
 Open access  Journal Article  DOI:10.1109/MCSE.2007.23

Volume Rendering Phenotype Differences in Mouse Placenta Microscopy Data
— Source link 

R.P. Sharpe, Randall Ridgway, Kishore R. Mosaliganti, Pamela L. Wenzel ...+6 more authors

Institutions: Ohio State University

Published on: 01 Jan 2007 - Computing in Science and Engineering (IEEE Computer Society)

Related papers:

 Examining Phenotype Differences in Mouse Placenta with Volume Rendering and Segmentation

 Extra-embryonic function of Rb is essential for embryonic development and viability.

 Registration and 3D visualization of large microscopy images

 Rb is critical in a mammalian tissue stem cell population

 
Three-dimensional reconstruction and quantification of cervical carcinoma invasion fronts from histological serial
sections

Share this paper:    

View more about this paper here: https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-
19upycvbr3

https://typeset.io/
https://www.doi.org/10.1109/MCSE.2007.23
https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-19upycvbr3
https://typeset.io/authors/r-p-sharpe-1rbvgvsbux
https://typeset.io/authors/randall-ridgway-1qhxztl2g5
https://typeset.io/authors/kishore-r-mosaliganti-2tegwt1vc5
https://typeset.io/authors/pamela-l-wenzel-2k5q0ag89z
https://typeset.io/institutions/ohio-state-university-2ty9afap
https://typeset.io/journals/computing-in-science-and-engineering-3vavypxm
https://typeset.io/papers/examining-phenotype-differences-in-mouse-placenta-with-50thib61di
https://typeset.io/papers/extra-embryonic-function-of-rb-is-essential-for-embryonic-4bwuxjninr
https://typeset.io/papers/registration-and-3d-visualization-of-large-microscopy-images-1c7achgoz6
https://typeset.io/papers/rb-is-critical-in-a-mammalian-tissue-stem-cell-population-1bw6oqvqqx
https://typeset.io/papers/three-dimensional-reconstruction-and-quantification-of-5e1o0m4fg4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-19upycvbr3
https://twitter.com/intent/tweet?text=Volume%20Rendering%20Phenotype%20Differences%20in%20Mouse%20Placenta%20Microscopy%20Data&url=https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-19upycvbr3
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-19upycvbr3
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-19upycvbr3
https://typeset.io/papers/volume-rendering-phenotype-differences-in-mouse-placenta-19upycvbr3


Volume Rendering Phenotype Differences in Mouse Placenta Microscopy
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ABSTRACT

In this work we present an application problem of examining phe-
notype differences in wildtype and retinoblastoma (Rb) knockout
specimens. The lack of the Rb gene causes tissue infiltrations into
critical sections of mouse placenta that lead to fetal death.

This paper describes our method for volume visualization of tis-
sue level intermixing at a microscopic scale for both wildtype and
Rb knockout specimens. Our technique combines non-trivial reg-
istration techniques, a two-level Bayesian classifier, and a volume
rendering step. Our final volume renderings show tissue intermix-
ing differences between both wildtype and Rb knockout specimens
that are not obvious from examining the two dimensional image
stack alone.

CR Categories: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques; I.3.7 [Computing
Methodologies]: Computer Graphics—Three-Dimensional Graph-
ics and Realism; I.3.8 [Computing Methodologies]: Computer
Graphics—Applications

Keywords: volume rendering, histology, biological segmentation

1 APPLICATION PROBLEM

In this paper we address the problem of visualizing datasets of his-
tologically stained microscopy slides. In particular, mouse placenta
with and without the retinoblastoma gene (Rb). This gene is one of
the first to be associated with a specific cancer (retinoblastoma) and
has been studied extensively in both human and mouse cell mod-
els [8].

Mouse placenta are routinely used in these studies and are com-
posed of three distinct layers: the labyrinth, spongiotrophoblast,
and glycogen layers. Figure 1 shows a sample slide with the approx-
imate labyrinth, glycogen, and spongiotrophoblast layers marked in
red, yellow, and blue, respectively.

Recently, it has been shown that inactivation of the Rb gene
(Rb−) in a mouse embryo results in morphological changes in the
placenta, including reduction in vascularity of the labyrinth layer.
It is postulated that a decrease in vascularity contributes to fetal
death at 14.5 days of gestation [15]. Cancer geneticists have im-
mense interest in studying the three-dimensional structural changes
that occur by the inactivation of the (Rb−) gene. More specifically,
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Figure 1: An example of one of the Rb− histological mouse placenta
slides. The red, yellow, and blue markings show the approximate
locations of the labyrinth, glycogen, and spongiotrophoblast layers,
respectively. Tissues not marked are considered “maternal tissue”.

the infiltrations of the spongiotrophoblast layers into the labyrinth
are of great interest. These infiltrations reduce the surface area of
the labyrinth resulting in fetal death. Our cancer geneticist collab-
orators are interested in viewing the infiltrations in their complete
three-dimensional form. Figure 2 shows a sample volume render
of the cropped data with opacity derived off the luminance of the
slides.

Our goal is to reconstruct and visualize the three-dimensional in-
termixing of tissue types of specimens given their sectioned sets of
RGB histology slides. This problem is similar to that which radi-
ologists experienced a decade ago in visualizing CT and MR data.
However, unlike CT and MR images, our data is not co-registered,
is difficult to segment, and requires the highlighting of sub-tissue
level features in 3D. We explain these challenges in detail later in
Section 1.3. Although the data presented in this paper is that of
mouse placenta, these techniques could be applied on other types
of histologically stained slides.

1.1 Related Work

Our work focuses on taking a set of microscopy histological slices,
reconstructing and realigning the slides into volumes, segmenting
the volume and finally volume visualizing the characteristic inter-
mixing of different tissue types in 3D. Below we discuss previous
work that have considered similar problems in registration, segmen-
tation and 3D reconstruction.

Johnson and Christensen [6] present a hybrid
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Figure 2: (a) Sample volume rendering of a wildtype mouse placenta, original size is approximately 1mm3. (b) The volume has been cropped
so the internal structure of the placenta is exposed. The tissue specific structures (labyrinth/spongiotrophoblast mixing) are difficult to see in
this view.

landmark/intensity-based deformable registration technique.
The approach uses an iterative process of first registering land-
marks independently of intensity, then attempts to minimize
image intensity difference independent of landmarks. While this
approach is useful for mapping 2D brain sections to brain-atlases,
this approach would not work well on our data. First, it is not
obvious from the unclassified data what constitutes a landmark
point, let alone the challenge of manually marking landmarks for
thousands of placenta slices. Furthermore, we are interested in the
original 3D shape of the placenta. Deformable registration will
corrupt the overall 3D shape and possibly the intermixing of the
tissues.

Arganda-Carreras et al. present a method for automatic regis-
tration of histology sections in [1]. The authors present two tech-
niques for non-deformable registration using Sobel transforms and
segmentation contours. Although we are solving a very similar
problem our data does not have well defined contours on a slice
by slice basis. Thus, contour based registration techniques fail on
our dataset.

Teverovskiy et al. [14] develop a system to identify epithelial
nuclei present in prostate tissue. Their technique uses a region-
growing algorithm to find contiguous regions based on color simi-
larity and shape regularity. Then, they perform a coarse segmenta-
tion based on staining color differences. Finally, a refined segmen-
tation is used to separate regions of nuclei clumped with cytoplasm.
Although initially we do pixel level classification, our final seg-
mentation differs from Teverovskiy et al. since we are interested in
classifying entire tissue regions rather than locations of sub-tissue
structures.

Petushi et al. [11] segment specific tissue types from histology
slides. Their technique is based on a hybrid method that combines
optimal adaptive thresholding with local morphological opening
and closing operations. Unfortunately this method is only good at
identifying sub-tissue structures, not entire tissue sections.

Mojsilovic et al. [7] present a technique for reconstructing the
3D surface of brain tumors from histological slices. Their goal is to
identify tumor boundaries, isolate the proliferating tumor cell and
segment the tumor into regions based on the density of proliferat-
ing cells. Our work differs in part due to the large datasets we work
with. Usually a dataset is on the order of 800 slides. Furthermore,
Mojslivoic et al. is concerned mainly with reconstructing an ap-
proximation to the boundary of the tumor. We are interested in the

internal high frequency infiltrations into the labyrinth layer, which
requires higher quality segmentation and registration techniques as
well as volume rendering to visualize the intermixing.

Ourselin et al. also present a technique for 3D reconstruction
based on histology slices [10]. Their work mostly focuses on block-
matching registration techniques, which are demonstrated on both
rat and rhesus monkey brain slices. Our work is similar in the sense
that the data must be registered, however our microscopy images
are much nosier and have more artifacts than brain histology slices.
Furthermore our goal is to identify intermixing of layers, not just re-
construct the three dimensional shape. Finally, Clendenon et al. [2]
have developed a volume renderer, Voxx, for volume rendering con-
focal and two-photon fluorescence microscopy images. Essentially
the system renders sets of images in back-to-front order and com-
bines them using alpha blending.

1.2 Approach

In this article we discuss the issues and solutions we developed to
assess the volumetric changes of various tissue types in both wild-
type and knockout Rb− mouse placenta. The overall technical steps
for this process are as follows:

1. Segment each image into regions corresponding to the three
tissue types.

2. Register the serial sections of the given placenta to reconstruct
a virtual placenta.

3. Build three-dimensional models of each of the tissue layers
by aligning the segmented images using the information col-
lected during the registration phase.

4. Volume render the segmented volume using standard “off the
shelf” algorithms.

Effectively segmenting the microscopic image slices is more
challenging than segmenting images from CT and MR. Usually re-
gions of interest (ROI) in CT or MR data consist of constant or
smoothly varying scalar values. However, the ROIs in the pla-
centa data (labyrinth, spongiotrophoblast, and glycogen) consist of
a non-uniform distribution of cellular material (nuclei, cytoplasm,
red blood cells, and vacuum). Boundaries are not well demarcated
and every voxel or pixel suffers from a partial voluming effect. As



shown later in the case of segmenting mouse placenta, we utilize
several image features including pixel color value, local texture,
and high-level features including count of white vacuoles within a
region in a probabilistic segmentation framework.

Once the volumes are segmented and registered, we demonstrate
that traditional volume rendering techniques can be used to visual-
ize the resulting layers and the extent of their intermixing. How-
ever, rather than render the RGB data directly as in Figure 2 we
take the approach of rendering the segmentation labels with fuzzy
boundaries to reflect the nature of the ROI’s physical boundaries.

1.3 Challenges from Histological Data

Volume visualization of structures in placenta data is problematic
given the many artifacts introduced by the manual nature of tissue
preparation. Aside from the standard registration and segmentation
challenges the following artifacts introduced by the manual acqui-
sition required additional preprocessing and modifications to the
traditional rendering pipeline:

• Damaged and missing sections: During slicing and mounting,
sections are occasionally torn, folded, or discarded entirely.
By plotting tissue areas versus slide number we observe out-
liers, which automatically identify most of the damaged slides
for removal.

• Staining variations: Differences in section thickness, staining
duration, and stain concentration results in color variations in
histologically stained specimens. Tissue boundaries are diffi-
cult to recognize when these staining variations are present.

To address this issue, our registration technique employs a
clustering preprocessing step that performs well with stain-
ing variations. Before classification, histogram equalization
is used to normalize the color distribution across slides. Then,
during the volume rendering step the RGB data is re-colored
based on the tissue type. Therefore, the variations from slide
to slide have little effect on the entire rendered volume.

• Yolk-sac: Nearly every slice of the placenta contains yolk-
sac tissue (the wispy features near the bottom of the slide in
Figure 1). Since the presence of yolk-sac tissue can signif-
icantly distort during the section mounting process, we find
that this tissue is oriented differently on nearly every slide in
the volume. This complicates the registration process since
the yolk-sac cannot be rigidly registered to reconstruct its
original three-dimensional shape. Attempts at automatic re-
moval of the yolk sac were not successful due to its complex
and random structure across slides and across specimens. In-
stead we manually remove the yolk-sac from every slice be-
fore the register and volume render step.

In the next section we will discuss our rendering pipeline in de-
tail while Section 3 contains our results, and Sections 4, and 5 in-
clude our future work and conclusions, respectively.

2 METHODS

Our goal is to visualize in three-dimensions critical tissue struc-
tures for the purposes of examining the tissue intermixing in both
the wildtype and knockout Rb− placenta types. As mentioned pre-
viously, our method first identifies tissue types on a per-slide basis,
aligns the RGB slides and probability maps through an enhanced
registration algorithm, then uses the classification to render the tis-
sue structures directly in RGB slides. We will describe the details
of this method in the following paragraphs.

Figure 3: The top sequence shows the initial random orientation
of the placenta images. The bottom sequence shows the resulting
PCA-aligned images.

2.1 Preprocessing

Before we begin tissue classification, we first apply several prepro-
cessing steps. First we subsample the images from 15K×15K pix-
els to 3K×3K prior to segmentation. The subsampled output allows
us to avoid the additional complexity of out-of-core or distributed
computations.

2.2 Registration

As we described previously in Section 1.3, microtoming introduces
large numbers of artifacts into the slides. In this section we briefly
describe our four step registration pipeline for the placenta data.
The details of this algorithm can be referenced in [12].

In this stage we first identify defective placenta slices by plotting
tissue area versus slide number for the entire dataset. The result-
ing plot shows discontinuities where damaged sections exist, which
we then discard. Due to the large number of slices in the dataset,
missing slides are not noticeable in the final visualization. If these
defective slides are not removed the global registration is skewed
since it is impossible to align a good slide with one that is dam-
aged.

In the second step we detect the tissue region in the original slide
so that our registration step is not confused by background artifacts.
The tissue region is defined as a binary mask that removes the back-
ground for the last two steps of our outline. To detect the tissue re-
gion we use a close variant of the k-means [12] clustering approach
with since it performs well in the presence of luminance gradient,
background noise, and staining variations.

In the third step we perform an initial alignment of the placenta
slices for the final registration. We chose to use principal compo-
nent analysis (PCA) based alignment since mouse placenta sections
are typically elongated in shape (high width to height ratio). There-
fore, it performs well when estimating the orientation of the overall
tissue shape. These estimates of slide orientations are used to ini-
tialize registration that in turn restricts the transform search space.

In the final step we perform a four stage registration of the pla-
centa slides. In the first step we transform a designated moving
image slide (as opposed to a reference image slide), which is re-
sampled onto a grid. Next, we compute a mutual information-based
metric on the quality of fit between the stationary and transformed
images. If the metric is similar to a prior value, we stop the itera-
tive process, else we refine the transform and start again. Figure 3
shows the results of our registration algorithm run on four sequen-
tial images.
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Figure 4: Figure (a) shows a placenta slice which has been hand segmented to show labyrinth (dark gray), glycogen (medium gray), and
spongiotrophoblast (white). Figure (b) shows the same placenta segmented with a k-means filter, while Figure (c) shows the result of our
Bayesian classifier used in this work.

2.3 Tissue Classification

When we classify the placenta, we focus on three different tis-
sue types in the ROI: labyrinth, glycogen, and spongiotrophoblast.
Other tissues such as maternal and yolk-sac are excluded from the
ROI. To handle the artifact from non-uniform color intensity vari-
ation, we employ a histogram equalization process where we con-
sider an image with an average color distribution (as determined by
visual inspection) then normalize the data to that color distribution.
Since the background pixels tend to vary more than the placental
pixels we exclude them through luminance thresholding.

Further, the tissues in the histology images are not well de-
marcated and possess an inhomogeneous internal structure. Stan-
dard image segmentation techniques often fail to create any reason-
able segmentation of these tissues; instead we present a probability
framework to determine the probability that a certain sample is of
a particular tissue. However, the framework must first be trained
before it can be applied to actual test data. We generate our training
data by selecting sample windows from a priori known tissue types
and use them to generate a series of feature vectors on the samples.
The feature vectors are then used to estimate a probability density
function (PDF) for the features for all tissue types. We use these
probabilities to classify each tissue type by selecting the class with
the maximum a posteriori probability.

The Bayesian probabilistic approach has proved to be a very
powerful tool in image segmentation elsewhere. It is particularly
effective in segmenting complicated images with multiple textures
such as the images discussed in this paper. We also examined us-
ing a decision tree based approach. Unfortunately the decision tree

based approach required many manual tweaks per slide to achieve a
quality segmentation. Thus, the Bayesian framework is preferable
since it only requires per-dataset training data which is much easier
to generate that then per slide tweaks in the decision tree approach.
We have also attempted to use a k-means classification routine but
have found that it gives poorer results than our Bayesian routine.
See Figure 4 for a visual comparison of the results of these classifi-
cation scheme.

An essential component of our segmentation is pixel-level classi-
fication. Once again, we have experimented with various methods
of pixel level classification including standard thresholding tech-
niques and classifiers based on the k-means algorithms. In some
placenta datasets these methods worked quite well, while in oth-
ers many adjustments were required to they failed. Once again we
found the Bayesian classifier to be more robust than other methods.

Note that we use a 2D segmentation method for two reasons: first
a true three-dimensional segmentation would require expensive out
of core processing due to the sheer size of the data and secondly,
microtoming causes shear deformation in the slides that shifts sub-
tissue level features such as spongiotrophoblast infiltrations. Since
these shifts vary on a slice-by-slice basis a three-dimensional seg-
mentation could potentially smooth many of these important struc-
tures away.

Figure 4 shows the result of our probability framework. The
color image shows an original placenta slice which has been ap-
proximately hand segmented. The two grayscale images compare
the results of a k-means classification algorithm with our Bayesian
classification routine presented in this work. We describe overall



structure of our classification method in the following sections. For
details and validation of this algorithm see [13].

2.3.1 Feature Selection and Feature Vector Generation

To train our Bayesian probability framework we first decide which
image and tissue level features are relevant to the classification
process. Fortunately the three tissue classes show significant dif-
ferences in composition of pixel values, specifically: spongiotro-
phoblast typically have large amounts of cytoplasm and lighter nu-
clei, thus appearing more homogeneous; labyrinth contains dark
nuclei, red blood cells, and background from blood vessel cross
sections; and the glycogen layer typically contains large amount of
background, smaller cytoplasm size, and darker nuclei, in compar-
ison to the labyrinth or the spongiotrophoblast. Given these char-
acterizations, we choose our feature vector to include pixel level
color differences, object level features (nuclei size, vacuole pres-
ence, etc.), and overall red-blood cell count.

At the pixel level we capture differences in tissue appearance
with color histograms. Within a sample window, each color channel
is summarized as a normalized histogram with 64 bins per channel.
Then local boundaries are captured through histograms of normal-
ized gradient magnitude of the three color channels.

Our second feature vector is an object level metric derived from
vacuole and nuclei density and size. These features are important
since their density is characteristic of each of the three tissue types.
Our process for vacuole/nuclei identification is a three part method.
First we segment background, nuclei, cytoplasm and red blood cell
pixels with a naive Bayes classifier1. Secondly, background vac-
uoles and nuclei are identified by using a 4-connected component
labeling of previously marked pixels. Finally, we build the nuclei
and vacuole size histograms. Since the total number of nuclei or
vacuoles is variable, the histogram bins are not correlated in this
case.

The final element in our feature vector is a red pixel count, which
is directly derived from the result of the pixel-level Bayes classifier.
We build this by simply counting the number of red blood cell pix-
els in the window of consideration and add it to the feature vector as
a single value. Thus, we generate a feature vector containing color,
texture and object level measurements for each sample window in
training and test sets.

2.3.2 Probability Density Function of Class Features

To compute the PDF of the class features we first assume that the
components in the features vector are independent and construct
the PDF for each feature component separately. Our training set
consists of three classes, each with forty-eight samples. The fea-
ture PDF is then generated directly from value distributions of the
forty-eight samples to model arbitrarily complex PDFs, typical in
complex biological systems.

For each component in the feature vector, we generate a his-
togram H using corresponding components from all training sam-
ples of the same class. To reduce the effect of random noise given
the relatively small sample size, we smooth H using a discrete
Gaussian kernel three bins wide. We then normalize the smoothed
histogram so that it represents the PDF of a single feature compo-
nent of a class.

2.3.3 Likelihood Computation

After PDF have been constructed for different classes, we analyze a
test image by dividing the image into sample windows and calculat-

1Nuclei, red blood cells, cytoplasm distributions and a priori probabil-

ities for the classes were modeled by Gaussian distributions based off of a

2000 pixel training set.

ing each sample window’s feature vector and its class likelihoods.

Assuming independence of the features, the total probability of
the feature vector is the product of the individual probabilities:

P(X) = ∏
i=1...n

P(Xi) (1)

where n is the dimension of the feature vector. The function P(Xi)

is estimated by taking the ith component of the feature vector, and
determining the probability in the corresponding distribution func-
tion.

2.3.4 Bayes Decision Framework

Our Bayesian decision framework relies on the Bayes formula for
conditional probability:

P(C|X) =
P(X |C)∗P(C)

P(X)
(2)

where P(C|X) is the posterior probability that a sample belongs to
class C given a feature vector X, P(X |C) is the likelihood that a
sample from class C possesses all features of X . P(C) is the prior
probability of occurrence for class C, while P(X) is the evidence
probability of the occurrence of feature X in all classes.

We classify by identifying the class to which the feature vec-
tor most probably belongs. The maximum a posteriori classifier is
used to find the class d:

d = argmaxi P(Ci|X)

= argmax
i

P(X |Ci)∗P(Ci)

P(X)
(3)

It should be noted that evidence probability, P(X), is essentially
a scaling constant. Assuming that the a priori probabilities are uni-
form for all classes2, then

d = argmax
i

P(X |Ci). (4)

2.3.5 Tissue Boundary Identification

To generate the probability maps we iterate through small regions
in the test image. Each sample region is classified using Equation 4
into one of several tissue types, and together the entire image can be
segmented. However, since the sample regions are relatively large
in size, the boundary between segmented tissue layers is usually
poorly resolved.

To refine the boundary between the tissue types, we use smaller
window sizes. This produces overlapping windows and increases
the computational requirement dramatically. Computational ef-
ficiency is improved through progressive refinement of the class
boundaries. After a classification iteration, sample regions with dif-
ferent class neighbors are re-examined in the next iteration. After
each iteration, the step size is reduced by half. Depending on the
total image size, the minimum step size varies due to computation
time constraint. While progressive boundary refinement improves
efficiency, it may decrease sensitivity to small, isolated tissue re-
gions.

2In the image analysis literature [3] it is common practice to assume fea-

ture independence and uniform distribution as an approximation if no more

a priori knowledge is available about the features and their distribution.



2.4 Volume Rendering

In this section we describe our method for combining the maximum
probability classification described in Section 2.3 as well as the reg-
istration techniques presented in Section 2.2 to produce 3D volume
renderings of the placenta dataset. Furthermore, we describe the
issues associated with physical-level artifacts that make standard
volume rendering techniques based on diffuse and specular lighting
difficult to apply.

2.4.1 Emissive Volume Rendering

The microtome slicing of the placenta generates unavoidable and
random shifts in distal maternal layers. Internal medial tissues are
subtly shifted through stretching, squeezing, folding, or introduc-
tion of slice-wise discontinuous blood clots. Some of these shape
and structure altering artifacts cannot be removed through registra-
tion, nor smoothing since our Bayesian classification scheme oper-
ates on a slice-by-slice basis. The result of this per-slice disconti-
nuity causes the classification maps to be disjoint as well.

The implication for volume rendering is that smooth three-
dimensional boundaries cannot exist in the placenta data. Thus,
diffuse and specular lighting across the rough three-dimensional
probability surface only confuses the rendered images, rather than
ascribing scope and depth. To address this issue we chose to vol-
ume render the data as an emissive volume only, thus smoothing
the boundaries while still allowing the viewer to perceive depth in
the three-dimensional tissue level regions. The implementation of
the volume rendering algorithm used to generate the results in this
paper is the standard volume rendering ray casting technique as im-
plemented by VTK’s vtkVolumeRayCastMapper class [5].

2.4.2 Rendering Framework

We take the results of the classification and map each pixel to a
scalar value based on the class it belongs to. Furthermore we ensure
that the scalar values for different classes are “far” apart so that
boundaries between tissue types are well defined in the final volume
render.

We assemble the volume by stacking the registered scalar
mapped classifications onto each other, then treating the resulting
data as a three-dimensional volume. Finally, we load the volume
into Kitware’s VolView [4] and select transfer functions to high-
light desired classes. Since the class map is essentially a volume
of intensities (see Figure 4), we select which class to render by ad-
justing the opacity and color for the particular intensity value that
corresponds to the class of interest. The resulting image is a volume
rendering of the segmentations of the volume, rather than the raw
data directly [9].

3 RESULTS

The datasets presented in this paper were harvested from either
mutant mouse placenta (Rb−), or wildtype mouse placenta, which
was harvested at 13.5 days of gestation. The placenta was fixed in
paraffin and sectioned at 5µm thickness using a microtome. Se-
rial sections were mounted on glass slides and stained with hema-
toxylin and eosin. Finally, the slides were scanned in an Aperio
ScanScope slide digitizer at 20× magnification. Each dataset on
average contains 800 RGB slides whose average image dimensions
are 15K × 15K pixels. Thus, a single dataset measures 550 giga-
bytes in size. The volume of each placenta is approximately 1mm3.

Although high resolution is necessary to observer cellular pheno-
types, a lower resolution suffices for tissue level phenotypes. Thus
for volume rendering we first manually remove the damaged slides
and downsample the images to 500×500 using a Lanczos filter so

that the volume fits into the memory of a single computer. The re-
sulting slides are then classified into regions using the framework
described in Section 2 and then registered using the framework de-
scribed in Section 2.2.

Our goal is to highlight the tissue regions of labyrinth and in-
termixing of the labyrinth/spongiotrophoblast layers within the 3D
data. In general we desire to see the overall three-dimensional struc-
ture of the placenta, as well as examine any infiltrations into the
labyrinth layer such as the images in Figure 5 show. In both of
these figures the volume is cropped to zoom in on the interesting
features.

Figure 6 shows a comparison between three mouse placenta
datasets we analyzed. Two are knockout Rb− while the third is
a wildtype. The physiological differences between the placentas
are noticeable as the roughness and comparative smoothness in the
labyrinths between the specimens (column (b) is a wildtype pla-
centa and its labyrinth layer (highlighted in blue) is quite smooth as
compared to the Rb− placentas in columns (a) and (c)). Intermixing
is highlighted in the third row by highlighting the areas which tran-
sition from labyrinth to any other material in yellow. We observe
that the wildtype labyrinth layer’s intermixing layer is mostly on the
outer surface of the layer, while for the Rb− placentas intermixing
occurs more freely throughout the layer.

These changes in the phenotype are consistent with our col-
laborators hypothesis that the absence of the retinoblastoma gene
causes uncontrolled cell duplication in the placenta thus roughening
the spongiotrophoblast-labyrinth interface. Aside from identifying
these phenotype changes, a full three dimensional visualization has
provided our collaborators with key insights to the overall spatial
organization of the spongiotrophoblast-labyrinth interface.

4 FUTURE WORK

Overall, our results look promising, however the clarity of the ren-
dering depends on registration and segmentation. Thus, tissue seg-
mentation relating to accuracy and fine feature detection is still an
outstanding issue in dealing with our Rb− mouse placenta data.
Most of our future work will attempt to address these problems.

Our volume renderer classification scheme presented here was
based directly on the results of maximum probability classification.
We plan to generate transfer functions directly based on multivari-
ate data generated from gradients of the densities of sub-tissue level
features such as nuclei, redblood cell, and cytoplasm density. We
expect that together the boundaries of these densities will highlight
tissue level regions that could not be determined by a single feature
alone.

Furthermore, we plan to examine continuous sub-tissue classifi-
cation techniques. Rather than definitively classify a pixel as a cer-
tain sub-tissue feature (red blood cell, nuclei, cytoplasm, etc.) we
will experiment with directly rendering the continuous probability
for each sub-tissue feature type. We expect that boundary detection
on such densities will yield smoother and more accurate boundaries
than the discrete classification alone.

5 CONCLUSIONS

Volume visualization is more than simple volume rendering. In the
real world case presented in this paper we required sophisticated
registration techniques and two levels of segmentation before any
visualization of 3D intermixing could occur.

Furthermore, we found the three-dimensional renderings useful
for not only biological analysis but also to help drive the develop-
ment of our pipeline; specifically,

• Volume renderings enhanced our understanding of the three
dimensional structure of inter-placenta tissue types; this



Figure 5: Both images are cropped volumes from the original data focusing on infiltrations into the labyrinth layer. In both images the labyrinth
is shown in blue. In the left image spongiotrophoblast is shown in yellow and placenta boundary in white, while the right image highlights
spongiotrophoblast in red. The transfer function sets the particular classified types to a high opacity while all other regions are set to zero. The
cross-hairs indicate the center of the infiltration into the labyrinth layer.

would be extremely difficult to interpret given the original un-
registered unclassified two dimensional histology slides.

• The three-dimensional visualization helped us understand
where to improve registrations by locating problematic slices
that caused the volume to “twist.” It is otherwise very difficult
to understand which slices can cause the registration pipeline
to skew the volume.

• Although large “fingers” were visible in the volume, we could
see that small “fingers” were lost to shear deformation. Using
this knowledge we are exploring localized deformation mod-
els in registration, and also microtomed thicker slices in later
specimens to reduce the shear.

In conclusion, volume visualization of our placenta data not only
enhanced our ability to identify the biological features of the model,
but also gave us valuable intuitive feedback on the effectiveness of
our placenta processing pipeline.
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Figure 6: This figure highlights the difference between: (a) Rb− placenta, (b) wildtype (Rb+) and (c) a noisy Rb− placenta. The first row shows
a sample RGB slide from the dataset visualized in that column. The second row shows the overall 3D structure of the placenta with the outer
layer in white and the labyrinth layer in blue. The third highlights only the labyrinth layer (notice the Rb− datasets have rougher labyrinths due
to higher interdigitation between layers). This transfer function simply colors the volume blue at a fixed opacity when it encounters a labyrinth
label. The final row highlights the intermixing of labyrinth and spongiotrophoblast layers by increasing in opacity and coloring yellow where the
labyrinth label transitions into any other tissue type.




