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Volume of high-risk intratumoral subregions at multi-parametric MR imaging 

predicts overall survival and complements molecular analysis of glioblastoma 

 

Abstract 

Objective 

To develop and validate a volume-based, quantitative imaging marker by integrating multi-

parametric MR images for predicting glioblastoma survival, and to investigate its relations 

and synergy with molecular characteristics. 

Materials and Methods 

We retrospectively analyzed 108 patients with primary glioblastoma. The discovery cohort 

consisted of 62 patients from the cancer genome atlas (TCGA). Another 46 patients 

combining 30 from TCGA and 16 internally were used for independent validation. Based on 

integrated analyses of T1-weighted contrast-enhanced (T1-c) and diffusion-weighted MR 

images, we identified an intratumoral subregion with both high T1-c and low ADC, and 

accordingly defined a high-risk volume (HRV). We evaluated its prognostic value and 

biological significance with genomic data. 

Results 

On both discovery and validation cohorts, HRV predicted overall survival (OS) (concordance 

index: 0.642 and 0.653, P<0.001 and P=0.038, respectively). HRV stratified patients within 

the proneural molecular subtype (log-rank P=0.040, hazard ratio=2.787). We observed 

different OS among patients depending on their MGMT methylation status and HRV (log-

rank P=0.011). Patients with unmethylated MGMT and high HRV had significantly shorter 

survival (median survival: 9.3 versus 18.4 months, log-rank P=0.002).  

Conclusion 

Main Document (blinded)
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Volume of the high-risk intratumoral subregion identified on multi-parametric MRI predicts 

glioblastoma survival, and may provide complementary value to genomic information. 

Keywords 

Multi-parametric MRI, glioblastoma multiforme, high-risk tumor volume, overall survival, 

radiogenomics 

Key Points  

1. High-risk volume (HRV) defined on multi-parametric MRI predicted GBM survival. 

2. The proneural molecular subtype tended to harbor smaller HRV than other subtypes. 

3. Patients with unmethylated MGMT and high HRV had significantly shorter survival. 

4. HRV complements genomic information in predicting GBM survival  
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Introduction 

Glioblastoma (GBM) is the most deadly primary brain tumor in adults, with a median survival 

of 12-15 months despite aggressive treatment [1]. GBM is also a biologically heterogeneous 

disease, where four subtypes, i.e., the proneural, neural, classical, and mesenchymal 

subtypes, have been proposed based on molecular characteristics of the tumor [2]. 

Compared with the molecular approach, imaging provides a unique opportunity to 

noninvasively interrogate the anatomical and functional properties of the entire tumor. Given 

the routine use of imaging in GBM management, reliable imaging-based biomarkers would 

have tremendous value in precision medicine, by stratifying patients to guide individualized 

therapy.  

There has been a significant interest in predicting survival of GBM patients based on multi-

parametric magnetic resonance (MR) imaging that incorporates perfusion-weighted imaging 

[3-5], or diffusion-weighted (DW) imaging [6-12]. Most previous studies defined imaging 

prognosticators as a single point on the signal intensity histogram, e.g. maximum cerebral 

blood volume (CBV) [3], minimum apparent diffusion coefficient (ADC) [13], or simple 

quantiles [6]. On the other hand, volume-based imaging metrics that incorporate both 

intensity and volumetric information, may be more reliable indicators of tumor burden [14-

16]. Furthermore, given the heterogeneous nature of GBM, detecting “high-risk” intratumoral 

subregions could potentially identify biological relevant, aggressive subclones within a tumor 

[17], and has therapeutic implications for intensified local therapy to improve survival [18].  

Recent preliminary studies have shown promising results for predicting survival of GBM 

patients based on analysis of intratumoral subregions, using conventional T1-weighted 

contrast-enhanced (T1-c) and T2-weighted fluid-attenuated inversion recovery (FLAIR) MR 

images [19; 20]. However, a method to explicitly identify clinically relevant, high-risk tumor 

volume with robust and meaningful cutoffs has been lacking. Current MR imaging markers 

based on simple, predefined cutoffs such as median or quantile may not be optimal. In 

addition, individual cutoffs at the patient level can be sensitive to variations due to 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

differences in image acquisition protocols in different patients [21; 22]. Consequently, these 

imaging markers are difficult to compare and reproduce across cohorts in multi-center 

settings, which is a significant hurdle to their clinical translation.  

In this study, we hypothesized that the volume of an intratumoral subregion associated with 

abnormally high signal intensity on T1-weighted contrast-enhanced imaging and abnormally 

low ADC on DW imaging can quantify the most aggressive disease burden within a tumor, 

and thus may be a better predictor of prognosis of GBM patients compared with whole-tumor 

imaging metrics. This is supported by recent studies showing that the tumor-enhancing 

volume [14] and the volume of low ADC [16] were both prognostic of overall survival in GBM. 

Instead of using predefined cutoffs for individual patients, we propose a novel method to 

define robust cutoffs applicable to the entire study population and identify high-risk 

intratumoral subregions by using a data-driven approach. Further, we evaluated the 

biological significance of our imaging marker by associating with underlying molecular 

features. Distinct from most previous radiogenomic studies [23-26], we further investigated 

whether this imaging marker provides complementary value to the genomic counterparts. 

The purpose of this study is two-fold: 1), to develop and validate a new volume-based, 

quantitative imaging marker by integrating multi-parametric MR images for predicting 

survival of GBM patients; 2), to investigate the relations and potential synergy between the 

proposed imaging marker and underlying molecular characteristics of GBM. 

 

Materials and Methods 

Study Population 

In this institutional-review-board approved study, a total of 108 patients were retrospectively 

investigated. The inclusion criteria were: 1) pathologically confirmed diagnosis of GBM, 2) 

availability of preoperative T1-weighted contrast enhanced (T1-c) and diffusion-weighted 

(DW) images, and 3) availability of information about overall survival. The exclusion criteria 
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were prior surgery and other treatments. The majority of the study cohort, consisting of 92 

patients from 1998 to 2011, was retrieved from the Cancer Imaging Archive (TCIA). We 

initially identified 98 patients from TCIA whereas 6 of them were excluded due to poor image 

quality (such as motion, metal artifacts, and RF inhomogeneity) as assessed by a 

neuroradiologist with over 10 years’ experience (KKT). Furthermore, we searched patient 

records from 2004 to 2014 at the local institution using the same inclusion and exclusion 

criteria and found 31 patients. Fifteen of them were excluded because they did not have 

echo-planar T2-weighted images with zero diffusion weighting (b = 0 sec/mm2), leading to 16 

additional patients eligible for this study. The median follow-up duration was 10.9 months for 

the TCIA cohort and 9.6 months for the internal cohort.  

We randomly split the TCIA cohort into two portions, where the first one containing 

approximately two-thirds of the patients (n = 62) was used as a discovery cohort. The 

remaining portion (n = 30) was combined with internal cohort (n = 16) to form the validation 

cohort (n = 46). The overall study design and patient cohorts are illustrated in Fig. 1. Clinical 

and demographic information of the study population is listed in Table 1. 

 

Image Acquisition 

Among the 108 patients, the magnetic fields used to acquire the MR images were 1T (n = 1), 

1.5T (n = 65), 3T (n = 35), or unknown (n = 7). For the T1-c images, the sequence protocols 

were spin-echo (n = 77), gradient echo (n = 13), or T1-weighted fluid-attenuated inversion 

recovery (n = 18). The repetition time and echo time ranged respectively from 6 to 3189 

msec, and from 3 to 20 msec. The intra-slice voxel resolution varied from 0.43 mm to 1.02 

mm, the slice thickness was between 2.5 mm and 5 mm, and the inter-slice gap was 

between 0 mm and 2.5 mm. For DW images, the b-values were 1000 sec/mm2 (n = 103), 

1500 sec/mm2 (n = 5). Echo-planar T2-weighted images with zero diffusion-weighting (b=0 

sec/mm2) were acquired for all the patients (n = 108). The intra-slice voxel resolution, the 
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slice thickness, and the inter-slice gap of the DW images ranged from 0.86 mm to 1.8 mm, 3 

mm to 7 mm, and 0 mm to 1 mm, respectively. 

 

Image Processing 

For each patient, we co-registered the MR images using the extensively validated software, 

elastix [27]. Specifically, we used the T1-c image as the reference and rigidly transformed 

and resliced the echo-planar T2-weighted image with zero diffusion weighting. However, for 

those cases having noticeable geometric distortion by automatic registration, in-house 

developed MATLAB software was used instead for manual registration. This process started 

with visually inspecting the T1-c image and the echo-planar T2-weighted image with zero 

diffusion weighting to identify slice pairs at the same locations. Then within each slice pair 

we manually selected landmark points at salient anatomical structures (e.g., ventricles) in 

both modalities and recorded their 3-dimensional coordinates. Given the corresponding 

coordinates of the landmarks, we calculated an affine transformation function by least-

square estimation to register the echo-planar T2-weighted image with zero diffusion 

weighting to the T1-c image. Finally, elastix was used to register the DW image to the T2-

weighted image with zero diffusion weighting with affine transformation in order to correct for 

the eddy current distortion and motion effects [28]. The ADC maps were reconstructed from 

the registered images. Any voxel with negative ADC values due to measurement noise was 

set to zero and then imputed from its neighborhood.   

 

Image Normalization  

Given the non-uniform imaging protocols and parameters of the MR images in the multi-

institutional cohort, it is mandatory to normalize the image data acquired under different 

conditions. To this end, we proposed a novel standardization approach based on kernel 

density estimation (KDE). KDE is an unsupervised machine learning technique able to 
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estimate the probability density function (PDF) underlying the observed data. It does not 

assume a parametric form for the PDF to be estimated and therefore particularly suitable for 

charactering irregular (non-Gaussian) distributions. Specifically, for each T1-c or ADC 

image, we applied the KDE to estimate the continuous PDF of the intensities for voxels 

within the entire brain parenchyma. We then normalized the image by dividing each voxel 

with the mode of this PDF (Fig. 2). The rationale for this approach is that the mode 

represents the most frequently occurring voxel value in the image, which comes from the 

normal-appearing white matter that constitutes the majority of brain tissues. For PDF 

estimation we used the MATLAB code which used the Gaussian kernel and was able to 

automatically choose the kernel bandwidth based on the “plug-in” KDE algorithm [29]. In 

order to avoid estimating the background noise, we set the interval on which the density 

estimate was constructed to be [max/50, max] where max denoted the maximum intensity of 

the image and used 108 meshes to discretize this interval. It should be noted that although 

some studies reported similar ADC values among scanners when identical image acquisition 

parameters were used [30-32], the imaging parameters in our study were not consistent. 

Therefore, in order to minimize the effects of inter-scanner variations, we chose to normalize 

the ADC maps. ADC normalization was also performed in other studies [33], where relative 

ADC maps were used to correlate with genetic and cellular GBM features.  

 

High-Risk Volume Identification  

The gross tumor volume(GTV), including both the contrast-enhanced area as well as the 

bounded non-enhancing and necrotic regions, was segmented semi-automatically on T1-c 

images using MIPAV [34]. This process used the built-in level-set algorithm of MIPAV and 

entailed the operator moving the cursor around the boundary of the tumor which was then 

automatically captured. Manual correction was performed in 8 cases where automatic 

segmentation failed. In order to assess the reproducibility of the segmentation as well as its 

impact on subsequent analyses, all tumors were independently delineated by two observers 
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(SJR and YC). Dice and intra-class correlation coefficients were calculated for the two tumor 

segmentations.   

After segmentation, we defined the high-risk volume (HRV) as the volume of the intratumoral 

subregion with both higher T1-c intensity and lower ADC. In order to obtain robust and 

meaningful thresholds to identify the HRV, we pooled the tumor voxels of all the patients in 

the discovery cohort, for the normalized T1-c and ADC images respectively. For each 

sequence we used the KDE to estimate their pooled PDFs and used the mode values as 

global cutoffs, hereafter denoted as t1 and t2. The rationale for the use of mode is that 

statistically speaking, it is the most typical value of a certain population: any value above or 

below this value may be considered abnormally high or low. The HRV of an individual patient 

was defined as the volume of the tumor satisfying T1-c > t1 and ADC < t2. Fig. 2 illustrates 

the hierarchical flowchart for HRV identification. Once identified, the same thresholds were 

used to define the HRV for patients in the validation cohort. We examined whether HRV 

predicted overall survival (OS) in both discovery and validation cohorts. In addition to HRV, 

we computed the enhancing tumor volume (ETV), which we defined as the volume of the 

tumor satisfying T1-c > 1. The OS prediction performance of ETV was also evaluated.  

 

Relations between high-risk volume and molecular features 

We investigated the associations between the proposed imaging marker (HRV) and four 

molecular subtypes of GBM, i.e., the proneural, neural, classical, and mesenchymal 

subtypes, which was obtained for 88 patients in the TCIA cohort from the UCSC Cancer 

Genomics Browser [35; 36]. Given the established role of MGMT methylation status for 

prognosis, we evaluated whether imaging-based HRV could provide complementary value in 

predicting survival. Information about MGMT methylation status was obtained for 61 patients 

in the TCIA cohort from a previous study [2]. Finally, we evaluated the relationships between 
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HRV and the mutation status of 9 genes that are known to have important functions in GBM, 

including TP53, RB1, IDH1, PIK3R1, PTEN, PDGFRA, NF1, EGFR, and PIK3CA [2]. 

 

Statistical analysis 

Survival prediction performances of the HRV were assessed by the concordance index (CI) 

[37] and Cox regression analysis. Survival differences among two or more patient groups 

were compared by the log-rank test as well as Kaplan-Meier analysis. One-way ANOVA was 

performed to analyze the correlation between a continuous variable (e.g., the HRV) and a 

nominal variable (e.g., molecular subtype). P values smaller than 0.05 were considered 

significant. All statistical analyses were done in the open-source statistical computing 

environment R.   

 

Results 

HRV predicted overall survival, independent of clinical factors and other imaging metrics in 

the overall cohort 

In the discovery cohort, we determined the thresholds for defining the HRV to be t1=1.429, 

t2=1.321 for the normalized T1-c and ADC intensities, respectively (Fig. 2). Using this 

definition, HRV achieved a CI score of 0.642, and was significantly correlated with OS on 

univariate Cox regression analysis (P<0.001). HRV remained as a significant predictor of OS 

(P<0.001) when adjusted for clinical variables including age, Karnofsky performance status 

(KPS), eloquent brain involvement (EBI, encoded as a binary variable), and conventional 

imaging metrics including ETV and minimum ADC (Table 2). An optimal cutoff of 5.12 cm3 

for HRV stratified the discovery cohort in terms of OS (Fig. 3A, log-rank P=0.009, hazard 

ratio=2.413).  
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In the validation cohort, HRV achieved a similar CI of 0.653, and was again significantly 

correlated with OS (P=0.038). Further, using the same cutoff derived from the discovery 

cohort, we stratified the validation cohort into short and long-survival groups, with a median 

survival of 9.3 months 13.7 months (Fig. 3B, log-rank P=0.009, hazard ratio=2.718). 

However, in the validation cohort alone, HRV was not significant (P=0.20) in multivariate 

analysis, nor was any of the other analyzed risk factors (P=0.13-0.74), possibly due to the 

smaller size of this cohort. Therefore, in order to increase the statistical power, we combined 

the discovery and validation cohorts together and performed multivariate analysis on this 

overall cohort again. The result showed that HRV was indeed a significant OS predictor in 

the overall cohort, independent of clinical factors and other imaging metrics. 

 

Reproducibility of tumor segmentation and definition of HRV 

The two independently delineated tumor volumes showed mostly high inter-observer 

agreement, with the Dice indices ranging from 0.623 to 0.985 (median: 0.948). Importantly, 

the HRVs computed from the two tumor segmentations were highly concordant 

(Supplemental Material Fig. S1), with an intra-class correlation of 0.994 (95% confidence 

interval = [0.990, 0.994], P<1E-16).  

 

HRV stratified patients within the proneural molecular subtype 

One-way ANOVA showed that HRV was not significantly correlated with the four GBM 

subtypes (P=0.1124). However, we found that the tumors of the proneural subtype tended to 

have the smallest HRV, which was confirmed by pair-wise comparison with the other three 

subtypes (Fig. 4, P=0.014-0.038). Furthermore, HRV was significantly associated with OS 

within the proneural group (CI=0.696, P=0.003). Using the median (2.29 cm3) as a cutoff, 

HRV stratified patients with proneural tumors into short and long-survival groups, with a 
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median survival of 6.4 months versus 12.3 months (Fig. 5A, log-rank P=0.040, hazard 

ratio=2.787). HRV did not stratify patients among other molecular subtypes. 

 

HRV provided complementary information to MGMT methylation 

HRV was not correlated with MGMT methylation status (P=0.1746). Survival stratification 

based on MGMT methylation status alone trended toward significance (log-rank P=0.072, 

hazard ratio=1.762). However, by combining methylation status and HRV (using median as 

the cutoff), we observed significantly different OS among the four groups (Fig. 5B, log-rank 

P=0.011), i.e., methylated MGMT and low HRV (n = 7), methylated MGMT and high HRV (n 

= 6), unmethylated MGMT and low HRV (n = 21), and unmethylated MGMT and high HRV (n 

= 28). Of note, patients with unmethylated MGMT and high HRV had much shorter survival 

compared with the others (median survival: 9.3 versus 18.4 months, log-rank P=0.002).  

 

Higher HRV was associated with NF1 and PIK3CA mutation 

HRV was significantly different between mutated and wide-type groups for NF1 (P=0.049) 

and PIK3CA (P=0.028). Tumors with mutation in either NF1 or PIK3CA had higher HRV than 

those of the wild type (Supplemental Material Fig. S2). 

 

Discussion 

In this study, we identified high-risk intratumoral subregions by using a data-driven approach 

and defined a volume-based imaging marker by integrating multi-parametric MR images of 

GBM. We found that HRV was prognostic for overall survival in two independent multi-

institutional cohorts, and remained a significant predictor after adjusting for clinical factors 

and other imaging metrics. The predictive accuracy of HRV was higher than gross tumor 

volume, suggesting that analysis of intratumoral subregions may afford more reliable 
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indicators of tumor burden compared with the whole tumor. HRV was also superior to 

minimum ADC, which points to the benefits of volume-based metrics versus conventional 

single-voxel approaches. 

We used the kernel density estimation and mode approach under two scenarios: to obtain a 

patient-specific background voxel value for image normalization, and to find a population-

level cutoff for defining the high-risk volume. In both scenarios, this approach has important 

advantages in that the mode value is a more robust statistic of the pooled distribution 

compared with other commonly used summary statistics (e.g., mean, median, or quantile 

values) [3; 6; 13], which may be sensitive to variations in tumor segmentation [38; 39]. 

Compared with previous approaches that require manual selection of a region of interest for 

image normalization [33], ours is fully automated and more robust.  

Recent studies have used a quantitative radiomic approach to obtain comprehensive tumor 

phenotypes such as shape and texture. While further validation is warranted, this approach 

has showed promising results in identifying prognostic imaging markers in GBM and appears 

to provide additional information beyond simple volume-based imaging metrics [20; 23; 40; 

41]. Previously this approach has mostly been applied to the primary tumor to extract whole-

tumor aggregate characteristics. It would be interesting to apply radiomics to the high-risk 

intratumoral subregions extracted in this work to derive further improvement in prognostic 

value [19]. 

Our radiogenomic analysis revealed that the proposed imaging marker (HRV) was 

associated with several important molecular features of GBM. We showed that HRV was 

associated with overall survival and further stratified the proneural group. Compared with 

other molecular subtypes, the proneural group tended to harbor smaller HRV, which was 

correlated with longer survival. This is consistent with previous studies showing that the 

proneural molecular subtype had a better prognosis than others [2].  
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We showed that higher HRV was associated with mutations in NF1 and PIK3CA, which are 

key genetic events driving the progression of GBM [2]. NF1 is a tumor-suppressor gene and 

frequently inactivated in GBM [2; 42]. It has been shown that NF1 mutation is highly enriched 

in the mesenchymal molecular subtype, a known aggressive GBM subtype with poor 

outcomes [2]. The PI3K signaling pathway is frequently dysregulated in GBM, and plays a 

critical role in proliferation, cellular metabolism, and apoptosis [43]. Therapeutic agents 

inhibiting PI3K activity are under active development and have the potential for improvement 

in clinical outcome for GBM [44]. IDH1 mutation has been shown to be an independent 

prognostic factor in patients diagnosed with glioma including GBM [45], but appeared to be 

not associated with HRV in our study (Fig. S2), suggesting that they may be driven by 

differing biological processes. 

Importantly, we showed that HRV provided complementary information to MGMT 

methylation status for survival prediction. Patients with unmethylated MGMT and high HRV 

had much shorter survival compared with other), while MGMT methylation status alone was 

not prognostic within our study cohort. This is consistent with a recent study [6] showing 

worse prognosis for patients with unmethylated MGMT and lower mean ADC. Taken 

together, these data support that the imaging-based HRV recapitulates tumor biology of 

GBM and potentially could provide additional prognostic information beyond genomic 

analysis. 

Limitations of our study include the retrospective design and relatively small validation 

cohorts. The image data came from multiple institutions and were acquired with different 

imaging protocols and parameters, which might have influenced the image quantification. 

Nevertheless, we used careful image standardization techniques and robust image analysis 

to minimize the potential biases. Our findings warrant further validation in larger prospective 

cohorts. Intra-tumor genetic heterogeneity in GBM [46; 47] may confound the radiogenomic 

analyses. Because imaging has the unique capability of sampling the entire tumor and 

surrounding tissue, it would be intriguing to prospectively test the idea that combines image-
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guided stereotactic biopsy [48; 49] and the proposed method to identify high-risk intratumoral 

subregions, which might increase the likelihood of detecting the most aggressive part of a 

tumor. 

Future studies would benefit from the incorporation of additional imaging modalities such as 

T2-weighted FLAIR and perfusion-weighted imaging for more comprehensive 

characterization of GBM such as surrounding edema/invasion [26] and blood volume/flow 

[3]. We also plan to test the ability of HRV to evaluate treatment response of GBM, in 

particular, to distinguish progression from pseudo-progression after chemoradiation therapy 

[50; 51].  

In conclusion, volume of the high-risk intratumoral subregion on multi-parametric MRI 

predicts overall survival in GBM patients, and may provide complementary value to genomic 

information. We envision that the same approach could be applied to identify clinically and 

biologically relevant imaging markers in other cancer types. 

 

Compliance with ethical standards: 

Guarantor: 

The scientific guarantor of this publication is Dr. Ruijiang Li.  

Conflict of interest: 

The authors of this manuscript declare no relationships with any companies, whose products 

or services may be related to the subject matter of the article. 

Funding: 

This research was partially funded by the NIH (grant number: R01 CA193730), and partially 

supported by the Global Institution for Collaborative Research and Education (GI-CoRE), 

Hokkaido University, founded by the Ministry of Education, Culture, Sports, Science and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15 
 

Technology MEXT, Japan. Part of the data used in this research was obtained from The 

Cancer Imaging Archive (TCIA) sponsored by the Cancer Imaging Program, DCTD/NCI/NIH. 

Statistics and biometry: 

One of the authors has significant statistical expertise. 

Ethical approval: 

Institutional Review Board approval was obtained. 

Informed consent: 

Written informed consent was waived by the Institutional Review Board. 

Methodology:  

 retrospective 

 diagnostic or prognostic study 

 multicenter study  

 

 

 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16 
 

References 

1 Ostrom QT, Gittleman H, Fulop J et al (2015) CBTRUS Statistical Report: Primary Brain and 

Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 

17 Suppl 4:iv1-iv62 

2 Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies 

clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, 

EGFR, and NF1. Cancer Cell 17:98-110 

3 Jain R, Poisson L, Narang J et al (2013) Genomic mapping and survival prediction in 

glioblastoma: molecular subclassification strengthened by hemodynamic imaging 

biomarkers. Radiology 267:212-220 

4 Burth S, Kickingereder P, Eidel O et al (2016) Clinical parameters outweigh diffusion- and 

perfusion-derived MRI parameters in predicting survival in newly diagnosed glioblastoma. 

Neuro Oncol. 10.1093/neuonc/now122 

5 Schmainda KM, Zhang Z, Prah M et al (2015) Dynamic susceptibility contrast MRI measures 

of relative cerebral blood volume as a prognostic marker for overall survival in recurrent 

glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial. Neuro Oncol 

17:1148-1156 

6 Choi YS, Ahn SS, Kim DW et al (2016) Incremental Prognostic Value of ADC Histogram 

Analysis over MGMT Promoter Methylation Status in Patients with Glioblastoma. Radiology. 

10.1148/radiol.2016151913:151913 

7 Gupta A, Prager A, Young RJ, Shi W, Omuro AM, Graber JJ (2013) Diffusion-weighted MR 

imaging and MGMT methylation status in glioblastoma: a reappraisal of the role of 

preoperative quantitative ADC measurements. AJNR Am J Neuroradiol 34:E10-11 

8 Moon WJ, Choi JW, Roh HG, Lim SD, Koh YC (2012) Imaging parameters of high grade 

gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor 

imaging, and perfusion MR imaging. Neuroradiology 54:555-563 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17 
 

9 Pope WB, Lai A, Mehta R et al (2011) Apparent Diffusion Coefficient Histogram Analysis 

Stratifies Progression-Free Survival in Newly Diagnosed Bevacizumab-Treated Glioblastoma. 

American Journal of Neuroradiology 32:882-889 

10 Romano A, Calabria LF, Tavanti F et al (2013) Apparent diffusion coefficient obtained by 

magnetic resonance imaging as a prognostic marker in glioblastomas: correlation with 

MGMT promoter methylation status. European Radiology 23:513-520 

11 Saksena S, Jain R, Narang J et al (2010) Predicting Survival in Glioblastomas Using Diffusion 

Tensor Imaging Metrics. Journal of Magnetic Resonance Imaging 32:788-795 

12 Sunwoo L, Choi SH, Park CK et al (2013) Correlation of apparent diffusion coefficient values 

measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed 

with MS-MLPA in patients with glioblastoma multiforme. Journal of Magnetic Resonance 

Imaging 37:351-358 

13 Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: Clinical importance of 

apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241:839-846 

14 Wangaryattawanich P, Hatami M, Wang J et al (2015) Multicenter imaging outcomes study 

of The Cancer Genome Atlas glioblastoma patient cohort: imaging predictors of overall and 

progression-free survival. Neuro Oncol 17:1525-1537 

15 Ellingson BM, Harris RJ, Woodworth DC et al (2016) Baseline pretreatment contrast 

enhancing tumor volume including central necrosis is a prognostic factor in recurrent 

glioblastoma: evidence from single- and multicenter trials. Neuro Oncol. 

10.1093/neuonc/now187 

16 Zhang M, Gulotta B, Thomas A et al (2016) Large-volume low apparent diffusion coefficient 

lesions predict poor survival in bevacizumab-treated glioblastoma patients. Neuro Oncol 

18:735-743 

17 Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. 

Radiology 269:8-15 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 
 

18 Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): 

biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551-560 

19 Cui Y, Tha KK, Terasaka S et al (2016) Prognostic Imaging Biomarkers in Glioblastoma: 

Development and Independent Validation on the Basis of Multiregion and Quantitative 

Analysis of MR Images. Radiology 278:546-553 

20 Chang K, Zhang B, Guo X et al (2016) Multimodal imaging patterns predict survival in 

recurrent glioblastoma patients treated with bevacizumab. Neuro Oncol. 

10.1093/neuonc/now086 

21 Chenevert TL, Malyarenko DI, Newitt D et al (2014) Errors in Quantitative Image Analysis due 

to Platform-Dependent Image Scaling (vol 7, pg 65, 2014). Translational Oncology 7:523-523 

22 Ellingson BM, Lai A, Nguyen HN, Nghiemphu PL, Pope WB, Cloughesy TF (2015) 

Quantification of Nonenhancing Tumor Burden in Gliomas Using Effective T-2 Maps Derived 

from Dual-Echo Turbo Spin-Echo MRI. Clinical Cancer Research 21:4373-4383 

23 Gevaert O, Mitchell LA, Achrol AS et al (2014) Glioblastoma multiforme: exploratory 

radiogenomic analysis by using quantitative image features. Radiology 273:168-174 

24 Gutman DA, Cooper LA, Hwang SN et al (2013) MR imaging predictors of molecular profile 

and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology 267:560-

569 

25 Jamshidi N, Diehn M, Bredel M, Kuo MD (2014) Illuminating Radiogenomic Characteristics of 

Glioblastoma Multiforme through Integration of MR Imaging, Messenger RNA Expression, 

and DNA Copy Number Variation. Radiology 270:212-222 

26 Zinn PO, Mahajan B, Sathyan P et al (2011) Radiogenomic mapping of edema/cellular 

invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 6:e25451 

27 Klein S, Staring M, Murphy K, Viergever MA, Pluim JPW (2010) elastix: A Toolbox for 

Intensity-Based Medical Image Registration. Ieee Transactions on Medical Imaging 29:196-

205 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 
 

28 Mohammadi S, Moller HE, Kugel H, Muller DK, Deppe M (2010) Correcting eddy current and 

motion effects by affine whole-brain registrations: evaluation of three-dimensional 

distortions and comparison with slicewise correction. Magn Reson Med 64:1047-1056 

29 Botev ZI, Grotowski JF, Kroese DP (2010) Kernel Density Estimation Via Diffusion. Annals of 

Statistics 38:2916-2957 

30 Ogura A, Tamura T, Ozaki M et al (2015) Apparent Diffusion Coefficient Value Is Not 

Dependent on Magnetic Resonance Systems and Field Strength Under Fixed Imaging 

Parameters in Brain. J Comput Assist Tomogr 39:760-765 

31 Lemkaddem A, Daducci A, Vulliemoz S et al (2012) A multi-center study: intra-scan and inter-

scan variability of diffusion spectrum imaging. Neuroimage 62:87-94 

32 Grech-Sollars M, Hales PW, Miyazaki K et al (2015) Multi-centre reproducibility of diffusion 

MRI parameters for clinical sequences in the brain. NMR Biomed 28:468-485 

33 Barajas RF, Hodgson JG, Chang JS et al (2010) Glioblastoma Multiforme Regional Genetic and 

Cellular Expression Patterns: Influence on Anatomic and Physiologic MR Imaging. Radiology 

254:564-576 

34 McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL (2001) Medical Image 

Processing, Analysis & Visualization in clinical research. Fourteenth Ieee Symposium on 

Computer-Based Medical Systems, Proceedings:381-386 

35 Goldman M, Craft B, Swatloski T et al (2015) The UCSC Cancer Genomics Browser: update 

2015. Nucleic Acids Res 43:D812-817 

36 Zhu J, Sanborn JZ, Benz S et al (2009) The UCSC Cancer Genomics Browser. Nat Methods 

6:239-240 

37 Harrell FE (2001) Regression modeling strategies : with applications to linear models, logistic 

regression, and survival analysis. Springer, New York ; London 

38 Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: 

an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52:1391-1397 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20 
 

39 Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust Radiomics feature quantification 

using semiautomatic volumetric segmentation. PLoS One 9:e102107 

40 Macyszyn L, Akbari H, Pisapia JM et al (2016) Imaging patterns predict patient survival and 

molecular subtype in glioblastoma via machine learning techniques. Neuro Oncol 18:417-

425 

41 Kickingereder P, Bonekamp D, Nowosielski M et al (2016) Radiogenomics of Glioblastoma: 

Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric 

and Multiregional MR Imaging Features. Radiology. 10.1148/radiol.2016161382:161382 

42 Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines 

human glioblastoma genes and core pathways. Nature 455:1061-1068 

43 Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and 

limitations. Nat Rev Cancer 9:550-562 

44 Wen PY, Lee EQ, Reardon DA, Ligon KL, Alfred Yung WK (2012) Current clinical development 

of PI3K pathway inhibitors in glioblastoma. Neuro Oncol 14:819-829 

45 Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an 

important prognostic biomarker in gliomas. J Clin Oncol 27:4150-4154 

46 Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral 

heterogeneity in primary glioblastoma. Science 344:1396-1401 

47 Sottoriva A, Spiteri I, Piccirillo SG et al (2013) Intratumor heterogeneity in human 

glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009-4014 

48 Barajas RF, Jr., Phillips JJ, Parvataneni R et al (2012) Regional variation in histopathologic 

features of tumor specimens from treatment-naive glioblastoma correlates with anatomic 

and physiologic MR Imaging. Neuro Oncol 14:942-954 

49 Hu LS, Ning S, Eschbacher JM et al (2016) Radiogenomics to characterize regional genetic 

heterogeneity in glioblastoma. Neuro Oncol. 10.1093/neuonc/now135 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



21 
 

50 Chu HH, Choi SH, Ryoo I et al (2013) Differentiation of true progression from 

pseudoprogression in glioblastoma treated with radiation therapy and concomitant 

temozolomide: comparison study of standard and high-b-value diffusion-weighted imaging. 

Radiology 269:831-840 

51 Park JE, Kim HS, Goh MJ, Kim SJ, Kim JH (2015) Pseudoprogression in Patients with 

Glioblastoma: Assessment by Using Volume-weighted Voxel-based Multiparametric 

Clustering of MR Imaging Data in an Independent Test Set. Radiology 275:792-802 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 
 

Figure captions 

Figure 1: Flow-chart of the proposed study design. The TCIA cohort was randomly split into 

the discovery cohort and a spin-off cohort which was further combined with an internal 

cohort to construct the validation cohort. The proposed imaging marker was developed on 

the discovery cohort and its performance for OS prediction was also evaluated on the 

validation cohort. The subtype, mutation, and methylation data associated with the TCIA 

cohort were used to correlate with the proposed imaging marker to show its biological 

relevance and complementarity to molecular-level information. 

Figure 2: Diagram of the procedure of high-risk volume identification. In Step 1, the T1-c and 

ADC images for each patient were respectively normalized using the mode values of the 

intensity PDF estimates. In Step 2, the normalized intensities of the pixels within the 

segmented tumors (shaded in red) of all patients were pooled and two thresholds (t1, t2) 

were respectively obtained as the mode values of the pooled intensity PDF estimates. In 

Step 3, HRV for each patient was defined as the volume of the tumor satisfying T1-c > t1 and 

ADC < t2.  

Figure 3: Kaplan-Meier survival estimates for the discovery (A) and the validation (B) cohorts 

using HRV.  

Figure 4: Boxplot shows that HRV was the smallest in the proneural subtype among the four 

GBM molecular subtypes. The P-value is for one-way ANOVA. 

Figure 5: Radiogenomic analysis of HRV. (A) Kaplan-Meier survival estimates for proneural 

patients using HRV. (A) Kaplan-Meier survival estimates based on both methylation status 

and HRV.  
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Table 1: Demographic and clinical information of study population. 

 Overall Cohort TCIA Cohort Local Cohort Discovery Cohort Validation Cohort 

Number† 108 (23) 92 (15) 16 (7) 62 (9) 46 (14) 

Age‡ (years) 58.1 ± 14.8 57.9 ± 14.5 58.9 ± 16.9 57.7 ± 14.1 58.5 ± 15.8 

Karnofsky Performance Scale†† 80 (60–100)* 80 (60–100)* N/A 80 (60–100)* 80 (60–100)* 

Overall Survival†† (days) 357 (16–1757) 362 (16–1757) 288 (37–713) 357 (16–1757) 426 (34–1561) 

Gender      

              Male 63 56 7 43 20 

              Female 45 36 9 19 26 

Molecular Subtypes      

              Classical 17 17 0 10 7 

              Proneural 24 24 0 16 8 

              Neural 21 21 0 14 7 

              Mesenchymal 26 26 0 18 8 

              Unknown 20 4 16 4 16 

Methylation Status      

              Methylated 12 12 0 6 6 

              Unmethylated 49 49 0 33 16 

              Unknown 47 31 16 23 24 

Note. –Unless otherwise indicated, data are patient numbers.  

† Data in parenthesis are censored patient numbers.  

‡ Data are mean ± standard deviation 

†† Data are median (range). 

* Missing data were imputed with median value.  

Table



Table 2: Prognostic performances of high-risk volume in comparison with clinical and baseline indicators.  

Cohort Risk factor Concordance Index             Univariate Analysis Multivariate Analysis 

P-Value Hazard Ratio P-Value Hazard Ratio 

Discovery HRV 0.64 (0.45, 0.80) 3.9E-4*** 1.63 (1.25, 2.14) 4.78E-3** 1.83 (1.20, 2.78) 

Age 0.64 (0.45, 0.80) 3.4E-3** 1.71 (1.20, 2.45) 2.15E-3** 1.77 (1.23, 2.56) 

KPS 0.37 (0.19, 0.59) 0.20 0.83 (0.63, 1.10) 0.73 0.95 (0.71, 1.27) 

ETV 0.60 (0.41, 0.76) 0.09 1.25 (0.96, 1.61) 0.98 1.01 (0.70, 1.43) 

EBI 0.52 (0.28, 0.76) 0.55 0.84 (0.48, 1.48) 0.28 0.71 (0.39, 1.31) 

Minimum ADC 0.43 (0.26, 0.62) 0.12 0.80 (0.61, 1.06) 0.94 1.01 (0.71, 1.44) 

Validation HRV 0.65 (0.42, 0.83) 0.04* 1.39 (1.01, 1.92) 0.20 1.97 (0.70, 5.56) 

Age 0.58 (0.35, 0.78) 0.23 1.32 (0.84, 2.09) 0.70 1.11 (0.66, 1.84) 

KPS 0.50 (0.25, 0.75) 0.38 0.86 (0.60, 1.21) 0.74 1.08 (0.69, 1.69) 

ETV 0.57 (0.34, 0.77) 0.20 1.23 (0.90, 1.68) 0.44 0.70 (0.28, 1.74) 

EBI 0.76 (0.43, 0.93) 0.02* 2.42 (1.16, 5.04) 0.13 2.06 (0.80, 5.30) 

Minimum ADC 0.53 (0.31, 0.74) 0.84 1.04 (0.70, 1.55) 0.47 1.21 (0.73, 2.00) 

Discovery 

+ 

Validation 

HRV 0.64 (0.49, 0.77) 2.6E-4*** 1.43 (1.18, 1.73) 0.03* 1.53 (1.04, 2.25) 

Age 0.61 (0.46, 0.74) 4.1E-3** 1.48 (1.13, 1.94) 4.8E-3** 1.50 (1.13, 1.99) 

KPS 0.41 (0.26, 0.58) 0.08 0.82 (0.66, 1.02) 0.23 0.87 (0.69, 1.09) 

ETV 0.59 (0.44, 0.73) 0.03 1.24 (1.02, 1.51) 0.72 0.94 (0.62, 1.35) 

EBI 0.61 (0.40, 0.78) 0.27 1.27 (0.83, 1.95) 0.57 0.87 (0.54, 1.41) 

Minimum ADC 0.46 (0.32, 0.61) 0.16 0.85 (0.68, 1.07) 0.60 0.93 (0.72, 1.21) 

Note. –Unless otherwise indicated, data in parenthesis are 95% confidence intervals.  

Abbreviations. –HRV: high-risk volume, KPS: Karnofsky performance status, ETV: enhancing tumor volume, ADC: apparent diffusion coefficient, EBI: eloquent 
brain involvement 

*  P<0.05 

** P<0.005 

*** P<0.0005 
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