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Abstract

Many classic tasks in vision – such as the estimation of optical flow or stereo
disparities – can be cast as dense correspondence matching. Well-known techniques
for doing so make use of a cost volume, typically a 4D tensor of match costs between
all pixels in a 2D image and their potential matches in a 2D search window. State-
of-the-art (SOTA) deep networks for flow/stereo make use of such volumetric
representations as internal layers. However, such layers require significant amounts
of memory and compute, making them cumbersome to use in practice. As a
result, SOTA networks also employ various heuristics designed to limit volumetric
processing, leading to limited accuracy and overfitting. Instead, we introduce
several simple modifications that dramatically simplify the use of volumetric
layers - (1) volumetric encoder-decoder architectures that efficiently capture large
receptive fields, (2) multi-channel cost volumes that capture multi-dimensional
notions of pixel similarities, and finally, (3) separable volumetric filtering that
significantly reduces computation and parameters while preserving accuracy. Our
innovations dramatically improve accuracy over SOTA on standard benchmarks
while being significantly easier to work with - training converges in 7X fewer
iterations, and most importantly, our networks generalize across correspondence
tasks. On-the-fly adaptation of search windows allows us to repurpose optical flow
networks for stereo (and vice versa), and can also be used to implement adaptive
networks that increase search window sizes on-demand.

1 Introduction

Many classic tasks in vision – such as the estimation of optical flow [13] or stereo disparities [34]
– can be cast as dense correspondence matching. Well-known techniques for doing so make use
of a cost volume, typically a 4D tensor of match costs between all pixels in a 2D image and their
potential matches in a 2D search window. State-of-the-art (SOTA) deep networks for stereo can make
use of 3D volumetric representations because the search window reduces to a epipolar line [11, 22].
Search windows for optical flow need to be two-dimensional, implying that cost volumes have to be
4D. Because of the added memory and compute demands, deep optical flow networks have rarely
exploited volumetric processing until recently. Even then, most employ heuristics that reshape cost
volumes into 2D data structures that are processed with 2D spatial processing [7, 18, 19, 39, 42].

Specifically, common workarounds reshape a 4D array (x, y, u, v) into a multichannel 2D array (x, y)
with uv channels. This allows for use of standard 2D convolutional processing routines, but implies
that feature channels are now tied to particular (u, v) displacements. This requires the network to
memorize particular displacements in order to report them at test-time. In practice, such networks are
quite difficult to train because they require massive amounts of data augmentation and millions of
training iterations to effectively memorize [7, 19].
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We introduce three simple modifications that significantly improve performance and generalizability
by enabling true volumetric processing of cost volumes:

1. We propose the 4D volumetric counterpart of 2D encoder-decoder "U-Net" architectures,
which are able to efficiently encode large receptive fields for cost volume processing.

2. We propose multi-channel cost volumes that make use of multiple pixel embeddings to
capture complementary notions of similarity (or match cost). We demonstrate that these mul-
tiple matches allow for better handling of ambiguous correspondences, which is particularly
helpful for ambiguous coarse matches in a coarse-to-fine matching network [38].

3. We implement 4D convolutional kernels with separable high-order filters. In particular, our
separable factorization results in a spatial (x, y) filter that enforces spatial regularity of a
flow feild, and an inhibitory "winner-take-all" or WTA (u, v) filter that competes candidate
matches for a given (x, y) pixel.

Our innovations dramatically improve accuracy over SOTA on standard flow benchmarks while
being significantly easier to work with - training converges in 7X fewer iterations. Interestingly,
our networks appear to generalize across diverse correspondence tasks. On-the-fly adaptation of
search windows allows us to repurpose optical flow networks for stereo (and vice versa), and can
also be used to implement adapative networks that increase search window sizes on-demand. We
demonstrate the latter to be useful for stereo matching with noisy rectifications.

2 Related Work

Dense visual correspondence Finding dense pixel correspondences between a pair of images has
been studied extensively in low-level vision. Concrete examples include stereo matching and optical
flow [13, 34]. Stereo matching constrains the search space to a horizontal scanline, where a 3D
cost volume is usually built and optimized to ensure global consistency[11, 23]. Though optical
flow with small motion has been well-addressed by the classific variational approaches [37], finding
correspondences in the 2D target image remains a challenge when displacements are large and
occlusion occurs [3].

Correspondence matching with cost volume Classic stereo matching algorithms usually extract
local patch features and create a regular 3D cost volume, where smoothness constraints are further
enforced by energy minimization [13, 34]. Recently, hand-crafted feature extraction is replaced
with convolutional networks and cost-volume optimization step is commonly substituted by 3D
convolutions[22, 28, 45]. Despite their similar formulation, “true" 4D cost volume is rarely used in
optical flow estimation until very recently. Xu et al. [42] directly construct and process a 4D cost
volume using semi-global matching. Recent successful optical flow networks also build a correlation
cost volume and process it with 2D convolutions [7, 24, 39]. There also exists work in semantic
correspondence matching on a 4D cost volume with 4D convolutions [31].

Efficient convolutional networks Recent years have seen great interest in designing computation-
efficient and memory-friendly deep convolutional networks. At operation level, depthwise separable
convolutions [36] save computations by separating a multi-channel 2D convolution into a depthwise
convolution and a pointwise convolution [6, 14, 33, 46]. Efforts have also been made in using tensor
factorization to speed up a trained network [20, 25]. Different from prior works, we separate a
4D convolution kernel into two separate 2D kernels. At architecture level, U-Net encoder-decoder
scheme is widely used in dense prediction task [1, 7, 32]. Instead of directly filtering the high-res
feature maps, it saves memory and computation by downsampling the input feature maps with strided
convolutions and upsampling them back. Typically, it is able to acquire sufficient receptive fields
with very few numbers of layers. Similarly, we downsample the 4D cost-volume in (u,v) dimension
to maintain a small memory footprint.

3 Approach

In this section, we first introduce a 4D convolutional matching module for volumetric correspondence
processing. We then show by factorizing the filter into separable components that are implemented
with an encoder-decoder [32], one can significantly reduce computation and memory. Finally, we

2



Figure 1: We compare 2D filtering of a 4D cost vol-
ume reshaped to be a multi-channel 2D array (left)
versus true 4D filtering (right). For simplicity, we
visualize the candidate 7 × 7 array of (u, v) match
costs for a particular (x, y) pixel. Blue and red cir-
cles indicate filtered values, and lines connected to
them indicate filter weights between two layers. Note
that 2D filter weights are not shared across spatial
locations (indicated by different colors), while 4D
filter weights are. During gradient-based learning of
the 2D filter, a particular observed (u, v) displace-
ment only backprops along the particular colored
weights connected to it. On the other hand, the 4D
filter will be updated for any observed (u, v) dis-
placement, making it easier to generalize to different
displacements.

integrate volumetric filtering into a coarse-to-fine warping scheme [18, 39], where ambiguous matches
and coarse-mistakes are handled by the multi-hypotheses design.

3.1 4D Convolutional Matching Module

Let F1,F2 ∈ Rd×H×W be the d-dimensional pixelwise embedding of the source and target image.
We construct a 4D cost volume by computing the cosine similarity between each pixel in the H ×W
source image with a set of candidate targets in a U × V search window:

C(u,x) =
F1(x) · F2(x+ u)

||F1(x)|| · ||F2(x+ u)||
, C(u,x) ∈ RU×V×H×W ,

where x = (x, y) is the source pixel coordinate and u = (u, v) is the pixel displacement. Cosine
similarity is used in person re-identification and face verification [27, 41] in replacement of dot
product, and empirically we find it produces a better result over dot product.

2D convolution vs 4D convolution Many recent optical flow networks re-organize the 4D cost
volume into a multichannel 2D array with N = U × V channels, and process it with multi-channel
2D convolutions [7, 18, 19, 39]. Instead, we leave the 4D cost volume C(u,x) as-is and filter it
with 4D convolutions. Much as 2D filters ensure translation invariance and generalize to images of
different sizes [26], we posit that 4D filters may ensure a form of offset "invariance" and generalize to
search windows of different sizes. Fig. 1 suggests that multi-channel 2D filtering requires the network
to memorize particular displacements seen during training. By explicit cost volume processing,
volumetric filtering of cost volumes is preferable because 1) It significantly reduces the number of
parameters and computations; 2) It is capable of processing variable-sized cost volumes on demand;
3) It generalizes better to displacements that are not seen in the training.

Truncated soft-argmin Given a (filtered) cost volume, one natural approach to reporting the (u, v)
displacement for a pixel (x, y) is a "winner take all" (WTA) operation that returns the argmin
displacement. Alternatively, if the offset dimensions are normalized by a softmax, one could compute
the expected offset by taking a weighted average of offsets with weights given by the probabilistic
softmax (soft argmin) [22]:

E[u] =
∑

i

uip(u = ui), [Soft Argmin]

Unfortunately, WTA is not differentiable, while the soft argmin is sensitive to changes in the size of
the search window [40]. Instead, we combine both with a "truncated soft-argmin" that zeros out the
softmax probabilities for displacements more than M pixels away from the argmin u∗:

p′(u = ui) ∝

{

p(u = ui), |ui − u∗| ≤ M

0, otherwise
[Truncated Soft Argmin]

We empirically set M = 3 for a 7× 7 search window, and use truncated soft-argmin for training and
testing. Later we show that a truncated soft-argmin produces a notable improvement over soft-argmin.
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Figure 2: For ease of visualization, we show the 2D cost volume C(u, x) for matching pixels across a source
and target scanline image (a). To efficiently filter the volume, we factor the 3 × 3 filter (b) into a 1D spatial
convolution over positions (c) followed by a 1D WTA convolution over displacements (d).

3.2 Efficient Cost Volume Processing

Separable 4D convolution We now show that 4D volumetric kernels can be dramatically simplified
by factorizing into separable components. In the context of a cost volume, we propose a factorization
of a 4D filter K(u,x) into a 2D spatial filter KS(x) and a 2D WTA KWTA(u) filter:

K(u,x) ∗ C(u,x) =
∑

v,y

K(v,y)C(u− v,x− y) [4D Convolution]

=
∑

v,y

[

KWTA(v)KS(y)
]

C(u− v,x− y) [Factorization]

=
∑

v

KWTA(v)
[

∑

y

KS(y)C(u− v,x− y)
]

[Separable Filtering]

= KWTA(u) ∗
[

KS(x) ∗ C(u,x)
]

Fig. 2 visualizes this factorization, which reduces computation by N2 for a N ×N ×N ×N filter
with negligible effect on peformance, as shown in ablation study Tab. 4.

U-Net encoder-decoder volume filtering We find it important to make use of 4D kernels with
large receptive feilds that can take advantage of contextual cues (as is the case for 2D image filtering).
However, naively implementing large volumetric filters takes a considerabe amount of memory [22].
We found it particularly important to include context for WTA filtering. Inspired by spatial encoder-
decoder networks [1, 32] we apply two downsampling layers and two upsampling layers rather than
stacking multiple 4D convolutional layers. In Sec. 4.3, we show that encoder-decoder architectures
allow us to significantly improve accuracy given alternatives with a similar compute budget.

3.3 Multi-hypotheses Correspondence Matching

Multi-channel cost volume Past work has suggested that cost volumes might be too restricted in
size and serve as too much of an information bottleneck for subsequent layers of a network [5, 22].
One common solution in the stereo literature is the construction of a feature volume rather than a cost
volume, where an additional dimension of feature channels is encoded in the volumetric tensor [22] -
typically, one might include the difference of the two feature descriptors being compared within the
cost volume, resulting in an additional channel of dimension |F(x)|.

In our case, this would result in a prohibitively large volume. Instead, we propose an “intermediate”
strategy between a traditional cost volume and a contemporary (deep) feature volume: a multi-channel
cost volume. Intuitively, rather than simply encoding the cosine similarity between two embedding
vectors, we record K similarities between K different feature embeddings that are trained jointly, by
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Figure 3: Illustration of volumetric processing at one pyramid level. 1) Cost volume construction: We warp
features of the target image using the upsampled coarse flow and compute a multi-channel cost volume. 2)
Volume processing: The multi-channel cost volume is filtered with separable 4D convolutions, which is integrated
into a volumetric U-Net architecture. We predict multiple flow hypotheses using truncated soft-argmin. 3) Soft
selection: The flow hypotheses are linearly combined considering their uncertainties and the appearance feature.

taking channel-wise product between each pair of potential matches [10]. While this can be thought
of as K distinct cost volumes, we instead concatenate them into a multi-channel 4D cost volume
RK×U×V×H×W where K is treated as a feature channel that is kept constant in dimension during
filtering. After being processed by the volumetric U-Net, each of the K cost-volumes Ck(u, v, x, y)
is used to compute a truncated softmax expectation.

Multi-hypotheses selection Considering the multimodal nature of correspondence matching, we
propose a multi-hypotheses selection module that assigns weights to each hypothesis given its value,
uncertainty and appearance information. Inspired by Campbell et al. [4], we treat it as a labelling
problem and use a stacked 2D convolution network that takes the image features, K hypotheses values,
and K entropy scores as the input, to produce a softmax distribution over the hypotheses. The final
correspondence prediction is computed by weighting the hypotheses with the softmax distribution.

Coarse-to-fine warping architecture, such as PWC-Net [39], is sensitive to coarse-level failures, where
the incorrect coarse flow is used to warp the features and lead to gross errors. More importantly, small
objects with large displacement are never considered, since only one coarse prediction is used to warp
a group of fine-pixels (usually 2 × 2). To account for the missing multi-modal information of the
coarse scale, one solution is to create K different warpings and delta fine cost volumes according to
K different coarse-scale hypotheses, and then aggregate the results. However, processing K different
hypotheses would be prohibitively expensive. Instead, we directly pass K coarse-level hypothesized
correspondences to the subsequent fine-scale multi-hypotheses network as additional hypotheses [43].

Out-of-range detection During occlusions or severe displacements, the optimal predicted displace-
ment is likely an "out-of-range" output that lies outside the search window. We use the processed cost
volumes to train such a binary classifier. Since cost volumes allow us to access a distribution over all
candidate matches, we can use the distribution to estimate uncertainty. Specifically, for each of the K
hypothesized cost volumes, we compute the Shannon entropy of the truncated softmax given by

H[u] = −
∑

i

p′(u = ui) · log p
′(u = ui)

Since Shannon entropy itself is not a reliable uncertainty indicator [15], we pass them into a U-Net
module along with the image features and expected displacements, and produce a binary variable that
indicates whether the ground-truth displacement is out-of search range. The out-of-range detection
module is trained with binary cross-entropy loss where the supervision comes from comparing the
ground-truth flow with the maximum search range. Empirically, adding the out-of-range detector
regularizes the model and improves the generalization ability as shown in Sec.4.3.
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Table 1: Model size and running time. Gflops is mea-
sured on KITTI-sized (0.5 megapixel) images. Number
of training iterations is recorded for the pre-training
stage on FlyingChairs and FlyingThings, and (S) indi-
cates sequential training on separate modules.

Method #param. Gflops #train iter.

FlowNetS [7] 38.7M 66.8 1700K
FlowNetC [7] 39.2M 69.6 1700K

FlowNet2 [19] 162.5M 365.6 7100K (S)
PWC-Net+ [39] 9.4M 90.8 1700K

LiteFlowNet [17] 5.4M 151.7 2000K (S)
HD∧3F [44] 39.9M 186.1 -

IRR-PWC [21] 6.4M - 1700K
Ours-small 5.2M 36.9 220K

Ours 6.2M 96.5 220K

Figure 4: Stereo → Flow transfer. After fine-
tuning with KITTI stereo data, our small model
consistently out-performs PWC-Net on KITTI
flow, though with similar error on the stereo train-
ing set, indicating our model is more generalizable.

4 Experiments

Network specification Similar to PWC-Net and LiteFlowNet [18, 39], we follow the coarse-to-
fine feature warping scheme as shown in Fig. 3. We find correspondences with 9× 9 search windows
on a feature pyramid with stride {64, 32, 16, 8, 4}. We keep K = {16, 16, 16, 16, 12} hypotheses at
each scale. Besides the full model, we also train a smaller model that only takes features from coarse
levels with stride {64, 32, 16, 8}, indicated by “Ours-small".

Training procedure We build the model and re-implement the training pipeline of PWC-Net+ [39]
using Pytorch. The model is trained on a machine with 4 Titan X Pascal GPUs. The same training
and fine-tuning procedure is followed. To be noted, we are able to stably train the network with a
larger learning rate (10−3 vs 10−4) and fewer iterations (140K vs 1200K on FlyingChairs and 80K
vs 500K on FlyingThings) compared to prior optical flow networks. Furthermore, people find that
PWC-Net is sensitive to initialization [39] and several attempts of training with random initialization
have to be made to avoid the poor local minimum, which is never observed for our case.

4.1 Benchmark results

As shown in Tab. 1, our models can be trained with significantly fewer iterations without sequential
training of submodules. In terms of computation efficiency, our small model only uses less than
half of the FLOPS used by PWC-Net and a quarter of the FLOPS for LiteFlowNet. Our full model
uses similar computation as PWC-Net and 40% fewer computations than LiteFlowNet. It is also a
compact model among the ones with the least number of parameters. One more thing to notice is that
our model is the only optical flow network in the table that processes a “true" 4D cost volume instead
of convolving a “pseudo" multi-channel 2D cost volume.

Though our model is compact, computationally efficient and trained with fewer iterations, it demon-
strates SOTA accuracy on multiple benchmarks. As shown in Tab. 2, after the pretraining stage,
ours-small achieves smaller end-point-error (EPE) than all methods on KITTI [9, 30], except for
LiteFlowNet2, which is heavier than LiteFlowNet, and much heavier than ours-small. Our full
model further out-performs our small model and reduces the F1-all error by one-third compared to
PWC-Net. On Sintel, our small model beats all previous networks except for FlowNet2, which uses
8X more computations, 30X more parameters, and 30X more training iterations. Our full model
further improves the accuracy over our small model. The pretraining-stage results demonstrate that
our network can generalize better than the existing optical flow architectures.

After fine-tuning on KITTI, our model clearly out-performs existing SOTA methods by a large margin.
The only method comparable to ours is HD∧3F, which uses 6X more parameters and 1.76X more
computation compared to ours. On Sintel, our method ranks 1st for both the “clean" pass and the
“final" pass over all two-frame optical flow methods. Noticebly, our small model achieves similar flow
error on KITTI as LiteFlowNet2 and PWC-Net+ using 1/4 and 2/5 computations of theirs respectively.
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Table 2: Results on K(ITTI)-15 and S(intel) optical flow benchmark. “C+T" indicates models pre-trained on
Chairs and Things [7, 29].“+K/S" indicates models fine-tuned on KITTI or Sintel. †:D1-all is the default metric
for KITTI stereo matching, and is evaluated on KITTI-15 stereo training data. The subscript number shows the
absolute ranking among all two-frame optical flow methods in the benchmark. Best results over each group are
bolded, and best results overall are underlined. Parentheses mean that the training and testing are performed on
the same dataset. Some results are shown as mean ± standard deviation in five trials.

Method K-15-train K-15-test S-train (epe) S-test (epe)

Fl-epe Fl-all Fl-all D1-all† Clean Final Clean Final

-
FlowFields [2] 8.33 24.4 - - 1.86 3.06 3.75 5.81

DCFlow [42] - 15.1 14.83 - - - 3.54 5.12

C+T

FlowNet2 [19] 10.08 30.0 - - 2.02 3.54 3.96 6.02
PWC-Net [38] 10.35 33.7 - 23.30 2.55 3.93 - -

LiteFlowNet [17] 10.39 28.5 - - 2.48 4.04 - -
LiteFlowNet2 [18] 8.97 25.9 - - 2.24 3.78 - -

HD∧3F [44] 13.17 24.0 - - 3.84 8.77 - -
Ours-small 9.43 ± 0.18 33.4 - 13.12 2.45 3.63 - -

Ours 8.36 25.1 - 8.73 2.21 3.62 - -

+K/S

FlowNet2 [19] (2.30) (8.6) 11.48 - (1.45) (2.01) 4.16 5.74
PWC-Net-ft+ [39] (1.50) (5.3) 7.72 9.17 (1.71) (2.34) 3.45 4.60

LiteFlowNet2-ft [18] (1.47) (4.8) 7.74 - (1.30) (1.62) 3.45 4.90
IRR-PWC-ft [21] (1.63) (5.3) 7.653 - (1.92) (2.51) 3.84 4.58

HD∧3F-ft [44] (1.31) (4.1) 6.552 - (1.87) (1.17) 4.79 4.67
Ours-small-ft (1.41) (5.5) 7.74 6.10 (1.84) (2.44) 3.26 4.73

Ours-ft (1.16) (4.1) 6.301 4.67 (1.66) (2.24) 2.811 4.401

On Sintel clean pass, our small model is better than all convolutional optical flow methods except for
our full model.

Interestingly, on KITTI stereo matching training set, our method out-performs PWC-Net with an
even larger margin, i.e., 8.73% error versus 23.30% without fine-tuning, and 4.67% versus 9.17%
after fine-tuning on KITTI flow data. This indicates the superior generalization ability of our model
across correspondence tasks.

4.2 Generalization ability

Cross task generalization: Stereo → Flow To compare the generalization ability of our method
with existing deep flow networks [7, 38], we transfer the Chairs/Things-pretrained model to the real
domain, i.e., KITTI, where it is difficult to acquire flow annotations than stereo (depth) annotations.
To do so, we fine-tune our pretrained small model using KITTI stereo training set together with
FlyingChairs and FlyingThings for 75K iterations. As comparison, a pretrained official PWC-Net
model is also fine-tuned with the same procedure, except that learning rate is set as 0.0001 since a
larger learning rate makes training PWC-Net unstable.

As shown in Fig. 4, our pre-trained model initially perform on par with PWC-Net on KITTI optical
flow training set. After fine-tuning on KITTI-15 stereo images for 75k iterations, although both
methods perform similarly on the training data, ours-small gets much lower error on out-of-domain
optical flow image pairs. This indicates our model is less overfitted to the training distribution.
Qualitative results can be found in the supplementary material.

Cross-range generalization: small motion → large motion In-the-wild image pairs have unknown
maximum displacement, i.e., they may be captured from very different view points and objects
can move to anywhere. Therefore, the ability to find correspondences out of training search range
is important for real-world applications. To deal with large displacements, one could simply find
correspondences on downsampled images. However, this loses high-frequency information. Instead,
our proposed separable 4D-convolutional matching module is able to vary search range at test time
on demand. To demonstrate this, we train the correspondence model on pixels with small motion
(0-32px) on FlyingThings, and test on two displacement ranges (0-32px and 0-64px) on KITTI-
15 training set. Ours-32 is our proposed matching module operating on stride 8 features. As a
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comparison, we train a PWC-Net baseline using the same annotated data, referred to as PWC-32. We
also train a PWC-Net baseline with 0-64px motion to serve as the upper-bound of our method.

As shown in Tab. 3, our method achieves 39.2% lower error than PWC-32 for in-distribution pixels
(pixels with 0-32px motion), while achieving 65.4% lower error for out-of-distribution pixels (pixels
with 0-64px motion). Moving from in-distribution to out-of-distribution data, the error rate of PWC-
32 increases by 231%, while our model increases by 89%, which is on par with a model trained with
both in-distribution and out-of distribution data, i.e., PWC-64, demonstrating strong generalization
ability to out-of-training-range data.

Table 3: On-demand correspondence matching
with extended search range.

Method EPE (px) ratio

0-32px 0-64px

PWC-32 [38] 2.85 9.44 3.31

PWC-64† [38] 2.72 5.50 2.02
Ours-32 1.73 3.27 1.89

Table 4: Results of single-stage ablation study.

Method EPE (px) GFlops # Params.

DenseNet [38] 2.64 25.5 8.2
Full-4D 2.30 52.5 1.83
Sep-4D 2.31 23.4 1.78
Ours-UNet 1.73 28.5 2.94

UNet→Plain×4 -0.02 +20.9 -
- Multi-channel +0.32 -0.7 -0.001
T-soft.→Soft. +0.10 -0.5 -
T-soft.→Reg. +0.58 -0.4 +0.001
- OOR +0.07 - -

4.3 Diagnostics

Single-stage ablation study To reveal the contribution of each component, we perform a detailed
ablation study. For clarity we use a single stage architecture, i.e., without coarse-to-fine warping,
on stride-8 features. The models are trained on 0-32px (in both x and y directions) motions on
FlyingChairs and evaluated on KITTI-15 training set on pixels with the same motion range. As the
baseline model, we implement a DenseNet matching module followed by a refinement module as used
in PWC-Net [16], referred to as “DenseNet". For “Full-4D", we replace the DenseNet and refinement
module with two residual 4D convolutions blocks (four convolutions in total). As shown in Tab. 4,
it reduces error by 12.9% and number of parameters by 77.7%, though with an increased amount
of computation. “Sep-4D" separates 4D kernels into WTA kernels and spatial kernels, reducing
GFlops by half without significant loss in accuracy. “Ours-UNet" is our final model, which uses
multi-channel cost volumes, volumetric U-Net architecture, truncated soft-argmin inference, and
out-of-range (OOR) detection. It further reduces the error rate by 23.4%.

We then remove or replace each component from our final model. Replacing the U-Net architecture
(ten convolutions) with a plain architecture (eight convolutions) slightly reduces the error but adds
a large compute and memory overhead. Replacing the multi-channel cost volume with a standard
single-channel cost volume increases the error by 18.5%. Replacing the truncated soft-argmin with
a standard soft-argmin increases the error by 6.8%, and direct regression of flow vectors from cost
volumes increases the error by almost one-third, demonstrating the benefits of using truncated soft-
argmin inference. Interestingly, removing the out-of-range detection module in training also increases
error. We posit that it uses knowledge from the cost volume structure to regularize the network and
helps the model to generalize better.

Analysis on cost volume filtering We also compare different architectural designs of cost volume
filtering in terms of FLOPS and numbers of parameters that are used. To filter a multi-channel cost
volume of size (K,U, V,H,W ), "2D convolution" reshapes the first three dimensions (k, u, v) into a
feature vector and filters along the height and width dimension (x, y). Our "4D convolution" and
"separable 4D convolution" treat the hypotheses dimension k as feature dimension and filter along
the (u, v, x, y) dimension. As shown in Tab. 5, separable 4D convolution uses 3.5X fewer parameters
and computations compared to the full 4D convolution. Compared to 2D convolution, separable
4D convolution only uses 2

U2V 2 parameters and 2

UV
computations. Specifically when U = V = 9

as in PWC-Net [39], replacing the 2D convolutions with separable 4D convolutions reduces the
computation by 40x and number of parameters by 3000x.
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Table 5: Comparison between filtering approaches on a (K,U,V,H,W) multi-channel 4D cost volume.

Method Kernel # Param. ratio # Mult-Adds ratio

2D conv. (KUV,KUV, 3, 3) 9K2U2V 2 U2V 2

2
9HW ×K2U2V 2 UV

2

4D conv. (K,K, 3, 3, 3, 3) 81K2 4.5 81HW ×K2UV 4.5
Sep. 4D conv. (2,K,K, 3, 3) 18K2 1 18HW ×K2UV 1

4.4 Stereo matching with vertical disparity

We further show an application of our correspondence network in stereo matching with imperfect
rectification. Although most stereo systems assume that cameras are perfectly calibrated and cor-
respondences lie on the same horizontal scan-line. However in reality, it is difficult to perfectly
calibrate stereo pairs during large temperature changes and vibrations [12]. Such errors result in
ground-truth disparity matches that have a vertical component (e.g., match to a different horizontal
scanline). Instead of searching for stereo correspondences along the horizontal scanline, we find
matchings in a 2D rectangular area, and project the displacement vector in the horizontal direction.

We fine-tune our model and PWC-Net using stereo data from KITTI, Middlebury, and SceneFlow [9,
29, 30, 35] training set for 70K iterations. For our model, we set U = 6, V = 1 for each level. We
then evaluate on half-sized Middlebury-14 additional images, where there are thirteen images with
perfect rectification and thirteen with imperfect rectification. ELAS [8] is taken from the Robust
Vision Challenge official package, and we implemented two-pass SGBM2 [11] using OpenCV (with
SAD window size = 3, truncation value for pre-filter = 63, p1 = 216, p2 = 864, uniqueness ratio = 10,
speckle window size = 100, speckle range = 32). The results from SGBM2 is also post-processed
using weighted least square filter with default parameters.

As shown in Tab.6, going from perfectly rectified stereo images to the imperfectly rectified ones, the
error rate of our methods does not increase. While methods without explicit vertical displacement
handling, for example, ELAS [8], suffer heavily from such situations. Compared to PWC-Net, our
model gets a lower error, possibly due to the effectiveness of volumetric filtering, and is more flexible
because of the on-demand selection of search space. A qualitative comparison is shown in Fig. 5.
Though ELAS handles stereo images with perfect calibration well, it fails on imperfectly rectified
pairs, yielding gross errors on repeated patterns and textureless surfaces as indicated by the circles.
Our method is not affected by vertical displacement caused by imperfect rectification, given its
pre-defined 2D search space.

Table 6: Results on Middlebury stereo images.

Method avgerr (px) inc.(%)

perfect imperfect

SGBM2 [11] 14.51 15.89 9.5
ELAS [8] 9.89 11.79 19.2

PWC-Net [38] 9.41 9.92 5.4
Ours 9.03 8.79 -2.7

Left

Right

ELAS-H 
(perfect)

ELAS-H 
(imperfect)

Ours-ft 
(perfect)

Ours-ft 
(imperfect)

Figure 5: Result on Middlebury-14 image, "Stick2".

5 Discussion

We introduce efficient volumetric networks for dense 2D correspondence matching. Compared to
prior SOTA, our approach is more accurate, easier to train, generalizes better, and produces multiple
candidate matches. To do so, we make use of volumetric encoder-decoder layers, multi-channel
cost volumes, and separable volumetric filters. Our formulation is general enough to adapt search
windows on-the-fly, allowing us to repurpose optical flow networks for stereo (and vice versa) and
implement on-demand expansion of search windows. Due to limited CUDA kernel and hardware
support for convolutions and poolings with non-standard shapes, the FLOPS numbers for our current
implementation are not directly transferable to running time, which will be explored in the future.

Acknowledgements: This work was supported by the CMU Argo AI Center for Autonomous Vehicle
Research.
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