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Abstract. Volume intersection is one of the simplest paradigms for re- 
covering shape from 2D images. The underlying principle in this method 
is reconstructing an object by intersecting the volumes obtained by back- 
projecting its silhouettes in their corresponding directions. The set of 
silhouettes could be predetermined or it could be decided dynamically 
for optimum reconstruction. The former approach is passive while the 
latter comes under the purview of active vision. In this paper, the author 
attempts to integrate his research results in obtaining a linear octree 
description of an object from its silhouettes making use of a data structure 
called range[i,j,O/1]. The problem of shape from silhouette is formalized 
and it is shown here that the conventional approach of volume intersection 
for this problem need not be always efficient. The advantage of active 
vision technique is also discussed in the present context. 

Keywords. Volume intersection; shape recovery; silhouettes. 

1. Introduction 

Shape recovery is one of the prime areas of interest in computer vision at present, 
finding applications in CAD/CAM, recognition of a robot's workspace etc. Several cues 
like texture, shading, stereo, multiple images etc. aid in the process of recovering 
shape. Volume intersection is a technique of reconstruction of an otherwise unknown 
object/scene from its multiple 2D images. The 2D images are obtained by projecting 
the 3D object/scene on to the 2D plane. A tentative reconstruction is obtained by 
back-projecting the images in their viewing directions. As a result, the projection (in 
obtaining the input images) and the direction (of projection) have a direct bearing 
on the reconstruction algorithms. Most researchers (Chien & Aggarwal 1986; Kim 
& Aggarwal 1986; Ahuja & Veenstra 1989) have earlier concentrated on orthographic 
projection of silhouettes for recovery of 3D shape as it turns out to be algorithmically 
simple. But all these approaches cannot be extended to accommodate perspective 
images. Moreover, any approach of shape recovery from silhouettes is heavily dependent 
on the set of viewing directions (i.e. the images). If the set is determined a priori, then 
the reconstruction, though acceptable, may not be optimum or satisfactory. On the 
other hand, if the set of directions is determined dynamically, an optimum 
reconstruction could be achieved with a minimum number of images. This active 
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vision approach is weighted down by its complexity. Very few attempts are versatile 
enough to handle a static or dynamic set of orthographic/perspective images in 
reconstruction. 

In this .paper, we review a structure range[i,j,O/1], first introduced by Lavakusha 
et al (I989) and explain how this data structure is capable of handling perspective as 
well as orthographic projections; active and passive vision. The results reported here 
are essentially the integration of several results highlighting the capability of range [] 
structure for volume intersection methods. 

2. Volume intersection 

Volume intersection aims at generating a volumetric description of a 3D object/scene 
from its multiple binary 2D images called silhouettes. Each silhouette is back-projected 
along its viewing direction and the volumes so obtained are intersected to obtain an 
approximation to the object. A cube of size N, called a universe cube, is assumed to 
contain the object under consideration. The object can be unambiguously described 
by a 3D array of N x N x N voxels. Deciding if the individual voxels are white (0) 
or black (1) is the ultimate of object reconstruction. For compactness, a set of contiguous 
voxels may also be considered as a volume element. The set of silhouettes, Ik, 1 < k <~ p 
is obtained by projecting the object on to the 2D plane in direction dk, 1 < k <<, p. The 
(i,j)th element of lk is denoted by x o. Let v be a volume element and project(v, k) be 
defined as the set of pixels in Ik such that the pixel x o when extended along dk 
intersects v. Clearly, project(v, k) gives the occluding contour of the object as seen 
from dk. The inverse mapping, sweep(x, k), is the set of volume elements v' such that 
project(v', k) contains x. 

The volume element v is considered black (or, 1) if all xjSs in project(v, k) are black 
for each k and it is labelled white(or, 0) if there exists at least one d~ such that 
project(v, k)has all pixels as 0. If none of these two cases holds and if v is not a single 
voxel, it is split into smaller blocks. If it is a single voxel, it is deemed white (figure 1). 

There are fundamentally two approaches for labelling the volume elements v in 
sweep(x,k). A volume element could be labelled by considering all the lk'S before 
another volume element is taken up, or all the volume elements could be labelled 
with reference to one lk and then with another Ik and so on. In the former approach, 
the intersection of the volumes is performed simultaneously while in the latter it is 
done incrementally. The process of labelling depends on the set of dk'S considered 
and the method of projection involved in getting the Ik's. Further, the 2D and 3D 
representation schemes for the input images and the resulting objects have to be 
decided upon. All the results published so far have made use of various combinations 
of these four parameters (Martin & Aggarwal 1983; Srivastava & Ahuja 1987; 
Nobborio et al 1988). 

2.1. Choice of  viewing directions 

The number and orientation of the images play a role in the accuracy of reconstruction. 
This is because only those characteristics of the object that manifest themselves in 
the images in these directions can be reconstructed. One could imagine that the bigger 
the set of images the better the approximation would be. But this is not necessarily 
true. Moreover, a big set would increase the complexity of reconstruction. The set 
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Figure 1. The volume intersection paradigm. 

of viewing directions should be so chosen as to bring down the complexity while 
giving a satisfactory approximation. A prespecified set comes under the purview of 
passive vision whereas a dynamic choice of dk to incrementally carry out the 
intersection for approximating the object is studied in active vision. In the following 
subsections, a brief discussion on these two approaches relevant to volume intersection 
is given. 

2.1a Passive vision: Passive vision is concerned with the shape recovery process 
which is independent of the shape sensing process. Thus, in this context, it is to fix 
the dk's, 1 < k ~< p and p before activating the volume intersection algorithm. Since 
the object is enclosed in a universe cube, generally the set of directions that are chosen 
a priori are the set of three mutually perpendicular directions along the front, side 
and top of the cube. The pixel to voxel mapping is very simple in such cases. Hence 
this set of directions is generally taken to test any new algorithm. 

The main disadvantage in deciding the set in advance is that the set becomes 
independent of the object. Hence the reconstruction may not be optimum. Moreover, 
the same object may be reconstructed differently if another set of viewing directions 
is considered. But passive vision is still relevant if the object and the sensor are 
stationary. 
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2.1b Active vision: Interest in this area with regard to volume intersection is still 
very recent. In this paradigm, the object reconstruction process controls the image 
acquisition process. This is relevant only if either the object or the camera can be 
moved about. The reconstruction process attempts to determine incrementally the 
next viewing direction based on the geometric properties of the object that have been 
acquired so far. This process, though not simple, would yield a better approximation 
as it is target-specific. The volume intersection methods proposed earlier cannot be 
extended to accommodate active vision as they all carry the intersections simultaneously. 
But range [i,j, 0/1], with its inherent scope for incremental intersection is very suitable 
for active vision. 

2.2 Type of projection: Orthographic/perspective 

The projection involved in obtaining the 2D silhouette is crucial as volume intersection 
is carried out by intersecting the volumes obtained by back-projecting the silhouettes. 
The simplest way is to consider a set of parallel projectors, giving rise to orthographic 
silhouettes. If the directions of projection are parallel to the principal axes of the 
universe cube, the front, the side and the top views of the object can be obtained. 
For such a case, identification of sweep(x, k) is just pixel to voxel mapping which is 
straightforward. 

But orthographic images are not natural in the sense that the eye or the camera 
can form only perspective images. Orthographic images can be obtained only by 
keeping the object size small and the distance between the object and the camera large. 

For perspective images, the projectors emanate from the viewpoint. Hence the 
camera position is important. Sweeping a perspective silhouette gives a cone with 
the apex at the viewpoint and the silhouette as its cross-section. This gives the 
impression of the silhouette growing in size as it is back-projected. Here sweep(x, k) 
would not be parallel to the axes of the cube. When perspective silhouettes are used, 
'natural" images can be used but with an overhead of complexity. 

3. Proposed approach 

Incremental intersection of back-projected volumes highlights this approach. A 
minimum of three views is necessary. One of the views I, is used as reference. Two 
other views are back-projected in terms of their rows or columns. The common area 

r 

is represented by range[i,j,O/1] with reference to every x~j of I,. The range[i,j,O/1] 
gives the tentative reconstruction. It is updated by considering other views and a 
volumetric description of the object obtained. Assuming that the set of viewing 
directions is specified a priori, volume intersection is carried out in three clear steps - 

• computation of range[], 
• updating of range[], 
• generation of a linear octree representation. 

But if the set is not specified, an additional step of finding the next viewing direction 
has to be incorporated. This structure was first proposed in Lavakusha et al (1989a). 
They used this structure to reconstruct 3D objects from three orthographic silhouettes. 
Pai et al (1990) improved upon this by making use of an intermediate data structure, 
an inverted segment tree to store range [i,j, 0/1]. They obtained a linear octree description 
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of the object. Nitya et al (1992) applied this concept to perspective silhouettes and 
reconstructed 3D objects successfully. Though these approaches made use of front, 
side and top views of the object, they can be easily extended to handle other views 
too. In the following subsections, we explain the concept of range[i,j,O/1] and 
integrate the research done in passive and active vision using orthographic and 
perspective silhouettes. In Pai et al (1990), obtaining a linear octree description from 
a segment tree is explained. 
Coordinate system: The top left-hand comer of the universe cttbe is taken as the 
origin. An octant of the cube is defined by the top-left-hand comer coordinate. For 
the silhouette, the top-left-hand corner coordinate is the origin and the bottom-right- 
hand corner coordinate is (N -- 1, N -- 1). 

3.1 Range[i, AO/1] 

As mentioned earlier, project(v, k) is the set of black pixels in I~ giving the occluding 
contour of the object as seen from a particular point or direction dk. A pixel x in 
project(v, k) corresponds to one or more black voxels in the universe cube. A voxel 
is considered black if it is in the sweep(x, k) for all k. Starting with views 11 and 12 
the intersection of sweep(x, 1) and sweep(x, 2) would give a tentative reconstruction. 
All the voxels in this intersection are candidates to be labelled black finally. Such 
candidate voxels form the range for the corresponding pixel in the reference. The 
correspondence is the pixel-voxel mapping perpendicular to the image and parallel 
to one of the axes of the universe cube. Hence, every pixel in I, is associated with 
range given by range[i,j, 0/11, 

range[i , j ,0]-  for pixel(i,j) of I,, the start of range, range[/,j, 11 - f o r  pixel(i,j) of 
I,, the end of range. 

Hereafter, we refer to a set of candidate voxels corresponding to a pixel in I, as 
range[] and the limits of range for pixel (i,j) of I, as range[i, AO/11. 

We make use of an intermediate data structure called the segment tree to maintain 
the range[]. The segment tree T(l, r) is built recursively as follows: The tree consists 
of a root V; and if r -  l > 1, of a left subtree T(l, (l + r)/2) and a right subtree 
T[((I + r)/2)+ 1,rl. The range[] is stored in a segment tree T(O,N-  1) where N is 
the size of the silhouette. The range[], given by [r0,r l]  is decomposed into a set of 
standard intervals, each corresponding to some node of the tree. A secondary list is 
appended to each node to keep track of the intervals allocated to it. If the universe 
cube is visualised as a set of planes parallel to I,, then the nodes of the segment tree 
would correspond to the planes and the secondary lists attached to the nodes to 
black pixels in those planes. 

Certain issues give rise to differences in the computation of range[] for the two 
types of projection, namely perspective and orthographic. The volumes generated by 
back-projecting orthographic and perspective silhouettes are different. Orthographic 
silhouettes yield cylindrical volumes whereas perspective ones give cones. 

• Every pixel in l, is associated with range [1. Range [1 is updated by back-projecting 
the reference silhouette. For the orthographic, this step can be implicit by 
computing range for only the back pixels of I,. 

• The correspondence of a pixel in I, and the row and column in 11 and 12 is not 
simple for the set of perspective silhouettes. This is due to the fact that sweep(x~, 1) 
and sweep(xj, 2) for row i and column j of 11 and 12 respectively would not 
necessarily intersect along the line passing through x~j in I, and normal to it. 
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3.2 Three orthographic views 

3.2a Computation of range[]: When the directions of projection are parallel to the 
principal axes of the cube, the front, side and top views of the object can be obtained. 
Hereafter, these silhouettes will be referred to as FRONT, SIDE and TOP. The union 
of sweep(x~j,k), for all i,j, gives the swept volume of a silhouette. In the case of 
orthographic silhouette, the swept volume would be a cylinder with the silhouette 
as its cross-section. This implies that 

sweep(x~r SIDE) ('~ sweep(xk~, TOP) 

would be either null or voxel(i,j,k) only. This voxel would definitely belong to 
range[i,j,O/1]. Hence, for a particular row i of a silhouette, the swept volume of the 
row i, henceforth referred to as sweep(x~, k)~is the union of the sweep(x, k) of the 
individual black pixels in that row. The inte~ection of such unions (rows) of one 
silhouette with other such unions (columns) of another silhouette would give the 
range for the pixels in the reference. If FRONT is considered as reference, then for a 
pixel x o of FRONT, the ith row of SIDE and the j th  column of TOP are to be considered 
to compute range[i,j,O/1] (figure 2). 

For a pixel i,j of FRONT, range[]  is given by an interval [r0,r l] ,  where 

tO = max(stain, train), train = N - 1 - k2, 

r l  = min(smax, tmax), tmax = N - 1 - kl. 

Here, smin and smax give the start and end of the run of ls in row i of SIDE and 
tmin and tmax give the same for the column j of TOe, In reality, range[]  is not one 
interval It0, r l ]  but a set of such intervals. Range []  for the complete reference image 
is stored in a segment tree. 

3.2b Updating of range[]: This step is trivial for orthographic views. The fact that 
the union of sweep(x, k) for a silhouette would be a cylinder can be used to implicitly 
incorporate the intersection in range by limiting the computation of range[]  of only 
the black pixels in I,. Range would now contain the intersection of the swept volumes 

j "top 

E l  - ~ - -  

k 2 - - -  i 
Smax 

S rain ( i , j )  _ _ 

Z 

FRONT X 
Figure 2. Range[-:] for ortho- 
graphic silhouettes. 
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of the three silhouettes, I,, 11,12. The detailed algorithm is discussed in Shanmukh & 
Pujari (1991). From the range, a linear octree representation of the object can be 
generated. 

3.3 Three perspective views 

3.3a Computation of range[]: As the swept volumes would be expanding cones 
with the apex at the viewpoint and the silhouette as the cross-section, the camera 
position is important here. The front, side and top views of the object are obtained 
by placing the camera appropriately. Let the three viewpoints be given by (fx, fy, fz), 
(sx, sy, sz) and (tx, ty, tz). For their experiments, Nitya et al (1992) discuss the camera 
location on the lines parallel to the axes of the cube and passing through its centre. 
Unlike the orthographic case, the sweep(x u, k) is not parallel to the axis of the cube 
but lies along the projector through x u. If [smin, smax] is the run of l's for a row i 
in lk, then the sweep(x~, k) is given by [smin*, smax*], where smin* and smax* lie 
on the projectors through smin and smax, respectively. Moreover, the non-null 
intersection of sweep(x,, 1) and sweep(xj,2) is not limited to one voxel only. This 
implies that a voxel v in sweep(x~k, 1)c~ sweep(xk), 2) could be in the range of a pixel 
in I, other than x u. Hence computation of range[] for x u in I, involves 

• identifying the appropriate row i* and column j* in SIDE and TOP respectively 
so that sweep(x*, SIDE) and sweep(x*,TOP) belong to range[] of x u. 

• finding the limits of sweep(x*, SIDE) and sweep(x*, TOp) along the line normal 
to the reference and through x u. Let[smin*,smax*] and [tmin*,tmax*] give 
sweep(x*, SIDE) and sweep(x*, TOP) on this line (figure 3), range[] is then given 
by the interval [r0, r l]  where 

rO = min(smin*, tmin*), 

rl = max(sinai*, tmax*). 

( - f+ (N-1 ) /2 .  (N-11/2,  ( N - l ) / 2  ) 

/! I I 

I I • / , ,  • 
Tmax "F ' . / / J  S max" 

max" 

( 0 ,0 ,0  ) -" J "  Smax 
(i,j) -- t l ~  " ' " ~ - -  S m i n _ _ ~ -  - Tmin" 

(N-l) /2. (N-1)/2÷ f, (N-1/21 

FRONT 

Figure 3. Range[] for perspective silhouettes. 
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These two steps involve the intersection of lines or the intersection of a line and a 
plane. These can be accomplished incrementally avoiding divisions. 

3.3b Updating of range[]: The fact that sweep(x, FRONT) is not parallel to the 
z-axis but lies along the projector makes an explicit back-projection step of FRONT 
necessary. If the cube is visualised as a set of planes all parallel to FRONT, then the 
voxel(i,j, k) is given by the pixels(i,j) in plane k. The sweep(x, FRONT) would be given 
by the black pixels in these planes along the projector through x. The intersection of 
sweep(x, FRONT) for all x in FRONT with the range[] can be accomplished by the 
comparisons of black pixels in these planes with the corresponding nodes in the segment 
tree. For efficient implementation, FRONT could be represented in rectangular code 
bringing down drastically the number of comparisons. Moreover, a rectangular 
representation of FRONT would also facilitate its back-projection to these planes as 
one would need to back-project only the corner points of the rectangles to identify 
the project(v, FRONT) in these planes. 

This approach of computation and updating of range[] makes it possible to use 
different views with any orientation. This is generalized whereas the one given for 
orthographic works only for the FRONT, SIDE and TOP views. Such a method could 
be adopted for orthographic views with arbitrary directions. 

3.4 Active vision 

An emerging theme in current vision research is that of active vision, in which the 
vision process is dynamic rather than static. Instead of applying image analysis to a 
single snapshot environment, the active vision process, in its most general 
implementation, applies image analysis operations in a purposive and integrative 
manner. In the present context, we address the active vision process to dynamically 
determine the sensor location for the best possible object reconstruction. 

The volume intersection method cannot accurately recover the 3D shape due to 
the many-one mapping inherent to sweep and project. Even though a pixel is seen 
to be black in pure mathematical sense, the volume intersection (vI) process generates 
a set of black voxels given by 

N { sweep(x, k), k~Ik}, 1 < k <~ p. 
X.k 

Let us call this set the v1 hull of the object. Clearly v1 hull contains the object 
irrespective of the set of viewing directions. The accurate reconstruction is obtained 
when the volume intersection hull is the object itself. Thus any active vision process 
aims at determining the viewing direction incrementally in order to construct the vI 
hull as close to the object as possible. In this context, we review two approaches. 

3.4a Voxel fixing method: A voxel is said to be fixed if there exists a direction dh 
such that 

sweep(x, k)= {v}, for some pixel xeI~. 

If a voxel is not fixed, it is called a free voxel. The aim of the active vision process 
is to determine viewing directions so as to fix as many free voxels as possible. At any 
particular stage, a new direction is chosen which can expose the maximum number 
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of free voxels for the purpose of fixing. It can be noted that if for any I~ and for 
xelk, sweep(x, k) contains at least one fixed voxel, then no other voxel can be fixed 
using I~. This is because the fixed voxel occludes all the remaining voxels. Lavakusha 
et al (1989b) propose a method for fixing the voxel in which an optimization strategy 
is followed to incrementally fix voxels till a satisfactory accuracy is attained, The 
accuracy measure is defined as follows: 

= (by + w)/N 3, 
where 

bf = total number of black voxels that are fixed, 
w = total number of white voxels, and 
N = size of the arrays, hence N 3 is the total number of voxels. 
When ¢r is very close to 1, the algorithm is terminated. Otherwise, if the accuracy 

is not satisfactory, a new direction is determined after unfixing the voxels at the 
previous process. 

3.4b Minimum width method: This method is based on a principle which is dual to 
the voxel fixing method. The degree of ambiguity, for a particular direction k, is 
dependent on the sizes of sweep(x, k), XEIk. Hence the measure of ambiguity of a 
voxel v can be defined as 

2v = Mink { J sweep(x, k)J: v 6sweep (x, k) }. 

Clearly, a voxel is fixed if 2o = 1. However, it is not possible to fix all the voxels of 
the reconstructed object. Moreover, it could be possible that the direction which fixes 
certain voxels may cause a higher degree of ambiguity in the remaining voxels 
(figure 4). 

The present approach aims at minimising this overall degree of ambiguity. The 
proposed algorithm uses the following accuracy measure and works towards 
minimizing this ambiguity, This can be accomplished using the minimum width method 
where, starting from one silhouette, two orthogonal directions are computed based 
on the minimum width of the silhouette. Silhouettes in these two additional directions 
are taken, which ensures increase in the prescribed/lccuracy measure. 

dz 

d4 

A 

B 
Figure 4. Voxels along AB and A'B' are fixed 
due to d3, which generates a high degree of 
ambiguity for other voxels. 
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The accuracy is measured as follows: 

volume of the object 
accuracy = volume of intersection of silhouettes" 

Experimental study confirms the following advantage of active vision over the 
conventional passive vision. 

• This method provides a better reconstruction than the passive vision method 
of a prespecified set of views. 

• It requires a lesser number of silhouettes than the passive case. 

4. Drawbacks of the present approach 

We have proposed an efficient method to recover 3D shape from multiple silhouettes 
using the volume intersection method. It has two major drawbacks. 

(i) Silhouette formation: The silhouettes are obtained by a bilevel thresholding 
process from the grey-level image that is acquired with any imaging system. As a 
result, there is loss of information which cannot be recovered subsequently. For 
example, the edge information, which is prominent in a grey-level image 
is ignored in this process. 

(ii) Intersection process: Due to the underlying principle of volume intersection, we 
get a unique 3D reconstruction; whereas, in reality, there may be many possibilities. 
The holes and cavities that do not render themselves to the occluding contours 
are suppressed in this process. Hence, this method may be inefficient for defect 
identification. 

In Nagaraju (199t), a general framework for shape from silhouettes is proposed using 
first-order logic as the underlying tool. It is shown that objects that can never be 
reconstructed by the volume intersection method can be accurately reconstructed by 
using such a framework. This is due to the reasoning tools available in the theory of 
logic. 

5. Conclusions 

The structure range[], giving scope for incremental intersection, is versatile enough 
to be used with orthographic or perspective silhouettes in passive or active vision. 
For the set of three orthographic silhouettes, FRONT, SIDE and TOP, the computation 
and updating of range [] becomes very simple, giving the least complexity O(N log N) 2 
known so far for object reconstruction. For the three perspective views, the complexity 
of O(N4logN) is still acceptable as any approach using perspective silhouettes is 
expected to be computationally quite expensive in comparison. Experiments were 
carried out to reconstruct 3D objects from three orthographic and perspective views 
successfully (figure 5). For active vision, the reconstruction was impressive with 905/o 
accuracy in comparison to the 70~ accuracy for passive vision. 

For clarity, range[] was discussed as if consisting of one interval [r0,rl]. But if 
rows of 11 and columns of I2 have multiple runlengths, then for a pixel in I,, multiple 
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(a) 

(c) 

E 

(b) 

(d) 

Figure 5. A chess piece: (a) front view; (b) side view; (e) top view; (d) angle in 
degrees (x, y): 45, 45. 

range[-] is a possibility. The computational process shown above can be trivially 
extended to handle such cases. 

Volume intersection was discussed in detail for three orthographic and three 
perspective views in passive vision. Volume intersection, as discussed for orthographic 
views (FRONT, SIDE and TOP), is specific to the orientation of the silhouettes. But the 
method used in the computation and updating of range[] for perspective is 
independent of orientation and projection to a certain extent. Hence, such a method 
can be used to handle orthographic or perspective views of any orientation for object 
reconstruction. 

For active vision, the most important step is the detection of the next viewing 
direction. Hence, only the detection step is explained. The computation and updating 
of range[] is the same as that given in passive vision. 

The author gratefully acknowledges the contribution of other colleagues towards 
the research on volume intersection; Lavakusha, G Geetha, E Uma, Ramadevi, Anita 
Pai, H Usha, K Shanmukh, Nitya, Sridevi, Padmaja and Nagaraju. 
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