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VOLUME TRACKING OF INTERFACES HAVING SURFACE TENSION IN 
TWO AND THREE DIMENSIONS* 

D.B. Kothe, W.J. Rider, S.J. Mosso, and J.S. Brock 

Los Alamos National Laboratory 

Los Alamos, NM 

J.I. Hochstein 

The University of Memphis 

Memphis, TN 

Abstract. Solution algorithms are presented for tracking interfaces with piecewise linear (PUC) volume-of-fluid (VOF) methods 
on fixed (Eulerian) two-dimensional (2-D) structured and three-dimensional (3-D) structured and unstructured grids. We review 
the theory of volume tracking methods, derive appropriate volume evolution equations, identify and present solutions to the basic 
geometric functions needed for interface reconstruction and volume fluxing, and provide detailed algorithm templates for modem 
2-D and 3-D PUC VOF interface tracking methods. We discuss somekey outstanding issues for PUC VOF methods. namely the 
method used for time integration of fluid volumes (operator splitting, unsplit, Runge-Kutta, etc.) and the estimation of interface 
normals. We also present our latest developments in the continuum surface force (CSF) model for surface tension. namely exten- 
sion to 3-D and variable surface tension effects. We identify and focus on key outstanding CSF model issues that become espe- 
cially critical on fine meshes with high density ratio interfacial flows, namely the surface delta function approximation, the 
estimation of interfacial curvature, and the continuum surface force scaling and/or smoothing model. Numerical results in two and 
three dimensions are used to illustrate the properties of these methods. 

1. Introduction 

The accurate modeling of interfacial flows requires 
high fidelity algorithms for the kinematics and dynamics 
of interfaces. Algorithms for interface kinematics must 
address the discrete representation of the interface and 
its advection through the computational domain. Algo- 
rithms for inkdace dynamics must model physics spe- 

cific to and localized at the interface (e.g., phase change 
and surface tension). The numerical techniques chosen 
to model interface kinematics and dynamics are espe- 
cially important in finite-difference Eulerian methods 
designed to simulate flows with interfaces of arbitrarily 
complex topology. In these schemes the computational 
grid remains stationary, so an interface algorithm must 
minimize diffusion by maintainin g a compact interface 
thickuess without sacrificing the robustness necessary to 
meet the topology demands. The algorithm must be 
amenable to three dimensions, and incorporation of 
additional interface physics should be straightforward. 

We are interested in modeling a general class of 

*Send correspondence to Doug Kothe (dbk@IanZ.gov), 
MS-B216, Fluid Dynamics Group T-3, Los Alamos 
National Laboratory (LANJJ, Los Alamos. NM, 
87545. This work performed under the auspices of the 
U.S. DOE by LANL. under Contract W-7405-ENG-36. 
This paper is declared work of the U.S. Government 
and is not subject to copyright protection in the United 
states. 

interfacial flows, which are defined to be any flow, rang- 
ing from incompressible to high-speed, that involves 
multiple fluids with differing properties. Intedaces 
delineating these fluids are characterized by abrupt 
changes in fluid properties, and might also be the site of 
localized phenomena such as d a c e  tension or phase 
change. We are intexested in modeling fluids that are not 
in general intimately mixed, i.e., there remains a dis- 
cernible (but in general topologically complex) interface 
between the fluids that resolvable in the computational 
model. By resolvable we mean that fluid parcels 
bounded by an interface must be larger than the mesh 
spacing. Examples of the interfacial flows we wish to 
model are free surface flows, where a watedair interface 
is characterized by surface tension and sharp changes in 
viscosity and density; and impact dynamics, such as rod 
a penetrating a plate, where metdhetal and metal/air 
interfaces are characterized by abrupt changes in mate- 
rial strength properties. In such cases. the ability to rep- 
resent interface dynamics accurately dictates whether or 
not the overall flow is modeled reliably. 

Our goal is to model interfacial flows, whether it be 
free surface flows C451 or impact dynamics 1401, with 
the same underlying interface mematic and dynamic) 
algorithm. Our interface algorithms fall under the gen- 
eral class of immersed interface methods [201, based on 
the pioneering work of Peskin [22]. In these methods, a 
fixed (Eulerian) grid is not in general aligned with inter- 
faces. Interfaces are instead allowed to have arbitrarily 
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complex topology, which is a design feature necessary 
to model important topological features such as coales- 
cence and breakup. Special methods must therefore be 
devised to model the representation of the interface on 
the grid as well as its movement across the grid. Inter- 
face dynamics, or those physics specific to the interface, 
are modeled as a localized volumetric force (“source 
term”). which typically takes the form of the product of 
an approximate delta function and the appropriate inter- 
face physics per unit interfacial area. The magnitude of 
the interface volumetric force typically falls to zero at 
some prescribed distance away from the interface. The 
interface is not a perfect discontinuity, instead being a 
transition region having a width of at least one mesh 
spacing. 

This paper is another in a recent series of studies 
focused on the design and implementation of robust and 
accurate methods for modeling interfacial flows 
[2,24,33,34,38,391. While our attention in the past has 
been primarily on modeling a general class of free sur- 
face flows [3,4,5]. our current efforts are targeted 
toward the reliable simulation of casting processes cur- 
rently in use at the Los Alamos National Laboratory 
1371. These casting processes encompass a wide breadth 
of complex physical phenomena, ranging from the (pos- 
sibly turbulent) fluid flow and free surface dynamics, 
which govern the mold filling process, to the heat trans- 
fer and phase change process, which are important as 
the part cools and solidi6es. Grain growth and material 
response (e.g., residual stress buildup) commence as the 
part cools yet further. 

Our current focus is on the development of numerical 
methods needed to model the free surface flow during 
the mold filling stage of a casting process. Mold filling 
involves the insertion of approximately incompressible 
liquid metal alloys into complex 3-D molds that are be 
constructed from sand, wax, stainless steel, graphite, 
etc. The insertionusually takes place via gravity-pour or 
pressure-injection into a pre-designed system of run- 
ners, sprues, and gates. The mold-filhg process is char- 
acterized by topologically-complex metal/& interfaces 
having high dens$ ratiy (> 5000) and high surface 
tension values (10 - 10 dynes/cm). 

Perhaps the most challenging aspect of developing 
simulation tools for modem casting processes is the 
faithful representation of the complex 3-D moldhart 
geometries. We have therefore chosen to partition these 
geometries with fully unstructured meshes, which has 
necessitated the generalization and extension of our cur- 
rent structured, orthogonal mesh algorithms. Worts are 
therefore currently underway to extend the 2-D incom- 
pressible flow algorithm documented in 121 to 3-D 
unstructured meshes, and will be the subject of a future 
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paper. The purpose of this paper is to detail our recent 
efforts in developing algorithms for volume tracking of 
interfaces having surface tension, which are needed in 
modeling the mold fillins stage of a casting process. 

This paper is outlined as follows. In section (2) we 
review the theory of volume tracking methods and 
derive appropriate volume evolution equations. In sec- 
tion (3) we identify and present solutions to the basic 
geometric functions needed for interface reconstruction 
and volume fluxing, and provide detailed algorithm tem- 
plates for modem 2-D and 3-D PLIC (piecewise linear 
interface calculation) VOF tracking methods. We dis- 
cuss some key outstanding issues for PLIC VOF meth- 
ods, such as the method used for time integration of 
fluid volumes (opelator splitting, unsplit. Runge-Kutta, 
etc.). In section (4) we discuss our recent ef forts  in the 
estimation of interface normals, which is of crucial 
importance for volume trackhg methods and surface 
tension models. In section (5) we present our latest 
developments in the continuum surface force (CSF) 
model for surface tension. In particular, we identify key 
outstanding CSF model issues that become especially 
critical on fine meshes with high density ratio interfacial 
flows, namely the surface delta function approximation, 
the estimation of interfacial curvature, and the contin- 
uum surface force scaling and/or smoothing model. 
Finally, in section (a, 2-D and 3-D numerical results are 
presented to illustrate the properties of our methods. 

2. Volume-Based Methods for Tracking 
Fluid Interfaces 

As a Grst step in our discussion of volume tracking 
methods we will derive an equation for the evolution of 
volumes and volume fractions. It is our intention that 
this will motivate further development of the numerical 
method and place it on h footing technically. This 
counters the popular view that volume tracking is purely 
heuristic and lacks rigor. 

Our derivation will start from a basic princple and the 

Reynolds transport theorem. Let V be the total fluid 

volume and f k  be the fractional volume of the k th fluid. 

defined as 

Vk = Jt”dV; M“ = J‘f”p’dV 

where. For an Ederian grid the volume of computa- 
tional cells is invariant 

(3) 
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sin? we assume that uk= u . Since pk=Mk/Vk and 
dM/dt = 0. then 

Substituting Vk = fkV into (4), we obtain 

which can be written as 

(6) 
af k -+ v- (uf3 = f k ( V .  
at ). 

From (6). we see that the volume fraction f" is a 
Lagrangian invariant. Integrating (6) over volume: 

(7) 

and, after rearrangment, 

(V.u)V =&v. (UVk, (9) 

since the velocity field is not a function of the kth fluid. 
This gives us an expression for the divergence of veloc- 
ity that may not be the same as the naive result. Further- 
more, we can use this expression with (2.5) to assure 
that the discretization is volume filing. A similar 
approach can be used on the evolution equation for f'. 

ilar to that found in [l] where a similar result is found 
for the computation of the divergence of velocity. 

It should be noted that this development is quite sim- 

Figure 1: Reconstruction of a circular arc based upon 
the SLIC VOF approximation of piecewise 
constant interfaces in each cell. Numbers 
shown are cell volume fractions. 

Figure 2 Reconstruction of a circular arc based upon 
the PLIC VOF approximation of piecewise 
linear interfaces in each cell. Numbers shown 
are cell volume fractions. 

3. Implementation of Multi-Dimensional 

3 I 
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PLIC VOF Interface Tracking Methods 

In this paper we will describe the implementation of 
PLIC methods for incompressible flows. This setting 
provides a strong competing constraint on the design of 
the PLIC method. In addition to the volume filling rule, 
the total volume of a material is conserved over the 
entire mesh. In using the volume fillinn rule, discrete 
error can be absorbed by the compressibility ofthe fluid. 
In the setting of incompressible flow, this is an often 
unacceptable error. 

The key point of this development is that the discrete 
equation (2.8) will not be zero. Another point of distinc- 
tion is between operator split methods and those that are 
not. For operator split methods on incompressible flows, 
one can utilize that fact that 

mz av 
is = -6 

For non-operator split or unsplit methods we will use 
V* u = 0 and aredistribution algorithm to assure that the 
volume of a material is conserved on the mesh. In prac- 
tice either this approach or the volume-filling derivation 
leads to pleasing and convergent numerical results. 

xei i -p  = 0 (11) 

c 0. if xo bebind plane 

= O,ifx,onplane 

cO,ifxo infrontofplane 

3.1 2-D Structured Meshes 

dimensions differs greatly from the standard here. In 
almost every description (and implementation) the 
reconstruction of the volume in a cell and the construc- 
tion of the numerical flux of a volume has been done in 
a “case-by-case” manner. By “case-by-case” we mean 
that the geometric reconstruction is strictly analyzed for 
specific cell-interface topologies and results are used 
with a case-by-case classi6cation to define the method. 
We will break with this tradition for several reasons: the 
number of cases proliferates in 3-D or for unsplit inte- 
gration methods, it is complex and pedagogically diffi- 
cult and it lends itself to defhing a method that is 
heuristic rather than rigorous. 

By contrast the approach we outline below is 
straightforward and provides a algorithmic framework 
that is simple and extensible. Furthermore, it allows us 
to tap into a significant amount of work done in the area 
of computational geometry. The VOF method and its 
PLIC variant in particular can be broken up into a set of 

Our approach to constructing VOF methods in two 

geometric primitives that lead to a concise statement of 
the method. 

Let us examine on of these geometric primitives: 
how a line truncates a volume. Given a cell (or a flux 
volume) defined by a set of vertices xy , and a line 
defined by (12), we are to determine which portion of 
polygon (cell) lies inside the line. Clearly, the line 
divides 2-space into two portions depndjng on our defi- 
nition the normal ii to the line. 

Algorithm 1 [Polygon Truncated by a Line] 

1. Determine which of the vertices, x, lie inside the 
Jluid. Here we use the direction formed by a point 
on the line and a vertex to determine its identity 
vis-a-vis the line. 

2. Traverse the polygon and collect the vertices that 
are inside thefluid and the intersection of the line 
with segments that connect vertices that are and 
are not inside thefluid. 

Another key part of the algorithm is the computation 
of areas bounded by a polygon. Axisymmetric calcula- 
tions also fall easily into this framework. 

We compute the lines location in a polygon via 
Brent’s method as it is a robust method to do this. 

Other essential portions of the algorithm deal with 
visualization of the reconstruction and solution. Useful 
utility routines such as the length of an interface in a cell 
(another good visualization technique!). 

Algorithm 2 [PLIC Reconstruction] 

1. Compute the normals to the line in the mixed cell 
2. Make an initial guess of the constant for the line 
3. Find the constant that gives the correct volume in 

a cell (Brent‘s method). 

Algorithm 3 [Mixed Cell Detection] 

1. Flag cells as mixed if E < f S 1 - E 

2. Flag cells as mixed if a cell is furl ( f > 1 - E )  and 

one of its face neighbors is empty. 

Algorithm 4 [Active Cell Detection] 

1. Flag a cell as being active if one of the cells in its 
domain of dependence is mixed. 

Algorithm 5 Bolated Cell Detection] 

1. Flag a cell as being isolated if it is mixed and none 
of its neighbors is mixed. 

Algorithm 6 [Operator-Split 2-D PLIC Method] 

1. Flag all mixed, active and isolated cells. 
2. Compute the discrete divergence of velocity in the 

3. Reconstruct the interface in all mixed cells. 

4. Compute the volume fluxes Sy in the mixed, 

mixed, active and isolated cells. 

active and isolated cells. 

4 
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5, Advance the volumes in time of numerical analysis, its stability, consistency and 
accuracy. As constructed each of our integration tech- e = $? - 6 V i z j  - 6x-1/2j + 6tV. uii ;? (13) niques is a consistent discretization of the volume evo- 
lution equation. Because the methods have been derived 
to be positive schemes, they are stable under the follow- 
ing Courant condition: 

ka 

Yj 

-k 

fij””=e- 6%-1/2- 6~j-1/2+ Gtv. U..fF,“tl u 1J (14) 

(15) 
(23) 

From the Lax Euuivalence theorem. the method is there- 

Yj 

ziqj = $?I$ - [6Vi0/2j - 6$52j) 

(16) 
fore convergent (although second-order is elusive). 

VOF methods are often thought to not have dissipa- 
tion, and in the direction normal to flow this is the case, 

Y *J U .  (17) however for flow tangential to the interface the method 
is di&sive in a manner similar to upwind methods. 

the normal direction as well. In the normal direction 
qj = y;- yjst-  aU = yj ( 1+6t- Zi) (18) Similarly, the dispersion is present tangentially, and in ax 

f$% 4y a a analysis is diffkult, and the results depend strongly on 

f$ntl-fp a a Other important properties of a good algorithm 

6t +,($yu) +q($v)  (19) thelocaltopolo~ofacellandtheinterfacethatisbe~g 

6t X ij % = v. “ij {? (20) include the symmetry of the solution, dealing with more 
than two fluids and compressible flow. Also, of interest 
are its properties when the solution is underresolved and 
grossly underresolved (i.e. how does the method fail? 
does it degrade gracefully?). 

tracked. 

+ T (f 

(21) 

Algoriff im 7 [Non-Operator-Split 2-D PLIC method] 

1, Flag all mixed, active and isolated cells. 
2. Compute the discrete divergence of velocity in the 

3. Reconstruct the interface in all mixed cells. 
4. Compute the volumefiuxes in the mixed, active and 

5. Advance the volumes in time using 

mixed, active and isolated cells. 

isolated cells, 6Vk . 

6. Apply a bounds check or redistribute any $% 0 
or <:”’. 1. 

Algorithm 8 [Volume Redistribution] 

1, Look within the domain of dependence for a cell, 
ifthere is an over or undershoot, distribute the 
nonphysical quantity to mixed cells in the domain 
of dependence. 

We should take a few moments to acknowledge some 
of the characteristics of the method from the standpoint 

5 
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3.2 3-D Structured Meshes 

3.3 3-D Unstructured Meshes 

Figure 3: 

4. Estimation of Interface Normals From 
Fluid Volume Data 

di = ,,/- (29) 

(24 

Fiewe 4 PLIC VOF reconstruction of a line on a 

A*VfLS = b (25) expression for the interface normal C451. 
Cartesian tensor-product mesh using Y o q s '  

6x&' 6xi65 d: 6xi6z,q1 

6 
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Figure 5: m1C VOF reconstruction of a line on a 
Cartesian tensor-product mesh using the fast 
least squares method for the interface normal 

I I 

1 

Figure 6: PLIC VOF reconstruction of a circle on a 
Cartesian tensor-product mesh using Youngs’ 
method for the interface normal 1451. 
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F&we 7: PLIC VOF reconstruction of a line on a 
Cartesian tensor-product mesh using the fast 
least squares method for the interface normal 

4.1 PLIC VOF Methods: Outstanding Issues 

5. Recent Developments in the CSF Model 

for Surface Tension 

5.1 Background 

The basic premise of the CSF methodology is to 
model physical processes s p S c  to and localized at 
fluid interfaces (e.g, surface tension, phase change) by 
applying the process to fluid elements everywhere 
within the interface transitionregions. Surface processes 
are thereby replaced with volume processes whose inte- 
gral effect properly reproduces the desired interface 
physics. The CSF method has proven successful in a 
variety of studies 12-18]. The CSF method lifts all topo- 
logical restrictions (typically inherent in models for sur- 
face tension) without sacri6cing accuracy, robustness, 
or reliability. It has been extensively verified and tested 
in two-dimensional flows through its implementation in 
a classical algorithm for free surface flows, where com- 
plex interface phenomena such as breakup and coales- 
cence have been predicted. 

Algorithms for interface dynamics must model phys- 
ics specific to and localized at interfaces, such as phase 
change and surface tension. In this section we describe 
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our method for modeling interfacial surface tension, 
which is formulated with a localized volume force as 
prescribed by the recent CSF model [31. Although origi- 
nally developed for surface tension, the basic approach 
of the CSF model lends itself quite well to interfacial 
physics in general, i.e.. surface phenomena other than 
surface tension can be encapsulated easily within the 
CSF model. Typical examples are phase change and 
momentum exchange [lo], where the surface physics 
are mass and momentum flux, respectively, transferred 
across the interface. 

The central theme of the CSF model is formulation 
of interface dynamics into a localized volumetric force, 
which is quite different from earlier numerical models 
of interfacial phenomena. The basic premise of the CSF 
model is to replace interfacial surface phenomena (nor- 
mally applied via a discrete boundary condition) as 
smoothly varying volumetric forces derived from a 
product of the appropriate interfacial physics per unit 
area and an approximation to the surface (interface) 
delta function. The CSF formulation makes use of the 
fact that numerical models of discontinuities in finite 
volume and finite difference schemes are really continu- 
ous transitions within which the fluid properties vary 
smoothly from one fluid to another (over a distance of 
.B( h) where h is a length comparable to the resolution 
afforded by the computational mesh). It is not appropri- 
ate, therefore, to apply in these schemes a boundary 
condition at an interface “discontinuityyy, which in the 
case of surface tension is a pressure jump across the 
interface. Surface tension should instead act on fluid ele- 
ments everywhere within the transition region. 

In the case of surface tension, the relevant surface 
physics is a force per unit area arising from local inter- 
face curvature and local (tangential) variations in the 
surface tension coefficient. Application of interfacial 
physics using the CSF model then reduces to application 
of a localized force in the momentum equation, regard- 
less of interface topology. The CSF model is therefore 
ideally suited for dynamical interfaces of arbitrary 
topology. Its simplicity, accuracy, and robustness has led 
to its widespread and popular use [2-181 in modeling 
complex interfacial flows that were in many cases previ- 
ously intractable. 

Surface tension modeled with the CSF method 
places no restrictions on the number, complexity, or 
dynamic evolution of interfaces having surface tension. 
Direct comparisons made in modeling surface tension 
with the CSF model and a popular interface reconstruc- 
tion model 1361 show that the CSF model makes more 
accurate use of volume fraction data [3]. The normal 
surface tension force tends to drive interface topologies 
toward a minimum surface energy co&guration. 

Reconstruction models for surface tension, on the other 
hand, can sometimes induce numerical noise from com- 
puted graininess in the surface pnxsures. often leading 
to unphysical disruptions at the interface. The CSF 
model is also easy to implement, as surface tension is 
modeled simply by calculating and applying an addi- 
tional volumetric force in the momentum equation. A 
small fraction of the total CPU time is expended in mod- 
eling surface tension effects. 

5.2 Overview of the CSF Model 

a volumetric force F, given by 
In the CSF model, surface tension is reformulated as 

F, = f,6,, (32) 

where 6, is the surface delta function and f, is the sur- 
face tension force per unit interfacial area [31: 

(33) f, = Ol&+R0. 

In equation (25) above, 0 is the surface tension coeffi- 
cient, 9 is the surface gradient [31, ii is the interface 
unit normal, and K is the mean interfacial curvature, 
given by 1301 

The h t  term in (25) is a force acting normal to the 
interface, proportional to the curvature K. The second 
term is a force acting tangential to the interface toward 
regions of higher surface tension coefficient (0). The 
normal force tends to smooth and propagate regions of 
high curvature, whereas the tangential force tends to 
force fluid along the interface toward regions of higher 

Since interfaces having surface tension are tracked 
with the volume- and particle-based methods mentioned 
in the previous sections, their topology will not in gen- 
eral align with logical mesh coordinates. Discontinuous 
interfaces are therefore represented in the computational 
domain as finite thickness transition regions within 
which fluid volume fractions vary smoothly from zero 
to one over a distance of .B( h) . The surface delta func- 
tion, nonzero only within these transition regions, was 
proposed in the original CSF model to be [3] 

(34) K = -v*fi. 

0. 

(35) 

where c is the characteristic (color) function uniquely 
identifying each fluid in the problem and [c] is the 
jump in the color function across the interface in ques- 
tion. The fluid volume fractions f serve as the color 
function in this work, so [c] = 1 . 

We have found, as have others [191, that an optimal 
form for 6, is one of the key outstanding issues for the 

8 I 
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CSF model. An optimal form for 6, is loosely dehed 
to be one that displays desired convergence and smooth- 
ness properties. Our current numerical results, for exam- 
ple, display an undesirable sensitivity to the form used 
for 6, . It is therefore crucial that the form of 6, remain 
arbitrary, which is not apparent in recent published mod- 
ifications of the CSF model in which the volume force 
in equation (25) is approximated as the divergence of a 
surface stress tensor [131 unnecessarily constrains the 
CSF model by restricting the form of 6, to equation 
(27). This restriction could ultimately limit the useful- 
ness of these continuum stress models unless they 
accept arbitrary forms for 6,. The ability of the CSF 
model to accurately model surface tension effects relies 
upon the accuracy and smoothness of 6,, and this issue 
is discussed in more detail in the following section. 

Although the original formulation of the CSF model 
was motivated primarily by the need to model the nor- 
mal force in equation (25). there are no restrictions in 
the underlying theory from including the tangential 
force as well. This enables the model to properly take 
into account local spatial variations in (T , which typi- 
cally arise because of temperature variations and/or the 
presence of surfactants. We are currently modeling both 
the normal and tangential forces in equation (25). An 
example of using the CSF method to model tempera- 
ture-induced variable surface tension effects can be 
found in 1121. 

9 = ( i  - q n )  & + (j -4s) dy +(k -4n)  d, (36) 

Given equations (32)-(36), the continuum surface 
force is easily estimated from first and second order spa- 
tial derivatives of the fluid volume fractions. The inter- 
face normal vector n is first computed at cell faces, 5 
follows from normalization, and K follows from equa- 
tion (34). The force, which resides at cell centers in our 
scheme, will be nonzero only within the interface transi- 
tion region. It is normalized to recover the conventional 
description of surface tension as the local product 
Kh 3 0. Its line integral directed normally through the 
interface transition region is approximately equal to the 
pressure jump OK. 

As stated in reference E31, a wide stencil in general 
leads to a better estimate of curvature. However, in con- 
trast to the discretizations presented in 131, we have cho- 
sen a conservative discretization for the curvature K and 
the force F, . This is motivated by the need to preserve 
an important physical property of surface tension, 
namely that the net surface tension force (and also K) 
should vanish over any closed surface. A conservative 
discretization of K is therefore used, given by: 

9 

(37) 

where V is the control (cell) volume, & the area of 
face f (pointing outward) on V, and fif the unit interface 
normal on face f of V. For the unit interface normal, a 
six-cell stencil (in 2-D) is used to compute both compo- 
nents of $ at each face. The cell-centered curvature K 
then results by summing over cell faces, bringing the 
effective stencil to nine cells. A nonconservative dis- 
cretization might possibly induce artificial horizontal 
motion of bubbles that should otherwise rise vertically 
under the action of buoyancy forces. 

5.3 CSF Model: Outstanding Issues 

I .  Optimal model for the surface delta function. 
2. Optimal discretization method for the interface 

unit normal and curvature. 
3. Optimal method (if any) used to smooth andlor 

weight the continuum surfme force. 
4. Optimal method (if any) used to smooth the color 

function. 
5. Eflcient model for an advanced-time (implicit) 

curvature. 
6. Triple points 

As suggested in 131, smoother variations in K gener- 
ally result if a mollified volume fraction is used to 
compute the face normals in equation (37). A variety of 
smoothing algorithms (eg,  B-spline or point-Jacobi) 
have been found to give the desired results. which is the 
mitigation of high wavenumber contributions to K 
(resulting possibly from discretization errors). This 
should, however, be used with caution because the 
actual interface geometry could be mollified unphysi- 
cally. Nevertheless, use of a mollikd f in  estimating K 
was the preferred choice in recent numerical studies 
detailed in [6,7,181. Although some examples of the 
effects of smoothing canbe found in [3], it still warrants 
further investigation, especially as it relates to conver- 
gence and consistency. The representation of surface 
tension in the CSF model as an explicit force is linearly 
stable only for time steps smaller than a maximum 
allowable value time step 64 necessary to resolve the 
propagation of capillary waves [31. This constraint is 
often restrictive. especially when fluid interfaces are 
undergoing topology changes (e.g., pinch-off) since 64 
is roughly proportional to a higher power ( - 312 of the 
mesh spacing. This restriction can be alleviated with an 
implicit treatment of K . 

6. Numerical Examples 

We now present numerical examples to illustrate the 
properties of the PLIC VOF interface tracking method 
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and the CSF model for surface tension. For the PLIC 
VOF method, we choose simple advection tests: 3-D 
translation of a cube and sphere and 3-D rotation of a 
notched brick. The tests are simple in that the flow field 
moving the bodies does not have vorticity or shear, 
which induce topological changes in the body (stretch- 
ing, tearing) that truly challenge interface tracking 
methods. Such tests have been devised in 2-D where 
they were used to scrutinize various tracking methods 
[331. Similar 3-D tests are currently beiig devised, and 
will be used to test the PLIC VOF method more com- 
pletely in the near future. For the CSF surface tension 
model, we again choose a seemingly simple test, namely 
a static drop test in which the surface tension-induced 
pressure rise inside a 2-D cylindrical or 3-D spherical 
drop is computed and compared with the known ana- 
lytic solution. The static drop test, presented in [3] as a 
validation test of the ori&d CSF model, has since 
become recognized as one of the most cEf3icult tests for 
surface tension models based upon the immersed inter- 
face methodology. This is because of the d i f h l t y  in 
maintaining an equilibrium position for the drop over 
many computational cycles. The computed pressure 
field inside the drop tends to have small numerical vari- 
ations that induce d c i a l  flow that were recently 
dubbed “parasitic currents” [13]. The magnitude of 
these parasitic currents tends to gow with each time 
step. 

6.1 Interface Tracking Tests 
Multi-dimensional test problems devised spec8cally 

to scrutinize algorithms designed to track discontinuities 
have not yet become a standard part of the literature. 
Interface tracking test problems are for the most part 
lacking, as opposed to those used to test high order con- 
tinuum advection schemes, where a consistent set of 
challen,oig two-dimensional problems are commonly 
used to judge the relative worth of the methods. The 
absence of interface tracking test problems has led to 
our recent study in which we devised a new set of very 
tough test problems useful for scrutiniziig two-dimen- 
sional tracking capabilities 1331. We plan to devise 
equally difficult three-dimensional test problems in 
future work. Although we are not necessarily advocat- 
ing these test problems to be the standard barometer by 
which all tracking methods must be judged, others have 
begun to use them to test the relative merit of their 
methods [351. The intent, however, is to devise tests that 
thoroughly interrogate an interface tracking method by 
exposing algorithm weaknesses and well as strengths. 

This numerical surface tension, or smoothing of high 
curvature regions, is a characteristic feature of the PLIC 
VOF method as a consequence of the piecewise linear 

interface geometry approximation coupled with volume 
conservation. Smoothing will result if the piecewise lin- 
ear approximation is not adequate, i.e., when the inter- 
face has large sub-cell curvature. Once smoothed, this 
high curvature information is not recoverable. The 
degree of moothing is dictated by the dimensionless 
product I&, where K is the local interface curvature 
and h is the mesh spacing. When I& is of order one (or 
greater), only one cell (or less) per radius of curvature 
resolves the interface. Numerical experiments indicate 
that at least 3-5 cells per radius of curvature, or 
I& S V3 , are needed for faithful repmentation (mini- 

mal smoothing) of the interface geometry. This same 
constraint applies for the reliable modeling of surface 
tension [3]. Two possible approaches for overcoming 
this smoothing problem are (1) a higher-order approxi- 
mation to the interface geometry (dowing sub-cell cur- 
vature), and (2) adaptive mesh refinement (AMR) [421 
of high curvature regions. The use of AMR for 
improved molution of interface geometries has in fact 
already been demonstrated in [311 and looks promising. 
An AMR scheme coupled with the PLIC method might 
be a more efficient alternative to high resolution inter- 
face tracking rather than a higher-order reconstruction. 

One linal comment before presenting our results. It is 
extremely important to keep in mind that the actual 
piecewise planar interfaces are displayed in the figures 
that follow, not the one-halfvolumefiaction isosurface, 
as is often shown in other works using VOF interface 
tracking methods. This practice can be very misleading 
for several reasons. First, none of the published VOF 
methods (to the knowledge of the authors) actually use a 
volume fraction isosurface value for the reconstruction 
and movement of an intedace, instead using a piecewise 
constant (stairstepped or not) or piecewise linear recon- 
struction, so associating a volume fraction isosurface 
with the interface is incorrect. Second, volume fraction 
isosurface plots often give the appearance of mass cre- 
ation or destruction, as bits of fluid fall above and/or 
below the speczed contour level. Third, volume frac- 
tion isosurface plots often infer a much smoother inter- 
face than the actual interface reconstructed and used by 
the interfacial flow algorithms. For these reasons, we 
will always show actual interfaces (lines in 2-D and 
planes in 3-D) rather than volume fraction isosurfaces. 

6.1.1 3-D Translation (Structured Mesh). 

A cube (unit length) or sphere (unit diameter) is 
placed in the lower corner of either a 163 or 323 mesh, 
translated diagonally to the upper corner, and returned 
to its ori@nal position. The total translation distance is 
two (sphere or cube) diameters (D), one diameter trans- 
lation to the opposite corner and one diameter transla- 
tion back The computational domain is a box spanning 

10 
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0.0 2 (x, y, z) 2 4.0, with the cube and sphere being 
initially centered at (x, y, z) =0.875 . Resolution of the 
cube and sphere is fairly coarse, with only four or eight 
cells spanning the cube length (L) and sphere diameter. 
Volume fractions are initialized to unity and zero inside 
and outside the bodies, respectively. Those cells initially 
containing an interface have volume fractions initialized 
according to the portion of the cell truncated by the 
interface. Error measurements are performed on the dif- 
ferences in volume fraction data observed between the 
initial and final times. We use an r, norm: 

and an L,norm: 

(39) 

where f’ and f are the initial and final volume frac- 
tions, respectively. 

It is evident by the initial cube interfaces with L/h 
equal to 4, shown in Figure (8), that the cube is underre- 

Figure 8: Initial cube interfaces (Lb= 4). 

solved with only four cells spanning its width. The 
piecewise planar approximation of the cube edges is 
inadequate at this resolution, as seen by the interface 
planes “chopping off’ the cube corners and edges at a 
45 degree angle in Figure (8). It is not surprising, there- 
fore, that the cube on this mesh will actually tend toward 

a sphere after translation, as shown in Fi,pre (9). Whep 

Figure 9: Cube interfaces after being translated 
diagonally (and returned) a distance of one 
cube diagonal (L/h = 4). 

L/h is equal to 8, however, the cube is adequately 
=solved, as shown in Figm (10). Its appearance after 

11 

-- 

Fi,me 10: Initial cube interfaces (L/h = 8). 

translation at this resolution inFi,me (11) is qualita- 



tively the same as its initial shape. The sphere (not 
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0.375 0.267 0.099 0.041 0 . 0 0 b  

1.0 0.0001 0.0 0.00001 0.0 

Figure 11: Cube interfaces after beiig translated 
diagonally (and returned) a distance of one 
cube diagonal (Ljh = 8). 

shown) is translated more accurately than the cube 
because its curvature, even with D/h of 4, is adequately 
resolved by the PLIC VOF method, and it does not have 
any singular edges or comers. 

Table (1) shows the computed error norms for the 
translated cube and sphere at two different CFL num- 

Table 1: Volume fraction error norms for a cube and 
sphere translated diagonally through the mesh and 
returned. The translation distance is one sphere 
diameter ( D=1)  or one cube diagonal ( D=h/ii ). 
Results are shown for two different mesh sizes (h) 
and CF'L numbers. 

I 0.125 I 0.375 I 0.174 I 0.070 l p O . O f l  0.0021 

bers. As is expected, a CFL number of one yields essen- 
tially zero error because the =IC VOF method is based 
upon characteristic upwinding. This has been confirmed 
in our recent 2-D study as well [33]. We have included a 
smaller CFL number of 0.375 because this is more typi- 
cal of a conservative value used in an application simu- 

lation. Although more simulations would be required to 
infer a convergence rate. the error norms in Table ((1)) 
indicate a convergence rate of (slightly less than) k s t  
order. This is again consistent with the results in our 2-D 
study C331. An improved interface normal, such as the 
least squares method of Puckett and coworkers 1233, 

should improve the results to second order. Neverthe- 
less, we have found the convergence rate to be problem- 
dependent, depending upon the (3% number and the 
body geometry. 

6.1.2 3-D Rotation (Structured Mesh)". 

Here we reproduce the rotating notched brick prob- 
lem presented recently by F'uckett and Saltzman in [3 11. 

In this problem, a notched brick is rotated with a rota- 
tion vector o directed diagonally through the brick 
(from comer to corner): o =(i, j, k)q, , where o, is a 
constant. One face of the block is notched by the extrac- 
tion of four smaller cubes from each comer. This prob- 
lem is challenging for tracking methods because the 
flow field represents solid body rotation instead of mere 
translation, the rotation is oriented diagonally to the 
mesh instead of being mesh-aligned where discretiza- 
tion errors are minimized, and the body undergoing 
rotation has high curvature regions (the block edges) 
that are dBcult to resolve. 

Fi-we (12) shows the initial notched brick for a 

Figure 1 2  Initial notched brick interfaces (403 mesh). 

40x40~40  mesh andFigure (13) shows the brick 
(from a Werent view) on a mesh that is double the res- 

*Animations of the simulations presented in this sec- 
tions can be found at http://gnarly.lanl.gov/relluride/ 
Text/movies.html. 

12 

http://gnarly.lanl.gov/relluride
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olutionineverydirection(80~8Ox 80),whichwasthe 

Figure 13: Initial notched brick interfaces (8d mesh). 

mesh used in the results of Dll. The brick is partitioned 
witha25x20x15 and5Ox4Ox30 volumeofcells. 
on the coarse and h e  mesh, respectively. Two Werent 
mesh resolutions are presented to show the conse- 
quences of having very high subcell curvature regions 
(the brick edges) embedded within meshes of various 
sizes. The brick is rotated one period every 400 time 
steps, using a CFL number of approximately 0.55 based 
on velocities at the extreme brick corners [41]. 

Figure 1 4  Notched brick interfaces after one revolution 
(4d mesh). 

The notched brick on the coarse mesh is shown in 
Figure (14) after being rotated one revolution. With only 
a few cells resolving the notches at this resolution, it is 
obvious that the piecewise planar approximation charac- 
teristic of the PLIC VOF method rounds OfF the high 
curvature edges until the interface reaches a lower cur- 

vature that is resolvable. Because of strict adherence to 
volume conservation constraints, edge material that is 
rounded is redistributed locally, leading to the slight 
bulges along the faces near each edge (the same effect 
can be seen in the translation problems presented previ- 
ously). Subsequent revolutions of the notched brick at 
this resolution cause essentially no additional change in 
its topology. All of the numerical surface tension effects 
(rounding of high curvature edges) take place during the 
fist revolution, after which the curvature is resolvable. 
By resolvable, we mean that the piecewise planar 
approximation is a reasonably accurate approximation 
of the interface topology. 

Figure (15) shows the h e r  mesh results of the 

I 

Figure 15: Notched brick interfaces after one revolution 
(8d mesh). 

notched brick after one revolution. Here it is evident that 
edge rounding has been greatly redud.  and the overall 
notched brick topology is preserved very well. The qual- 
itative difference in results on this finer mesh raises 
many interesting issues, such as whether or not the 
amount of numerical surface tension can be quantified 
and predicted for a given mesh size. It would also be 
desirable to understand the extent to which these effects 
will be felt in the proximity of high curvature regions. 

The SLIC VOF method generates unacceptable 
results for this problem, yielding a notched brick that is 
not even recognizable after only one revolution (see 
Figure 3d of reference [31]). This is not surprising, as a 
piecewise constant interface approximation will incur 
large errors for interfaces oriented arbitrarily to the 
mesh (as in this rotation problem). 

13 
~ 
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6.1.3 3-D Translation (Unstructured Mesh). 

6.2 Static Drop 

We now consider a static inviscid spherical drop with 
surface tension acting along its interface. Gravity is 
absent, so the only forces acting on the drop are surface 
tension, which will induce a pressure jump Ap across 
the drop given by 

where K is the drop curvature, equal to 1/R in 2-D and 
2/R in 3-D, and o is the surface tension coefficient. 
Assuming the background pressure is zero, the theoreti- 
cal surface tension-induced drop pressure is 

Ap = OK, (40) 

above. The volume fraction field was smoothed prior to 
the calculation of curvature using one pass of a 9-point 
Laplacian with a one-half weighting. The resultant con- 
tinuum surface force was smoothed in the same way. 

o/R in2-D 
I4hcory = ( 20/R k3-D 

where R is the drop radius. As in [31, we can d e b  an 
average computed drop pressure: 

. N  

where N is the number of cells inside the drop (those 
having density greater than 99% of the drop density) 
and p, is the pressure in cell n. We can also measure the 
error in the computation with an L, norm given by [31: 

L, =A,/ E(&- Aheoryf / N d h e o r y  . (43) 

For the 2-D drop, the flow field is integrated forward 
in time many computational cycles, after which the 
pressure field is examined and compared with its initial 
value. Ideally the pressure field should exactly cancel 
the surface tension forces, resulting in a vanishingly 
small velocity field. At the very least, the pressure and 
velocity fields should reach steady state, i.e., any com- 
puted dynamics are unphysical numerical artifacts. 

6.2.1 2-D Drop. 

Consider a unit square computational domain parti- 
tioned with 64x64 uniform orthogonal cells. A circular 
(cylindrical) drop of radius R=0.25 is centered at 

(x, y) = 0.5 . Surface tension forces are computed with 
the CSF model via equations (24) and (25), except that a 
surface delta function in cell n is given by 

where L, is the length of the PLIC VOF reconstructed 
interface in cell n, and A, is the area in cell n. We have 
found the surface delta function given by equation (35) 
to gives better results for the static drop than equation 
(27). The magnitude of the artificial dynamics is greater 
when the form for 6, is given by (27) rather than (35) 

o.o&.ooo I 
Fieme 16 Surface plot of the initial pressure field in a 

2-D drop. The dropbackground density ratio 
is 1. 

o.ooo~o.ow 

Figure 17: Surface plot of the pressure field in the 2-D 
drop of Figure (16) after 97 time steps. The 
CFL. number is 0.5. 
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10 0.84 0.178 

Figure 18: Surface plot of the initial pressure field in a 
2-D drop. The dropbackground density ratio 
is 1OOO. 
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2 0.75 0.264 

10 0.82 0.223 

Figure 19 Surface plot of the pressure field in the 2-D 
drop of Figure (18) after 383 time steps. The 
CFL number is 0.5. 

8 

4 

622 3-D. 

10 0.83 0.204 

lo00 0.85 0.212 

Table 2: Computed average drop pressures for 
different mesh spacing and drophackground 
density ratios. The continuum surface force is not 
density scaled. 

0.196 

0.326 

lo00 1.88 0.913 

Table 3: Computed average drop pressures for 
different mesh spacing and drophackground 
density ratios. The continuum surface force is 
density scaled according to equation 0. 

I 4 I 2 I 0.75 I 0.274 I 

I 8 I lo00 I 0.86 I 0.187 I 

7. Summary and Conclusions 

Accurate modeling of interfacial flows, such as the 
liquid metal f i g  of molds in casting processes, must 
have high-fidelity, robust algorithms for interface kine- 
matics (tracking) and dynamics (e.g., d a c e  tension). 
Our latest algorithmic developments for interfacial 
flows have been described, in particular volume-based 
methods for interface tracking and the CSF model for 
interfacial surface tension. An overall interfacial flow 
model based on the PLIC VOF interface tracking 
method and the CSF model for surface tension will be 
topologically robust, comparatively accurate, and rea- 

15 
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sonably efficient. This combination of interface algo- 
rithms will continue to be a highly competitive and 
viable approach for the foreseeable future. It is impor- 
tant, however, that PLIC VOF and CSF algorithmic 
improvements and enhancements targeting the outstand- 
ing issues addressed in this paper (and summarized 
below) continue to evolve in a way that allows these 
methods to be applied more readily to 3-D interfacial 
flows having high density ratios, surface tension domi- 
nated driving forces, and subcell interface curvature. 

We have reviewed VOF interface tracking methods 
and derived appropriate evolution equations. We have 
focused on the PLIC VOF method, currently the most 
modern and accurate member of the VOF family of 
methods. A detailed 2-D and 3-D PLIC VOF algorithm 
template has been provided. The entire algorithm can be 
constructed from a well-defined set of geometric primi- 
tives such as line/plane location, line/plane truncation, 
etc. From the template it is evident that this algorithm is 
a true interface tracking algorithm, with fluxes derived 
geometrically rather than algebraically. An implementa- 
tion based on the templates provided will be robust, &- 
cient, modular, and logically simple. Implementations 
based on subjective logic (e.g., “look left”, “look right”) 
will be less efficient, less general, and more complex. 

We have extended the PLIC VOF method to arbitrary 
3-D hexahedral (hexes), and have dehed the principal 
geometric task to be the calculation of truncation vol- 
umes bounded by doubly-ruled surfaces and an interface 
plane. Exact analytic solutions have been found for 
these truncation volumes 0, resulting in an efficient 
implementation. Our solutions should also be valid on 
non-hex meshes, such as those made up of tetrahedra, 
pyramids, or prisms, providing these types of cells are 
viewed as logically degenerate hexes. This will be the 
subject of future work. 

We have idenaed and begun to address key out- 
standing issues for %IC VOF methods. These include 
an improved estimation of the interface normal (mini- 

mizing some norm), accurate (second-order) time inte- 
gration of the volume fluxes, improved implementation 
efficiency, better multiple fluid interface ( 2 3 ) models, 
and minimization of numerical surface tension. We have 
found, as has Puckett and coworken [19,23,321, that an 
optimal interface normal appears to result from minimi- 
zation of some norm, which may not be & , but some 
other norm (e.g., L, ) that weights the data in a different 
manner. A fully unsplit time integration scheme gives 
the most accurate and symmetric results in 2-D, but a 
carefully devised split scheme remains competitive. A 
split scheme, however, will break symmetry in certain 
situations and does not generalize to 3-D unstructured 
meshes. A 3-D unsplit scheme is theEfore highly desir- 

able, but remains a formidable task on unstructured 
meshes. We have currently pursued simpler approaches, 
such as generalized splitting and Runge Kutta schemes, 
but fully unsplit 3-D schemes will be the spbject of 
future work. Finally the numerical surface tension 
exhibited by PLIC VOFmethods has been demonstrated 
in 3-D, and our standard metric sti l l  applies: the product 
of curvature and mesh spacing must be less than approx- 
imately 0.5 for numerical surface tension effects to be 
minimal. An optimal interface normal calculation will 
alleviate the effects somewhat, but the solution to 
resolving any subcell curvature continues to be a higher 
order VOF method and/or finer mesh resolution. 

We have reviewed the CSF model for surface ten- 
sion, presented a 3-D implementation, and idenaed 
outstanding issues. Consistent with Puckett and cowork- 
ers [191, we have found that a crucial issue is the surface 
delta function approximation. Our original choice, the 
magnitude of the interface normal. may not exhibit the 
desired convergence and behavior on h e r  meshes. The 
manner and amount to which the color function is 
smoothed prior to computing curvature is also an impor- 
tant issue. Too little smoothing allows noise in the cur- 
vature field, while too much allows high frequency 
capillary waves to persist unphysically. Smoothing also 
appears to be problem dependent. The continuum sur- 
face force itself might also be smoothed and/or scaled, 
as presented in the original CSF formulation. The pres- 
sure field dependence on scaling of the continuum sur- 
face force is more sensitive for higher density ratio 
flows. The extent to which these issues are important in 
the accurate modeling of the interfacial flows encoun- 
tered in casting processes will be studied further. Algo- 
rithmic improvements resulting from these studies will 
enhance, improve. and extend the popular CSF model 
for surface tension. 
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