p/|p|. Then ¥,(F,) C T*y for all t. As a parametrized curve,
7 is isometric to the circle S! of length 1, and so T*y \ v is isometric to
T*S1\ St. We thus find

[0t )| = v/ (77(ee)” +1 < '+ 1) @
for all t > 0 and (¢q,p) € T*B and some constant C’ < oo. The estimates
(3) and (4) show that for any i-cube o : Q" — T*B,

o (93(0)) < O C(n + 1)
for all n > 1, and so s;(J;) < 1 for all 4.

We are left with showing s;(¢f) > 1 for i € {1,...,2d — 1}. Fix ¢ € B,
choose an orthonormal basis {e1,...,eq} of T;B, and let R be such that
f([0,1]) € [0, R]. For j € {1,...,d} we let E’ be the subspace of 7B
generated by {ei,...,e;}, and we set Efé = E'NTLB. We first assume
i € {1,...,d}. We then choose o : Q° — E* such that E}% C 0(Q"). The set
m(¥(0)) consists of a smooth (i — 1)-dimensional family of geodesics in B.
Its i-dimensional measure iy (7 (9 (0))) with respect to g thus exists and is
positive. Moreover, m(J}(0)) = m(J;(0)) for all n > 1, and every point in
m(9%(0)) has at least 2n preimages in ¥} (). Since m: (I*B,g*) — (B, g)
is a Riemannian submersion, we conclude that

fg* (19?((7)) > 2nyug (77(19?(0))) ,

and so s;(¥y) > 1.

Since the fibre T}/ B is a Lagrangian submanifold of 7B, we have shown
that s(¥;) = () = 1. We shall therefore only sketch the proof of the
remaining inequalities s;(¢7) > 1,47 € {d+1,...,2d — 1}. For such an i we
choose a small € > 0, set B; = exp, Ei_d, and choose o : Q' — T*B; such
that T%B; C 0(Q"). Then there is a constant ¢ > 0 such that

pg (0%(0)) > en foralln > 1. (5)
This is so because ¥ 5 restricts to a symplectomorphism on the 7—d cylinders
T*~; over the geodesics v; with v;(0) = ¢ and 4(0) = e;, and — as we
have seen above — grows linearly on the (2d — 7)-dimensional remaining
factor in the fibre. An explicit proof of (5) can be given by computing the



differential dv;(q, p) with respect to suitable orthonormal bases of T, , T*B
and Tﬂf(%p)T*B. O

Let 7 € Symp®(T*S%) be a generalized Dehn twist as defined in Figure 2;
for an analytic definition (of its inverse) we refer to [S3, 5a]. Then 72 is
a twist ¥y. Proposition 2.2 (ii) and the argument given in 2.7 below thus
show that s;(7") = (™) = 1 for every ¢ € {l,...,2d — 1} and every
m € 7.\ {0}.

Theorem 1 is a special case of the following theorem, which is the main
result of this paper.

Theorem 2.3. Let (B,g) be a d-dimensional P-manifold. If d > 3, as-
sume that (B,g) is an SCy-manifold or a Riemannian quotient of such
a manifold, and if d > 3 and k = 1, assume that (B,g) is ('P" or
P21 /7,5, Let ¥ be a twist on T*B. If p € Symp®(T*B) is such that
[¢] = [9] € mo(Symp®(T*B)) for some m € 7.\ {0}, then sq(p) > l(p) > 1.

REMARKS 2.4. 1. (i) Theorem 2.3 covers all known P-manifolds. Indeed,
it covers CROSSes and their Riemannian quotients. Moreover, if (S, g) is
a Zoll manifold, we choose a smooth family g;, ¢t € [0,1], of P-metrics on
S% with go = gean and g; = g. The induced isotopy ¥ of twists shows that
[J0] = [91] in o(Symp®(T*S%)), and so the conclusion of Theorem 2.3 for
Zoll manifolds follows from the one for (S%, gean)-

(ii) The following result suggests that Theorem 2.3 covers all SC-mani-
folds: If (B, g) is an SCj-manifold, then B has the homotopy type of ("P",
see [B, 7.23].

2. (i) We recall from [S1,8] that mo(Symp®(T*S?)) = 7. is generated by
the class [7] of a generalized Dehn twist.

(i) For S d > 3, [1]> = [J] and Theorem 2.3 imply that [r] gen-
erates an infinite cyclic subgroup of mo(Symp?(7*S5%)), and for those P-
manifolds (B, g) covered by Theorem 2.3 which are not diffeomorphic to
a sphere, Theorem 2.3 implies that [1)] generates an infinite cyclic sub-
group of my(Symp®(7T*B)). This was proved in [S3, Corollary 4.5] for
all P-manifolds. (It is assumed in [S3] that H'(B;IR) = 0. Besides for
B = S this is, however, guaranteed by the Bott-Samelson theorem [B,
Theorem 7.37].) It would be interesting to know whether there are other
elements in these symplectic mapping class groups. O

Theorem 2.3 is proved in the next two sections.
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2.4 Lagrangian Floer homology. Floer homology for Lagrangian
submanifolds was invented by Floer in a series of seminal papers, [F1,2,3,4],
and more general versions have been developed meanwhile, [FuOOO], [O1].
In this section we first follow [KhS] and define Lagrangian Floer homology
for certain pairs of Lagrangian submanifolds with boundary in an exact
compact convex symplectic manifold. We then compute this Floer ho-
mology in the special case that the pair consists of a fibre and the image
of another fibre under an iterated twist on the unit coball bundle over a
(known) SC-manifold.

2.4.1 Lagrangian Floer homology on convex symplectic man-
ifolds. We consider an exact compact connected symplectic manifold
(M,w) with boundary OM and two compact Lagrangian submanifolds Lg
and L; of M meeting the following hypotheses:

(H1) Lo and L, intersect transversally;
(HQ) LoNnLiNoM = @;
(H3) H'(L;;R) =0for j =0,1.
We also assume that there exists a Liouville vector field X (i.e. Lxw =

duxw = w) which is defined on a neighbourhood U of M and is everywhere
transverse to M, pointing outwards, such that

(H4) X(z) e TyLjforallz e L;NU, j=0,1.

Let ¢, be the local semiflow of X defined near M. Since OM is compact,
we find € > 0 such that ¢, (x) is defined for x € OM and r € [—¢,0]. For
these r we set

U, = U @T’(aM)'

r<r’<0
In view of (H2) there exists ¢’ €]0, €[ such that for V = Uy we have
VNLoyNL=0. (6)

An almost complex structure .J on (M, w) is called w-compatible if wo(idx.J)
is a Riemannian metric on M. Following [BiPS], [CFH], [V], we consider
the space J of smooth families J = {.J;}, t € [0, 1], of smooth w-compatible
almost complex structures on M such that Ji(x) = J(x) does not depend
on t for z € V and such that

(J1) w(X(x), J(z)v) =0, z € OM, v € T,OM,
(J2) w(X(x),J(x)X(x)) =1, z € OM,
(J3) dop(z)J(z) = J(pr(x))der(z), z € OM, r € [—€,0].



For later use we examine conditions (J1) and (J2) more closely. The contact
structure & on M is defined as

¢={veToM |w(X,v) =0}, (7)
and the Reeb vector field R on M is defined by
w(X,R)=1 and w(R,v)=0 forall ve TOM. (8)

LeEMMA 2.5. Conditions (J1) and (J2) are equivalent to
JE=¢ and JX =R.

The proof follows from definitions and the J-invariance of w. It follows
from Lemma 2.5 that the set J is nonempty and connected, see [CFH]. Let
S={z=s+ite te0,1]}

be the strip. The energy of u € C°°(S, M) is defined as

Eu) = /S ww.

For u € C*(S, M) consider Floer’s equation
Osu + Ji(u)Opu = 0
u(s,j) € Lj for j € {0,1}, (9)
E(u) < o0.

Notice that for a solution u of (9),

w= [ ol =, [ 1ol + jou)?

is the energy of u associated with respect to any Riemannian metric defined
via an w-compatible J. It follows from (H1) that for every solution u of
(9) there exist points c_,c; € Lo N Ly such that limg_ o0 u(s,t) = cx
uniformly in ¢, cf. [S, Proposition 1.21]. The following lemma taken from
[EHS], [KhS] shows that the images of solutions of (9) uniformly stay away
from OM.

LEMMA 2.6. Let u be a finite energy solution of (9). Then
w(S)NV =10.
Proof. Define f : V — R by f(¢r(x)) = e", where z € OM and r € [—¢€,0].
Using (J1), (J2), (J3) we find that the gradient V[ with respect to each
metric w o (id x J;) is X; for the function
F:Q=u'(V)=R, (s1) =z F(2)=fou(z),
one therefore computes AF = (0su, Osu), see e.g. [FrS1], so that F' is sub-

harmonic. It follows that F' does not attain a strict maximum on the
interior of €). In order to see that this holds on €, fix a point z € 95. We
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first assume z = (s,0), and claim that the function F satisfies the Neumann
boundary condition at z,
(9tF(z) =0.
Indeed, we compute at z that
O F = df (Ou) = (Vf, uu) = (X, Opu)
= w(X, Jou) = —w(X,dsu) =0,
where in the last step we have used that X € T'Ly by (H4) and dsu € TLy
by (9). Let now 7 be the reflection (s,t) — (s, —1), set Q@ = QU T(Q),
and let F' be the extension of F' to (2 satisfying ['(s,—t) = F(s,t). Since
O F = 0 along {t = 0}, the continuous function F' is weakly subharmonic,
and hence cannot have a strict maximum on 2. Repeating this argument
for z = (s,1) € Q, we see that the same holds for F' on 2, and so either
u(S)NV =0, or F is locally constant. In the latter case, 2 = S, so that

lim u(s,t) =cy € LoNV,

§— 00
which is impossible in view of (6). O

We endow J with the C'°°-topology. Recall that a subset of 7 is generic

if it is contained in a countable intersection of open and dense subsets. For
J € J let M(J) be the space of solutions of (9). The following proposition
is proved in [FHS], [02].
PROPOSITION 2.7. There exists a generic subset Jreg of J such that for

each J € Jreg the moduli space M(J) is a smooth finite dimensional man-
ifold.

Under hypotheses (H1)—(H4), the ungraded Floer homology
HF(M, Ly, L) can be defined. In order to prove Theorem 2.3 we must
compute the rank of this homology, and to this end it will be crucial to
endow it with a relative 7-grading. We therefore impose a final hypo-
thesis. For c_,cy € Lo N Ly consider the space B(c_, c4) of smooth maps
u : S — M which satisfy u(s,j) € Lj, j = 0,1, and lims_ 4o u(s,t) = cx
uniformly in ¢ in the C'*°-topology. For u € B(c_,c;) we consider the
Banach spaces

I/VJVP = {6 S Wl’p(S7 U*T*A{) ‘ 5(57]) € ,‘Tu(e,j)Lj ’ .7 - 07 ]-}
and L} = LP(S,u*T'M). Linearizing Floer’s equation for J € J we obtain
the linear operator D,y : WaP — LE given by
Dug = v9€ + Jf(U)fo + Vng(u)afu .

This operator is Fredholm, cf. [S, Theorem 2.2], and we denote by I(u) its
Fredholm index. If J € Jreg and u solves Floer’s equation, then I(u) is the



dimension of the manifold

Me—,cqp3d) = MI)NBle—,cq).
We can now formulate our fifth hypothesis.

(H5) The Fredholm index I(u) of u € B(c_,c4) only depends
on c_ and cy.
Using (H5) and the gluing theorem for Fredholm indices one sees that there
exists an index function
ind: LoNLy — 7

such that I(u) = indc_ — ind ey for every u € B(c_,c4). Such an index
function is unique up to addition of an integer, and hence defines a relative
grading on Lo N L;. Moreover,

dim M(c_,c4+;J) =inde- —ind ey .
For k € 7 let CFy(M, Lo, L1) be the Zo-vector space generated by the
points ¢ € LoNL; with ind ¢ = k. In view of (H1), the rank of CF},(M,Lo,L1)
is finite. In order to define a chain map on CF,(M, Lo, L;) we need the
following:

LEMMA 2.8. For u € M(c—,cy;J) the energy E(u) only depends on c_
and cy.

Proof. We have E(u) = [ d\ = [, A = fu(]e,0)>‘ - fu(]u)A for any
primitive X of w. Since d\|; = 0 and H'(L;;R) = 0, we find smooth
functions f; on L; such that Ay, = df; for j = 0,1. Therefore, E(u) =
Joley) = fole) = fileq) + file-). 0

The group R acts on M(c_, cy;J) by time-shift. In view of Lemma 2.6
the elements of M(c_, cy;J) uniformly stay away from the boundary OM,
and by Lemma 2.8 and (H1), their energy is uniformly bounded. More-
over, W[,y = 0 and ][5y arr;) = 0 since w is exact and by (H3),
so that when taking limits in M(c_,c4;J) there is no bubbling off of J-
holomorphic spheres or discs. The Floer—Gromov compactness theorem
thus implies that the quotient M(c_,c4;J)/IR is compact. In particular,
ifinde_ —ind ey = 1, then M(c_,c4;J)/IR is a finite set, and we then set

n(c_,cp;J) = #{M(c_,cy;I)/R} mod 2.

For k € 7 define the Floer boundary operator 0x(J) : CF, — CFy_; as the

linear extension of
Ok(J)e = Z n(c,c)c .

ceLoNly
i(c)=k—1
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Using the compactness of the 0- and 1-dimensional parts of M(J)/R one
shows by gluing that O;_1(J) o 9x(J) = 0 for each k, see [F2], [Sc]. The
complex (CFy(M, Lo, L;1;J),0.(J)) is called the Floer chain complex. A
continuation argument together with Lemma 2.6 shows that its homology
o kerdp(J)

HF,(M,Ly,L1;Jd) = m 1 ()
is a graded 7lp-vector space which does not depend on J € Ji¢g, see again
[F2], [Sc], and so we can define the Lagrangian Floer homology of the triple
(M, Lo, L1) by

HF,(M,Ly,L1) = HF,(M, Loy, L1;J)

for any J € Jreg. We denote by Ham®(M) the group of Hamiltonian
diffeomorphisms generated by time-dependent Hamiltonian functions
H :[0,1] x M — IR whose support is contained in [0, 1] x (M \ OM). The
usual continuation argument also implies
PROPOSITION 2.9. For any ¢ € Ham®(M) we have HF,(M, ¢(Lg),L1) =
HF,(M, Ly, L) as relatively graded 7.o-vector spaces.

2.5 Computation of HF,(v™(D,),D,). We consider a d-dimen-
sional SCj-manifold (B,g). Using the Riemannian metric ¢ we identify
T} B with the unit ball bundle 71 B, and for z € B we set D, =T, BNT B.
We choose = € B, denote by p the injectivity radius at z, and define the
non-empty open subset W of B by
W=expx{1)€TxB|O< lv| < p}.
Let f :[0,00[ — [0, 00] be a smooth function as in (2). More precisely, we
choose f such that
f(ry=0ifre [0,513] ., flir)y=1ifr > g, f(r)>0 ifre]é,g[.
Fix m € 7.\ {0}. For notational convenience we assume m > 1. The
symplectomorphism J™ = 9} € Symp®(T*B) is generated by mf(|p|).
Choose now y € W. Since (B,g) is an SC-manifold, there is only one
geodesic circle 7 containing both z and y, see [B, 7.27]. This and our
choice of f imply that the two Lagrangian submanifolds
LQ == ’l9m(Dx) and L1 - Dy
intersect transversely in exactly 2m points over v and in particular meet
hypothesis (H1); moreover, 9" is the identity on U = 17 B\ T /3B , 80 that
LoNnLiNU = and (H2) is met. Since Ly and L; are simply connected,
(H3) is also met, and

d
P
X = X(q,p) = Zpiap, (10)
i=1 !



is a Liouville vector field defined on all of T}'B which is transverse to
0T} B, pointing outwards, and X(z) € T,L; for all z € L; NU, j = 0,1,
verifying (H4). Finally, hypothesis (H5) follows from the general theory of
Maslov indices, which applies in view of (H3) and the fact that the first
Chern class ¢; of (T} B, d\) vanishes, see [S2].

We now follow [S2] and describe the natural grading on HF' (T} B,L¢,L1).
Let § be the distance of y from z; then 0 < § < p < 1/2. For i € N, =
{0,1,...,m — 1} we set

t=i4+6 and 77 =i+1-96

3 3
and define r € ]é, g[ by mf'(rii) = Tii. The 2m points in Lo N L; are

then given bly N

e = 0" (rF(0) =)
where vt : R — B is the geodesic with v7(0) = z and () = y and
v~ (t) = vt (—t) is the opposite geodesic, cf. Figure 3.

Figure 3: The points c;t € LoN Ly form=2.

Define the index function ind : Lo N Ly — 7. by
ind ¢ = Z indyE(t), i€ Np,.
o<t<r

It is shown in [S2] that for u € B(c_,c4) the Fredholm index I(u) is
indc_ —ind ¢y, so that ind indeed serves as an index function. Using this
grading, we abbreviate

CF.(B,m)=CF(TYB,Lo,Ly) and HF.B,m)= HF,(1{B, Ly, L1).

Our next goal is to compute the Floer chain groups CFy (B, m).

PROPOSITION 2.10. For a d-dimensional SCy-manifold (B, g) and i € Ny,
inde; =i(k+d—1) and inde; =i(k+d—1)+k.

Proof. We start with a general lemma.
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LEMMA 2.11. Let v : R — B be a geodesic of a P-manifold (B, g), and
let J : R — B be a Jacobi field along ~ such that J(0) = 0. If J(t) = 0,
then J(t +n) =0 for all n € 7.

Proof. We can assume that J'(t) # 0 since otherwise J = 0. Fix n € 7.
Since (B, g) is a P-manifold, (¢ +n) is conjugate to y(t) with multiplicity
d — 1. Since this is the maximal possible multiplicity of a conjugate point,
and since J(t) = 0 and J'(t) # 0, J must be a Jacobi field conjugating J(t)
and J(t+n), ie. J(t+n)=0. O

By our choice of , the point y is not conjugate to x along v* : [0,6] — B,
and so indej = 0. Since (B,g) is a d-dimensional SCg-manifold, Lem-
ma 2.11 now implies ind¢;” = i(k +d — 1) for all i € N,,. The choice of

y and Lemma 2.11 imply that indc¢, = k, and now Lemma 2.11 implies
inde; =i(k+d—1)+k for all i € Ny,. 0

In view of Proposition 2.10 we find

COROLLARY 2.12. Let (B, g) be a d-dimensional SCj-manifold.
Ifk>1,

7o i€(k+d—1)NpU((k4+d—1)Ny +k)
0 otherwise;

cr(,m) = {
ifk=0andd > 1,

| [ 73 ie(d-1)Ny
CFE(B,m) —{ 0 otherwise;

ifk=0andd=1,

Z3m i=0
0  otherwise.

cr(B,m) = {

Theorem 2.13.  Assume that (B, g) is a d-dimensional SCjy-manifold.
Ifd = 2 or k = 1, assume that (B,g) = ('P", gecan). Then the Floer
boundary operator 0y : CFy,(B,m) — CF,_1(B,m) vanishes identically,
and so HF,(B,m) = CF,(B,m). In particular, rank HF'(B, m) = 2m.

Proof. We first assume that d # 2 and k # 1. Corollary 2.12 then
shows that for any = € 7, at least one of the chain groups CFi(B,m)
and CF,_1(B,m) is trivial, and so 0, = 0. It remains to prove the van-
ishing of 9, for (("P™, gecan), n > 1. We shall do this by using a symmetry
argument.



The case (CP™,gcan). Note that every diffcomorphism ¢ of T'P"
lifts to a symplectomorphism (¢ ~1)* of T* T'P", and that if ¢ is an isometry,
then (p~1)* is a symplectomorphism of T} T'P™. Let RP™ be the real locus
of C"P".

LEMMA 2.14. We can assume without loss of generality that x,y € RP".

Proof. Choose a unitary matrix U € U(n + 1) such that 2’ = U(z) =
[1:0:---:0] € RP" and ¥ = U(y) € RP". We again identify 77 ('P"
with T7 T"P" via the Riemannian metric gean. Since U is an isometry of
("P™, gean), its lift U, to T3 T'P"™ commutes with the geodesic flow on
Ty C'P™, and hence (U~1)* commutes with ¥™. Therefore,
(U1 Lo = (U )™ (Dy) = 9™ (U )" (Ds) = 9™ (D)
and (U~'")*Ly = (U~")*D, = D,s. By the natural invariance of Lagrangian
Floer homology we thus obtain
HF,(T; ©'P", Lo, L) = HF,(Ty CP", (U~ ")*Lo, (U™ ")*Ly)
= HF, (T CP",9™(Dy), Dy),

as desired. 0

Consider the involution

[20:21: - t2p) = [20: 21 Zn) (11)

of "P™. Its fixed point set is RP". Since complex conjugation (11) is an
isometry of ("P", gean), it lifts to a symplectic involution o of T} ('P".
Since x,y € IRP™ and since complex conjugation is an isometry, we see as
in the proof of Lemma 2.14 that o(L;) = Lj, j = 0,1. Moreover, o acts
trivially on Lo N Ly. Indeed, two different geodesics through x either meet
in z only or in x and in one point of the cut locus C'(x) diffeomorphic to
P! see [B, 3.33]. Since by assumption y € W = C!P*\({z} U C(z)),
there is only one geodesic circle containing = and y. It lies in RP™ because
RP" is a totally geodesic submanifold of (I"P", gcan ). It follows that o fixes
LoNLy.

Assume that J € J (17 ("P") is invariant under o, i.e. 0*.J; = 0, Jio, =
Jy for every t € [0,1]. Then o induces an involution on the solutions of (9)
by

Uur>oou.

If w is invariant under o, i.c. u = o ou, then u is a solution of (9) with M
replaced by the fixed point set M7 = T} [RP" of o and L; replaced by LT =
L;NM? for j = 0,1. According to Proposition 2.1, (*P" is an SC}-manifold
and RP™ is an SCyp-manifold, and so we read off from Corollary 2.12 that



826 U. FRAUENFELDER AND F. SCHLENK

if indps(c_) —indps(cy) = 1, then indpse(c—) — indpse (¢t) = 0. One thus
expects that for generic o-invariant J € J there are no solutions of (9)
which are invariant under o. In particular, solutions of (9) appear in pairs,
and so 0, = 0. To make this argument precise, we need to show that there
exist o-invariant J € J which are “regular” for every non-invariant solution
of (9) and whose restriction to M7 is also “regular”. This will be done in
the next paragraph.

2.5.1 A transversality theorem. We consider, more generally, an
exact compact symplectic manifold (M,w) with boundary OM containing
two compact Lagrangian submanifolds Ly and L; as in 2.4.1: (H1), (H2),
(H3) hold and there is a Liouville vector field X on a neighbourhood U of
OM such that (H4) holds. We in addition assume that o is a symplectic
involution of (M, w) such that

o(Lj)=Ljfor j=0,1, olronr, =id, oX=X. (12
We have already verified the first two properties for M = T} ("P" and
the lift o of (11), and we notice that 0,X = X for the Liouville vector
field (10). The fixed point set M? = Fix(o) is a symplectic submanifold of
(M,w). Set w? = w|pe. Since 0, X = X the vector field X7 = X|ynnre
is a Liouville vector field near 0M?. As in 2.4.1 we denote by J = J (M)
the space of smooth families J = {J;}, t € [0,1], of smooth w-compatible
almost complex structures on M which on V' do not depend on ¢t and meet
(J1), (J2), (J3). The space J(M?) is defined analogously by imposing (J1),
(J2), (J3) for X7 on M? NV. The subspace of those J in J (M) which are
o-invariant is denoted J?(M). There is a natural restriction map

0:J (M) —JM?), I Jlrae.

LEMMA 2.15. The restriction map o is open.

Proof. Recall that ¢,, r < 0, denotes the semiflow of X, and that ¢ and R
are the contact structure and the Reeb vector field on OM defined by (7)
and (8). Since o is symplectic, 0, X = X and o(0M) = OM we have
06 =¢ and o,R=R.

The contact structure &7 on 0M? associated with X7 is € NTIM?, and
the Reeb vector field R? is R|gpro. We shall prove Lemma 2.15 by first
showing that p is onto. From the proof it will then easily follow that p is
open.

Step 1. p is onto: Fix J7 € J(M7). We set gf = wo (id x J7).
Choose a smooth family g = {g¢:}, t € [0, 1], of Riemannian metrics on T'M
which on V' does not depend on ¢ and satisfies



(X(z),v) =0,z € 0M,veT,0M,
(X(z),X(x)) =1, z € OM,

tg(z) =e"g(z), x € OM, r € [—€,0],
g(R(z),R(z)) =1, x € OM,

and in addition satisfies for each ¢
(g6) if z € M7, then g¢(x)|7, 00 = g7 (),
(g7) if z € M7, then the Riemannian and the symplectic or-
thogonal complement of T, M? in T, M coincide, i.e. if for
n € T, M it holds that w(n,() = 0 for every ¢ € T,M?,
then also g(n, () =0 for every ¢ € T, M7,
(88) 0% gt = gt.
In order to see that such a family g exists, first notice that in view of (J1),
(J2), (J3), Lemma 2.5 and (8), the metric ¢7 satisfies (g1)—(gb) for X7, R?,
x € OM? and v € TROM? or v € £7. We thus find a family gy satisfying
(g1)—(g7). Then o*g also satisfies (g1)—(g7) as one readily verifies; we only
mention that (g3) follows from o* o p, = ¢, o o which is a consequence of
o.X = X. Now set
g = 5(80+0"g).
Let Mtet be the space of smooth Riemannian metrics on M and let J(w)
be the space of smooth w-compatible almost complex structures on M.
For J € J(w) we write g7 = wo (id x J) € Met. It is shown in [MSI,
Proposition 2.50 (ii)] that there exists a smooth map

r:Met — J(w), grr(g)=:Jg,

such that
r(gs)=J and  r(p’g) = ¢'r(g) (13)
for every symplectomorphism ¢ of M. We define J = {J;} by
Jt = T(gt) .

The second property in (13) and (g8) show that J is o-invariant. In order
to prove that J € J7(M) we also need to show that each J; meets (J1),
(J2), (J3) and Ji|pre = J7. To this end we must recall the construction
of r from [MS1]. Fix g € Met and x € M. The automorphism A of T, M
defined by wy (v, w) = ¢,(Av,w) is g-skew-adjoint. Denoting by A* its g-
adjoint, we find that P = A*A = —A? is g-positive definite. Let Q be
the automorphism of T, M which is g-self-adjoint, g-positive definite, and
satisfies Q% = P, and then set

Jx(wvg) = QilA'
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It is clear that J,(w,g) depends smoothly on x. The map r is defined by
r(g)(z) = Jx(w, g). One readily verifies that r(g) is w-compatible, see [HZ,
p. 14], and meets (13). From the construction we moreover read off that
(rl) Jy(ciw,ca2g) = Jp(w,g) for all ¢1,c9 > 0,
(r2) if T, M = V@W in such a way that W is both w-orthogonal
and g-orthogonal to V, i.e. W = V¥ = V=, then A, P and
@ leave both V and W invariant, so that J,(w, g) leaves V/
invariant and

Jo(w, glv = Ju(wlv; glv)-
We are now in position to verify (J1), (J2), (J3) for J; = 7(g:) = Jy,-
In view of (7) and (8) and (gl) and (gb) the plane field (X, R) on dM
generated by X and R is both w-orthogonal and g-orthogonal to &,
<X7 R> = gw = €l7
and so (r2) implies
Jo{X, R) = Jgx,R) - (14)
Define the complex structure Jy on (X, R) by JoX = R. Using (gl), (g2),
(g4) and (8) we find g|(X, R) = gJ,, and so the first property in (13) implies
Jgx,ry = Jo. Together with (14) we find
Jo|(X,R) = Jo. (15)
The Jg-invariance of w, (15) and (8) yield (J1) and (J2). The identity (J3)
follows from piw = e"w, (g3) and (rl). Finally, J;|ae = J¢ follows from
(g6), (g7), (r2) and the first property in (13).

Step 2. p is open: Let U be an open subset of J7(M). We must
show that given J7 € p(U), every (C*°)-close enough J?7 € J (M) belongs
to p(U). Fix J € U with p(J) = J7, and set g = g3. Since J € J7(M), the
family g satisfies (g1)—(g8). If J7 € J(M?) is close to J7, then g7 = g,
is close to gyo, and so we can choose a smooth family gg close to g which
satisfies (g1)—(g7). Then

g=5(8+0"8o)
satisfies (gl)—(g8), and since gy was close to g and since o*g = g, the
family g is also close to g. Set J = r(g). Then p(j) = 304 and since
r o Met — J(w) is smooth and g is close to g, we see that J = r(g) is
close to 7(g) = r(gy) = J. In particular, if J7 was close enough to J°, then
J e U. The proof of Lemma 2.15 is complete. O

For the remainder of the proof of Theorem 2.13 for (I"P", gean) we as-
sume that the reader is familiar with the standard transversality arguments



in Floer theory as presented in Section 5 of [FHS] or Sections 3.1 and 3.2
of [MS2], and we shall focus on those aspects of the argument particular
to our situation. Fix c¢_,cy € Lo N L. We interpret solutions of (9) with
limg 400 u(s,t) = ci+ as the zero set of a smooth section from a Banach
manifold B to a Banach bundle £ over B. We fix p > 2. According to
Lemma D.1 in [RS] there exists a smooth family of Riemannian metrics
{g¢}, t € [0,1], on M such that L; is totally geodesic with respect to g;,
j=0,1. Let B = BY(c_,c) be the space of continuous maps u from the
strip S = IR x [0, 1] to the interior of M which satisfy limg_, 1o u(s,t) = cy
uniformly in ¢, are locally of class WP, and satisfy the conditions
(B1) u(s,j) € Lj for j =0,1,
(B2) there exists T > 0, £- € WIP((—o0, —=T] x [0,1], T._ M),
and &4 € WHP([T,00) x [0,1], T, M) with €4 (s, j) € T, L;
such that
exp,_(§-(s,1)), s<-T,
uls,t) = { ech+(§+(S,t)), s=>T.
Here, exp,, (£+(s,t)) denotes the image of £1(s,t) under the exponential
map with respect to g; at c+. The space B is an infinite dimensional Banach
manifold whose tangent space at u is

T.B={¢€W"P(S,u*TM) | &(s,5) € Ty Lj, j=0,1}.
Let £ be the Banach bundle over B whose fibre over u € B is
&y = LP(S,u*TM).
For J € J(M) define the section Fy : B — & by
Fa(u) = Osu+ Jy(u)d(u)

and set My = F; '(0). The set My agrees with the set of those u € M(J)
with limg 4o u(s,t) = cx. Indeed, Lemma 2.6 and Proposition 1.21 in
[FHS] show that the latter set belongs to My. Conversely, in view of p > 2,
elliptic regularity and (B2) imply that v € My is smooth and satisfies
lims_, 4o Osu(s, t) = 0 uniformly in ¢, so that E(u) < oo by Proposition 1.21
in [FHS|. If w € Mj, then the vertical differential of Fj,

Dyy=DFy(u):TB— E, & V&4 J(u)Vi€ + VeJi(u)opu,

is a Fredholm operator, cf. [S, Theorem 2.2]. Here, V denotes the Levi—
Civita connection with respect to the t-dependent metric ¢g;,. We further
consider the Banach submanifold

B ={ueB|u=ocou},
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of those u in B whose image lies in M?. We denote by £ the Banach
bundle over B? whose fibre over u € B? is
ET = LP(S,u*TM?).

Note that £7 is a subbundle of the restriction of £ to B?. For J € J7(M)
we abbreviate

M§=F;H0)NB7 = MyznB°
and for u € MJ we set

DgyJ = Du,JlTuBU : TuBU — gg .
DEFINITION 2.16. We say that J € J7(M) is regular if for every
u € My \ MG the operator D, 3 is onto and if for every u € MY the
operator D; 3 is onto.

PROPOSITION 2.17. The set (J(M))reg of regular almost complex struc-
tures is generic in J?(M).

Proof. 1t is proved in [KhS, Proposition 5.13] that the subset R of those
J € J%(M) for which D,y is onto for every u € My \ MY is generic
in J°(M). Moreover, it is proved in [FHS, Section 5] that the subset
R3 of those J7 € J(M?) for which Dy j- is onto for every u € M is
generic in J(M7). Notice that for J € J7(M) we have M§ = M5y and
D7 3 = Dy p3) for u € M§ = M. It follows that for J € Ry = p~H(R3)
the operator DY y is onto for every u € Mjo. Since the preimage of a
generic set under a continuous open map is generic, Ry is generic in J7(M).
Therefore, the set of regular J € J7(M) contains the generic set R; N Ra,
and the proof of Proposition 2.17 is complete. O

In order to complete the proof of Theorem 2.13 for (I"P", gcan ), set again
M =Ty TP". In view of Proposition 2.17 we find a J € J7(M) which is
regular for all c_,cy € LoyN L. Fix c_, ey with indps(c_) — indps(ey) = 1.
Since indpse (c—) —indpse (c4) = 0, the Fredholm index of D y for u € M§
vanishes, so that the manifold of solutions of (9) contained in M? is 0-
dimensional and hence empty. Moreover, D,y is onto for every
u € Mz \ M3, and so D,y is onto for every u € My. We can thus com-
pute the Floer homology HF, (M, Lo, L) by using J. Since M is empty,
0« = 0, and the proof of Theorem 2.13 for (("P", gean) is complete. O

2.6 End of the proof of Theorem 1. We recall that Theorem 1 is a
special case of Theorem 2.3. For (B, g) = S', Theorem 2.3 follows from the
topological argument given in section 2.1, see also Corollary 2.21 below.
For the remainder of this section we therefore assume that (B,g) is a P-

manifold of dimension d > 2. We abbreviate M = T*B and M, = T}DB.



The group Ham®(M) is the union of the groups Ham®(M,.), r > 0, defined
before Proposition 2.9.

LeEMMA 2.18. Ham®(M) = Symp§(M).

Proof. Since M is orientable, Poincaré duality yields
HYM;R) = Hog_1(M;R) = Hyy_1(B;R) =0.
The lemma now follows in view of the exact sequence
0 — Ham®(M) — Symp§(M) — HL(M;RR) — 0

where the first map is inclusion and the second map is the flux homomor-
phism ¢ — [p*X — A, see [MS1, Chapter 10]. O

Case 1. SC-manifolds as in Theorem 2.13. Let now (B, g) be an
SC-manifold as in Theorem 2.13. Let 9 = 9 be the twist considered in sec-
tion 2.5, and let ¢ € Symp®(M) be such that [¢] = [9"] € mo(Symp®(M))
for some m € 7 \ {0}. We assume without loss of generality that m > 1.
By Lemma 2.18 we find r > 0 such that ¥™p~! € Ham®(M,). Then
I~ € Ham®(M,) for all n > 1. We assume without loss of generality
that r = 1. Let W be the non-empty open subset of B defined in 2.5,
and fix y € W. We first assume that ¢"(D,) intersects D, transversally.
Then HF(My, " (D), Dy) is defined, and in view of Proposition 2.9 and
Theorem 2.13 we find that

rank CF (M, ¢"(Dy), Dy) > rank HF (M, ¢"(Dy), Dy)
= rank HF (M, 9"™"(D,), Dy)
=2mn.
It follows that the d-dimensional submanifold ¢" (D) of M; intersects D,

at least 2mn times. Since this holds true for every y € W and since
7 (My,g") — (B, g) is a Riemannian submersion, we conclude that

Hg~ (SDn(Dx)) > 2mnpg(W).

If ¢"(D,) and D, are not transverse, we choose a sequence ¢; € Symp“(M;)
such that ¢}'(D,) and D, are transverse for all 7, and ¢; — ¢ in the C*°-
topology. For i large enough, [¢;] = [¢] € mo(Symp®(M7)), and

pge (" (Da)) = lim pge (7 (Dy)) = 2mnpg (W) . (16)

Choose a smooth embedding o : Q¢ — T B such that D, C o(Q?). Then
pg= (™ (o)) > (2mpg(W))n, and so sq(p) > I(¢) > 1, as claimed.
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Case 2. Riemannian quotients. Assume next that (B,g) is a
Riemannian quotient of an SC-manifold (B,g) as in Case 1, and that
[p] = [U™] € mo(Symp®(M)). For this proof we assume that g and g
are locally isometric. Suppose that B = B /G and that ¢ is the smallest
number such that k9 = 1 for all h € G. Then the twist ¥ on M = T*B is a
lift of 99, and so 9™ is a lift of ¥4, Lifting a symplectic isotopy between
9™ and ? to M , we obtain a symplectic isotopy between 9™ and a lift
@ of p?. Since the projection M — M is a local isometry, we thus obtain
from (16) that

pgs (¢™(Dy)) = pg+ (¢™(Dz)) = 2mnpug(W) =: cn (17)
for any z € B and a lift & € B. We denote by ||D|| the operator norm of
the differential of ¢ at a point z € M with respect to g*, and we abbreviate
|Dy|| = max.en || D2¢||. Using the estimate (17) we find for every n € N
and p € {0,1,...,¢— 1} that

nge ("7 (Dr) = Dl g (" (Dx))
> || Dl Pen

> (1Dl Peq") (ng — p).
This proves sqg(p) > I(p) > 1.

Case 3. Surfaces different from (52, gcan). Assume finally that
(B, g) is a P-manifold modelled on a surface. Since 71(B) is finite, B = 52
or B = RP2. By the argument in Case 2, the latter case is reduced to
the former one. So assume that (B,g) is a P-manifold modelled on S2,
and let ¥ be a twist defined by g. According to [S1], mo(Symp®(T*S?)) is
generated by the class [7] of a generalized Dehn twist 7 defined with respect
t0 gean, and so [¥] = [7*] for some k € 7. Clearly, ¥ # id. If k = 0, the
estimate s1(9) = [(¥) > 1 therefore follows from Remark 1, and if k£ # 0
from Corollary 1. The proof of Theorem 2.3 is complete. O

2.7 Proof of Corollary 1. Let ¢ € Symp®(T*S%) be such that [p] =
[7™] € mo(Symp®(T*S?)) for some m € 7.\ {0}. Since [7?] = [], we then
have [p?] = [9™]. Proceeding as in Case 1 above and assuming again r = 1
we find ¢ > 0 such that

pgr (¢*"(Da)) = en (18)
for all n > 1. We denote by ||D.¢|| the operator norm of the differential
of ¢ at a point z € T*S? with respect to g*, and we abbreviate ||Dyp|| =
max,cpwgd || Dzpl|. Using the estimate (18) we find

pgr (" (D)) = Dol g (™" (Ds)) 2 1Dl e(n +1). (19)



The estimates (18) and (19) now show that I(¢) > 1, as claimed. O

2.8 A remark on smoothness. Given a P-manifold B, let
Symp®!(T*B) be the group of compactly supported C'-smooth symplecto-
morphisms of (T*B,d\) endowed with the C'-topology. According to a re-
sult of Zehnder, [Z], Symp®(T*B) is dense in Symp®! (T*B), and by a result
of Weinstein, [MS1, Theorem 10.1], both groups are locally path connected.
It follows that the inclusion Symp®(T*B) — Symp®!(T*B) induces an iso-
morphism of mapping class groups, mo(Symp®(T*B)) = mo(Symp®! (T*B)).
PROPOSITION 2.19. Theorem 2.3 and Corollary 1 hold true for C''-smooth
symplectomorphisms.

Proof. Let (B,g) be as in Theorem 2.3, and let ¢ € Symp®!(T*B) be
such that [p] = [0™] € mo(Symp®(T*B)) for some m € 7.\ {0}. We can
assume that ¢ is supported in 7*B. Choose a sequence p; € Symp“(17B)
such that ¢; — ¢ in the C'-topology. For i large enough, [p;] =
[¢] € mo(Symp®(T™*B)). Using the estimate (16) we thus conclude

Mg (Son(Dx)) = 111{20 Mg (SO?(D:C)) > 2mnpg(U)

for all n > 1. Therefore, sq(p) > I(¢) > 1. Corollary 1 now follows also for
C'-smooth symplectomorphisms. O

2.9 Differential topology of twists. In this section we collect results
concerning the differential topology of twists. We shall in particular see that
for odd spheres and their quotients, Theorem 1 already holds for topolog-
ical reasons, while for even spheres and (!P™’s, Theorem 1 is a genuinely
symplectic result.

As above, (B,g) is a d-dimensional P-manifold, M = T*B and M,
= T*B. We denote by Diff*(M) the group of compactly supported diffeo-
morphisms of M. Each ¢ € Diff°(M) induces a variation homomorphism

vary : H(M) — Ho (M), [d] v [pec—].

Here, the homology HS (M) with closed support as well as H,(M) are
taken with integer coefficients. Notice that ¢ is not isotopic to the identity
in Diff®(M) if var, # 0. By Poincaré-Lefschetz duality,

HA(M) = H (M, \ OM,) = H.(M,,0M,) = H*™*(M,) = H**(B),
and H,(M) = H,(B), and so var, = 0 except possibly in degree * = d. It
is known from classical Picard-Lefschetz theory that var, : Hgl(T*Sd) —

Hy(T*S?%) does not vanish, sce [ArGV, p.26]. Assume now that B is ori-
ented. We orient the fibres 7B, = € B, such that [B] - [I;B] = 1, where
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the dot - denotes the intersection product in homology determined by the
natural orientation of the cotangent bundle M. Then HS (M) % 7. is gen-
erated by the fibre class F' = [T B], and Hy(M) = 7. is generated by the
base class [B], which by abuse of notation is denoted B.

PROPOSITION 2.20. Assume that (B, g) is an oriented SCj-manifold.

(i) If k is even and d is odd, varygm (F') = 2mB for m € 7.
(ii) If k is odd, vargm = 0 for all m € 7.

Proof. For simplicity we assume again m > 1. As in section 2.5 we choose
¥ =19y, fixx € B, choosey € W, and let 9" (1;; B)NT; B = {cac, ... ,ci_l}.
The local intersection number of ¥™(T;B) and T/ B at i is (—1)ind(C§t ),
Recall from Proposition 2.10 that ind car =0 and

inde; = indc;r +k and indc;Zrl = indc;|r +k+d-1.

(i) If k is even and d is odd, we find

m—1 ) N ) B m—1
IPF)-F =) ()™M 4 (—1)™M% =Y " 2=2m,
1=0 1=0

and so varym(F) - F =9](F)-F — F - F = 2m, i.e. varym (F) = 2mB.
(ii) If k is odd, we find

m—1
II(F)-F =Y (=)™ 4 (—1)m =0,
1=0
and so vargm (F) - F' =0, i.e. vargm (F) = 0. 0

Before discussing the variation homomorphism further, let us show how
Proposition 2.20 (i) leads to a topological proof of Theorem 2.3 for the
known odd-dimensional P-manifolds.

COROLLARY 2.21. Assume that (B, g) is a round sphere S*"*! or one of
its quotients S*"*!/G or a Zoll manifold (S***!,g). Then the conclusion
of Theorem 2.3 holds true. In fact, if ¢ € Diff°(T*B) is such that [p] =
[9] € mo(Diff*(T* B)) for some m € 7.\ {0}, then sq(p) > 1.

Proof. Assume first that (B,g) is a round sphere S?"*!. According to
Proposition 2.1, (B,g) is an SCy,-manifold, and so Proposition 2.20 (i)
shows that ¢} (F) = 2mnB + F for all n > 1. Choose r < oo so large that
¢ is supported in T}* B, choose x € B and set D,(r) = T;B N1} B. Then

pge (" (Da(r)) = (2mpg(B))n
for all n > 1, and so the claim follows for a round S$?"*'. For quotients
S§2nt1 /G the claim follows together with the argument given in Case 2



in section 2.6, and for odd-dimensional Zoll manifolds the claim follows
together with the argument given in Remark 2.4.1 (i). O

We now turn to the known even-dimensional P-manifolds. Proposi-
tions 2.1 and 2.20 (i) show that vargm = 0 for S%", (:P", HP", (!nP?
and hence also for even-dimensional Zoll manifolds for all m € 7. For the
non-orientable spaces RP?" and ('P?"~! /7., the vanishing of vargm follows
from Hy,(RP?") = 0 and Hy,,_o(T'P?""! /74) = 0. The variation homo-
morphism can be defined for homology with coefficients in any Abelian
group G, and one checks that vargm vanishes over any finitely generated
G for all the above even-dimensional P-manifolds and every m € 7. Note
that if vargm # 0 for some m # 0 then ¥ is not isotopic to the identity in
Diff¢(M). Since we are not aware of another obstruction we ask
QUESTION 2.22. If (B,g) is one of RP?*, HP", (aP2, ('P?~! /7, is
then ¥ isotopic to the identity in Diff*(7*B)?

We did not ask Question 2.22 for even-dimensional Zoll manifolds or
("P™ in view of the following result due to Seidel and Kauffman—Krylov.

PRropoOSITION 2.23. (i) If (B, g) is ('"P™ or a Zoll manifold of dimension 2
or 6, then 1 is isotopic to the identity in Diff*(T*B).

(ii) If (B, g) is an even-dimensional Zoll manifold, then ¥* is isotopic to
the identity in Diff*(T*B).

Proof. (i) The result for ("P", n > 1, has been proved in [S3] by extending
the construction for S? given in [S2]. This construction carries over literally
to S% since S% carries an almost complex structure induced by the vector
product on R7 related to the Cayley numbers, see [MS1, Example 4.4].
A different proof for S% is given in [KaK]. For other Zoll manifolds of
dimensions 2 or 6, the claim follows together with the argument given in
Remark 2.4.1 (i).

(ii) By (i) we can assume that n > 4. For S™ the claim follows from
Theorem 1 and the proof of Corollary 4 in [KaK], and for arbitrary even-
dimensional Zoll manifolds the claim now follows as in (i). O

REMARK 2.24.  The period 4 in Proposition 2.23 (ii) is known to be
minimal for “most” even dimensions # 2,6. Indeed, it follows from [Br]
or [DK, Proposition 6.1] and the fact that the tangent sphere bundle to
S™+1 s not diffeomorphic to S™ x S*Tif n #£ 2,6, that for n # 2,6 we
have [J]® # id and hence [9] # id in mo(Diff(T*S™)). Moreover, [Br]
or [DK, Proposition 6.1] and the proof of Corollary 4 in [KaK] imply that
[9)? # id € mo(Diff¢(T*S™)) if and only if the (2n+ 1)-dimensional Kervaire
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sphere ¥ is not diffeomorphic to S?"*!. This is known to be the case if
n # 2! — 2 by work of Kervaire and W. Browder, see [Ko, p.219]. However,
¥29 is diffeomorphic to S?°, so that the period of )] € mo(Diff¢(T*S14))

is 2.

[AM]
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