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Forensic facial reconstruction aims at estimating the
facial outlook associated to an unknown skull specimen.
Estimation is based on tabulated average values of soft
tissue thicknesses measured at a sparse set of land-
marks on the skull. Traditional ’plastic’ methods apply
modeling clay or plasticine on a cast of the skull ap-
proximating the estimated tissue depths at the landmarks
and interpolating in between. Current computerized
techniques mimic this landmark interpolation procedure
using a single facial surface template. However, the
resulting reconstruction is biased by the specific choice
of the template and no face-specific regularization is
present. We reduce the bias by using a flexible sta-
tistical model of a dense set of facial surface points
combined with an associated sparse set of skull land-
marks. The statistical model also provides a probability
value, which can be used to regularize the reconstruction
towards more plausible outlooks. The reconstruction
is obtained by fitting the model skull landmarks to the
corresponding landmarks indicated on a digital copy
of the skull to be reconstructed. The fitting process
alternates between changing the face-specific statistical
model parameters and interpolating the remaining land-
mark fit error using a minimal bending Thin-Plate Spline
�TPS�-based deformation. Furthermore, estimated prop-
erties of the skull specimen �BMI, age and gender e.g.�
can be incorporated as conditions on the reconstruction
by removing property-related shape variation from the
statistical model description before the fitting process.
This iterative statistical model-based reconstruction pro-
cess is shown by experiment to converge to a realistic
reconstruction of the face, independent of the initial
template.

Keywords: computer-aided, cranio-facial reconstruction,
statistical models, thin-plate splines.

1. Introduction

When confronted with a corpse that is unrecog-
nizable due to its state of decomposition, skele-
tonisation, mutilation or incineration, and if no
other identification evidence is available, cran-
iofacial reconstruction can be considered. The

goal of craniofacial reconstruction is to recre-
ate an estimate of the face of an individual at
the time of death. Hopefully, this will trigger
recognition by relatives such that further identi-
fication evidence can be gathered on a restricted
list of candidates. Although craniofacial recon-
struction is a valuable tool in the initiation of
the process of identification, positive identifi-
cation has to be obtained eventually by clas-
sic techniques such as radiographic and dental
comparisons or DNA-analysis.

Several 3D manual methods for facial recon-
struction have been developed and are currently
used in practice. These reconstructions consist
of physically modeling a face on a skull replica
�the target skull� with clay or plasticine. How-
ever, manual reconstruction methods require a
lot of anatomical and artisticmodeling expertise
and are, as a result, highly subjective. Further-
more, these reconstructions take a lot of time
�several days�, and, hence, are often limited to
a single reconstruction. Computer-based meth-
ods, on the other hand, are consistent �given the
same input data and modeling assumptions, the
same output results� and objective �knowing all
the modeling assumptions�. Moreover, since
these methods can be executed in a short time,
multiple reconstructions from the same skull
using different modeling assumptions �older,
thicker, ...� can be obtained.

Current computerized reconstruction techniques
are limited, though, in the model used for re-
constructing the complete facial outlook. First,
either a generic face template or a specific best
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look-alike template, based on skull similarities
or properties �BMI, gender and age e.g.�, is cho-
sen. Subsequently, the skin surface associated
to the target skull is estimated by deforming the
model template, based on a generic, “smooth”
interpolation of a deformation that maps corre-
sponding landmark points of the model skull on
the target skull. Multiple reconstructions based
on different values of BMI, age and gender are
obtained by choosing a different starting face
template. Two major shortcomings are apparent
using such a static model in combination with
a generic deformation. First, the reconstruction
can be incorrectly biased by the choice of the
template. Indeed, when using a subject-specific
best look-alike template based on similarity in
ancestry, gender and age, unwanted facial fea-
tures of the template remain visible in the final
reconstruction. Using a generic face template,
on the other hand, results in a too smooth and un-
specific reconstruction. Secondly, the generic
deformations applied are not face-specific, they
are just “smooth”. No problem arises when the
differences between the model and target skull
landmarks are small. However, when these dif-
ferences are relatively large, the required de-
formation will be more pronounced, which can
result in unrealistic, caricature-like or implausi-
ble facial reconstructions.

Current computer-based facial reconstruction
methods differ mainly by the selection of land-
mark points or skull features used to deform the
model towards a given target skull. Some tech-
niques �1, 2, 3, 4, 5, 14� fit a facial template to the
endpoints of a set of virtual dowels positioned
on a 3D digitized model of the target skull. The
dowel lengths represent averages of ancestry-,
gender- and age-matched tissue depths at a lim-
ited number of predefined cephalometric land-
marks. There is no direct correlation, however,
between the reported tissue depths and the asso-
ciated skin surface shape of an individual. Other
computer-based techniques deform a 3D refer-
ence skull to a target skull based on crest lines
�lines of maximal local curvature� �6�, control
data sets �7� or feature points �8�. The calcu-
lated skull deformation is then extrapolated and
applied to the skin surface associated to the ref-
erence skull. A reference skull is selected based
on similarity in ancestry, gender and age. Ref-
erence skulls and corresponding facial surfaces
are obtained using CT scanning, which limits
the selection of the reference database to patient
data because of the involved irradiation dose.

In order to eliminate the template-related bias
and to minimize the unrealistic character of
the reconstructions caused by large model de-
formations, we propose a new flexible facial
model for craniofacial reconstruction, model-
ing the combined population-dependent varia-
tion and correlation of skin surface shape and
tissue depth �represented by skull landmarks�,
calculated from a facial database. This template
can be considered as an elastic mask with elas-
tic dowels at particular locations on the inside
of the mask. The elasticity of the mask and
the dowels is defined as the statistically allowed
correlated variation of facial surfaces and tissue
depths learned from the database.
A first scenario for reconstruction could be to
use the average template �face plus skull land-
marks� as an initial mask and to fit it to the
target skull landmarks. By changing the statis-
tical model parameters between the statistically
determined boundaries, the mask is deformed
in a face-specific way only. However, when
the number of degrees of freedom in the statis-
tical model is too small, faces atypical of the
database will be poorly approximated this way
with a resulting high fit error.
Instead, we augment the statistical model with
an additional smooth, generic deformationmodel,
such that the deformation of the statisticalmodel
interpolates the skull landmarks. This deforma-
tion is modeled by a Thin-Plate-Spline �TPS�
function, mapping corresponding model and
target skull landmarks and smoothly extending
the deformation in between. By alternating the
statistical deformation and generic interpolation
steps, a more plausible or realistic face is recon-
structed without a bias towards a specific face in
the database and with minimal deviation from
the best approximating statistical face model.
Multiple reconstructions based on different val-
ues of skull properties are obtained by modeling
and removing facial variations originating from
property differences in the facial database. Be-
sides facial surface points and skull points, a
numeric set of property values for every entry
in the database is stored and incorporated dur-
ing statistical model building. Before the fit-
ting or reconstruction process, shape variation
in the statistical model coded by the values of
the given properties is removed. This results in
a database of facial entries with the same prop-
erty values as the skull specimen, on which a
new statistical model with eliminated property
variation can be calculated and used during re-
construction.
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The remainder of this paper is organized as fol-
lows. In section 2 we define the mathemati-
cal representation of the facial template used
throughout the paper and explain the TPS in-
terpolation machinery for facial reconstruction
based on a static model. In section 3 the con-
struction of the statistical facial model is de-
scribed, while section 4 explains the explicit
modeling of property-dependent facial varia-
tions. Section 5 will show how the statistical
model can be combined with the TPS defor-
mation for facial approximation. In section 6
a comparison is made between a reconstruc-
tion based on static models and a reconstruction
based on our proposed flexible statistical model
for a real skull case. Finally, in section 7, con-
clusions are drawn and some future improve-
ments are listed.

2. TPS-based Static Facial Model Fitting

Our facial template for craniofacial reconstruc-
tion consists of a combination of two sets of
3D point coordinates M � �Ms� Mlm�, with

Ms � fMs
j � R3j j � 1� � � � � Ng a dense point

set representing the facial surface of the model,

and Mlm � fMlm
i � R3j i � 1� � � � � Lg repre-

senting the set of model landmark or feature
points �skull landmarks, thickness dowel ends,
e.g�, where typically N �� L. In this paper we
will make use of anatomical landmarks defined
on the skull surface.

The craniofacial reconstruction of a face F now
consists of estimating the dense set of facial sur-
face point coordinates Fs based on a model M
and of a set of corresponding landmark points

�Flm
i � Mlm

i � on the model and target skull. One
way to estimate Fs is to determine a smooth

mapping or deformation function f : R3�R3

satisfying the following interpolation conditions
at the landmark points:

Flm
i � f �Mlm

i � for i � 1� � � � � L �1�

and simultaneously minimizing a deformation
penalty Ef which is the sum of a component-
wise bending energy functional E fc , with fc cor-
responding to the x, y and z components of the
deformation function f, resp.:

E fc �

Z
R3

�
�2 fc

�x2
�2 � �

�2 fc

�y2
�2 � �

�2 fc

�z2
�2 � � � �

2�
�2 fc

�x�y
�2 � 2�

�2 fc

�x�z
�2 � 2�

�2 fc

�y�z
�2dx

�2�
Thin-Plate Spline �TPS� functions, also known
as smoothest interpolators, satisfy the condi-
tions in �1�whileminimizing the energy defined
in �2�. The null space of the penalty function-
als E fc are the linear �affine� transformations.
Hence, the TPS functions interpolate the given
conditions �1�while remaining as affine as pos-
sible, as measured by �2�.Using homogeneous

coordinate notations for Mlm and Flm, the TPS-
based interpolation function can be specified by
two parameter matrices d and �:

f�Mlm
i � � Mlm

i d� φ�Mlm
i �� �3�

where d is a 4� 4 affine transformation matrix
and � is a L� 4 non-affine warping coefficient

matrix. The 1 � L vector φ�Mlm
i � is related to

the thin-plate spline L�L kernel matrix Φ with

component values φl�M
lm
i � � kMlm

i � Mlm
l k.

For a function of the form �3� the total bending
energy can be rewritten as:

E f � trace��TΦ�� with Φil � kMlm
i �Mlm

l k
�4�

The TPS parameters d and � can be computed
by solving the following linear equation:�

Φ Mlm

MlmT

0

��
�

d

�
�

�
Flm

0

�
�5�

Once the TPS parameters are determined, an es-
timation Fs

est of the facial surface points Fs can
be obtained by simple substitution of the model
surface points into �3�:

Fs
est � Msd� φ�Ms�� �6�

From equation �4� we observe that the final
minimum bending energy or the amount of
component-wise non-affine deformation required
to satisfy the interpolation conditions in Eq.�1�
depends on the model landmark points Mlm.
When the “difference” �except for an affine
transformation� between the landmark points

Mlm and Flm increases, the amount of non-affine
deformation will increase as well, and, as a re-
sult, the less face-like the estimation Fs

est will
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be. Hence, the choice of model template is im-
portant. In the next section we will describe a
statistical model that is capable of reducing the

difference between Mlm and Flm or the complete
faces M and F in a face-specific way.

3. PCA-based Statistical Facial Modeling
and Fitting

The flexible statistical facial template that we
propose in this paper, models the combined
population-dependent variation and correlation
of skin surface shape and tissue depths �repre-
sented by skull landmarks� froma facial database
of, currently, 118 faces. A single facial database
entry consists of a dense point representation
of the 3D facial surface �acquired with a 3D
camera. Shapecam, Eyetronics�, 52 skull land-
marks and the nose tip as extra �skin� land-
mark. Skull landmarks are derived from soft
tissue depths measured at 52 anatomical land-
marks on the skin surface with an ultrasound de-
vice �Epoch4B, Panametrics� according to �13�.
The soft tissue depths are set out starting from
the landmarks on the skin surface perpendicular
to the skin surface, resulting in 52 skull land-
marks. Inter-subject correspondences between
skull landmarks and dense skin surface points
are automatically calculated using a non-linear
robust point matching procedure for landmark
correspondences �9� followed by a geodesic sur-
face matching algorithm �10�. This results in
consistent dens point representations of the 3D
facial surfaces.

Using this procedure, we construct a database
of faces fFkjk � 1� � � � � Kg with Fk � �Xs

1� Ys
1�

Zs
1� � � � � Xs

N� Ys
N� Zs

N� Xlm
1 � Y lm

1 � Zlm
1 � � � � � Xlm

L �

Y lm
L � Zlm

L � a vectorial representation of a sin-
gle face, each coordinate index labeling cor-
responding points. New acceptable faces can
then be expressed as linear combinations of the
faces in the database:

M�a� �
KX

k�1

akFk �7�

with reasonable limits on the range of the coef-
ficient values ak. A flexible facial model can
then be defined as the set of faces M�a� �

�Ms�a�� Mlm�a�� parameterized by the coeffi-
cients a � �a1� � � � � aK�.

A probability distribution can be associated to
this linear face space by fitting a multivari-
ate normal distribution to the data set of 118
faces. This can be accomplished using a Prin-
cipal Component Analysis �PCA� of the co-
variance matrix of the mean normalized facesbFk � Fk � F with F �

1

K

PK
k�1 Fk the aver-

age face �shown in figure 1 �b��. PCA performs
essentially a basis transformation to an orthogo-
nal coordinate system �eigenspace� spanned by
the eigenvectors Uk of the covariance matrix in
descending order according to their associated
eigenvalues σk.

M�c� � F �
K�1X
k�1

ckUk �8�

The flexible statistical facial model is then de-
fined as the set of faces M�c� parameterized
by the coefficients c � �c1� � � � � cK�1�. The
probability for the coefficients c generating a
plausible face is given by:

p�c� � exp

�
�

1

2

K�1X
k�1

�
ck

σk

�2
�

�9�

This prior probability can be used in a bayesian
estimation framework to fit the model M�c� to a
new observed facial instance F by maximizing
the following a posteriori probability:

P�cjF� � P�Fjc��p�c�� �10�

or, equivalently,minimizing the following func-
tional:

EF�M�c��c� � kF�M�c�k2�
K�1X
k�1

�
ck

σk

�2

�11�

For further details about optimizing �10� or �11�
over the model parameters �c�, we refer the
reader to �11�.

The key point in using a flexible statistical
model for facial reconstruction is the ability
to update the facial template M�c� by chang-
ing the coefficients c in a face-specific way
such that no bias towards a specific face in the
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(f) (b) (g)

(d) (b) (e)

(a) (b) (c)

Fig. 1. �b�The average facial surface and skull
landmarks �black dots� of our database. �a, c� visualize
the effect of changing the first model parameter in the

negative �a� and positive �c� direction of the first
eigenvector. �d, e� and �f, g� visualize the effect
according to the second and third eigenvector

respectively.

database is introduced and such that the differ-

ences between the landmark points Mlm�c� and

Flm or the complete faces M�c� and F can be re-

duced, resulting in a smaller amount of remain-

ing non-affine deformation required. Figure 1

�a,c-g� shows the effect of changing the first

three model parameters of the average face. In

section 5, we show how we can combine both

models �the statistical PCA-based face defor-

mation model presented in this section and the

TPS-based generic, smooth deformation model

presented in section 2� to arrive at realistic re-

constructions of faces from skulls, even when

the statistical face deformation model is too re-

strictive. But, first we show in the next section

how face-specific property-dependent deforma-

tions can be extracted from the statistical model

by incorporating property values of the facial

entries in the database during model construc-

tion.

4. Modeling Property-dependent
Variations

In order tomodel and extract property-dependent
variations from the database the vector repre-
sentations of the facial entries, defined in the
previous section, need to be expanded. A nu-
meric set of property values is appended at the
end of every facial vector representation result-

ing into Fk � �Xs
1� Ys

1� Zs
1� � � � � Xs

N� Ys
N� Zs

N� Xlm
1 �

Y lm
1 � Zlm

1 � � � � � Xlm
M � Y lm

M � Zlm
M � B� A� G� for every

face fFkjk � 1� � � � � Kg in the database. Both
B�bmi� and A�age� have continuous values,
while the G�gender� values are discrete ��1
for females and �1 for males�. Based on
these vector representations, a statistical PCA
template, modeling the combined skin surface
shape, skull landmarks and properties variation,
is built according to the previous section.

Expressing the original data in terms of princi-
pal components �equation 8� is in fact a descrip-
tion of the data in terms of variances. The goal
is to find proper directions in this variance space
related to variations in A ,B and G. The extrac-
tion of property-dependent variations from the
statistical model is obtained by finding three ba-
sis vectors in the coordinate system spanned by
the eigenvectors, describing the separate inde-
pendent change of B, A and G. Since this can be
achieved by an infinite number of linear com-
binations of the eigenmodes, the linear com-
bination which has the smallest Mahalanobis-
distance D to the origin of the eigenspace, is
searched for. According to �11� this can be
solved by a constrained least-square optimiza-
tion. Let rb, ra and rg be the three unknown
basis vectors describing a unit change of B, A
and G respectively. The Mahalanobis-distance
D of these three vectors is given by:

D�rx� �
K�1X
k�1

�rxk�
2

σk

for x � fb� a� gg �12�

Taking into account that B, A and G values de-
pend only on the last three rows of the eigen-
vector matrix U, a sub-matrix Us consisting of
the last three rows of U can be defined. Mini-
mization of the Mahalanobis-distance D subject
to the constraint of separate B, A and G change
by one unit is done by minimizing the following
Lagrange functional L:
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L�rx� lx� �
K�1X
k�1

�rxk�
2

σk

� lTx �U
srx � ex�

x � fb� a� gg

eb �

�
1
0
0

�
� ea �

�
0
1
0

�
� eg �

�
0
0
1

� �13�

The vectors lx for x � fb� a� gg are the Lagrange
multipliers. The Lagrange functional L�rx� lx�
is solved by calculating the derivatives with re-
spect to all the variables lx and rx, resulting into
the following two linear equations:

2A�1R � UsTQ

UsR � I
�14�

where,

A �

��σ1
. . .

σK�1

�	
R �



rb ra rg

�
Q � � lb la lg �

�15�

(a) (b) (c)

( ) (b) ( )d e

( ) (b) ( )d e

Fig. 2. �b�The average facial surface and skull
landmarks �black dots� of our database with BMI �

22.35, Age � 25 and gender � 0.18. �a� BMI changed
to 15, �c� BMI changed to 35, �d� Age changed to 18,
�e� Age changed to 70, �f� Gender changed to -1 and �g�

Gender changed to �1.

The three basis vectors in R are then given by:

R � AUsT �UsAUsT ��1 �16�

While rb describes a change of bmi by one unit
with constant age and gender and with min-
imal shape variation, rb and rb alter age and
gender correspondingly. The effects caused by
adding these basis vectors to the average face in
Fig. 1 �b� are shown in Fig. 2.

5. Combined TPS-PCA-based Model
Fitting

Before applying the combined statistical and
TPS reconstruction procedure, the set of given
skull property values for a particular target skull
is imposed as a hard constraint by eliminat-
ing variation in the statistical model coded by
the given values and generating a property nor-
malized statistical model. This is realized by
subtracting the basis vectors R, from the previ-
ous section, weighted by the corresponding dif-

ferences ��kbmi� �kage� �kgender� from the

model description parameters ck of each facial
entry fFkjk � 1� � � � � Kg in the database accord-
ing to:

c̃k � ck � R

���kbmi

�kage

�kage

�	 �17�

As such, a new database is obtained which
is invariant with respect to the given property
values of the skull specimen. Every face in
the database has now the same property values
equal to the given values. The remaining vari-
ability in this property value-normalized pop-
ulation is smaller than the original population
and can be calculated by applying a new PCA

to the normalized set of instances c̃k. The result
is a new property value-normalized statistical
model M̃�c�.

ATPS-based reconstruction in combinationwith
the new flexible statistical model is obtained by
solving the following TPS interpolation prob-
lem. Given corresponding landmark points

�Flm
i � M̃lm

i �c��, determine a smooth model map-
ping or deformation function f, with parameters
�d� ��, and model parameters c, satisfying the
following interpolation conditions:
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Flm
i � f�M̃lm

i �c�� for i � 1� � � � � L �18�

while minimizing the following reconstruction
functional �using the notations of Eqs. �4� and
�11�:

Erec�c� d� �� �Ef � Ef�M̃�c���M̃�c��c�

�trace��TΦ���
kf�M̃�c��� M̃�c�k2�
K�1X
k�1

�
ck

σk

�2

�19�

withΦil � kM̃lm
i �c��M̃lm

l �c�k. The first term in
the reconstruction energy functional is the same
as in equation �4� regularizing the non-affine
part of the TPS-deformation defined by in-
terpolating the corresponding landmark points

M̃lm�c� andFlm. The second termminimizes the
distance of the TPS-deformed complete model

f�M̃�c�� � f��M̃s�c�� M̃lm�c��� to the closest
face model instance favoring facial templates
with limited overall deformation, not just at the
landmark points. The last regularization term
favors more plausible face model parameters c.

Solving the interpolation problem �18�, while
minimizing �19�, is done iteratively by alter-
nating the estimation of the model parameters
�c� and the TPS parameters �d� ��. When the
model parameters are kept fixed, the interpo-
lation problem is similar to the one defined in
section 2 and theTPSparameters can be updated
according to equation �5�. A new estimate Fs

est
of the facial surface points Fs can then be cal-
culated using equation �6�. Keeping the TPS
parameters �d� �� fixed and based on the new
facial estimate, the model parameters can be
updated by maximizing the a posteriori proba-

bility in equation �10�, where F � �Fs
est� Flm�.

For model initialization we can take the aver-
age face F by setting the model parameters �c�
equal to zero.

The complete iterative updating algorithm is de-
scribed in pseudo-code below:

Initialize

c � 0, M̃�c� � F̃
procedure

repeat

update �d,�� with �5�
update Fs

est with �6�
update c with �10�

until convergence�

6. Results

Comparative reconstructions of a real-case skull
found in Belgium are presented in this section to
show the differences in the reconstruction mod-
els used �static versus statistical�. In order to
make the reconstructions comparable, all mod-
els used in this section have 52 skull landmarks
and an estimate of the nose tip as additional skin
landmark to determine the model deformation.
A 3D digitizedmodel of the skull, acquired with
CT scanning and the 52 skull landmarks are de-
picted in Fig. 3. An estimate of the nose was
set out according to �15�.

Fig. 3. 3D digitized model of the input skull �left� and
the 52 skull landmarks indicated on the skull �right�.

Two different static models were used to make
a facial reconstruction of the skull in figure 3
based on the TPS deformation machinery ex-
plained in section 2. The first is the average face
of our database, being a generic facial model.
The second is a subject-specific face from the
database. Themodels and reconstruction results
are shown in figure 4. The model bias in the re-
constructions is clearly visible. The result from
the average face �figure 4 �b�� is very smooth
and contains no specific facial characteristics,
similar to the average face. When using the
subject-specific facial template, facial charac-
teristics of the template remain in the final re-
construction �the eyebrows and the chin region,
e.g�. Furthermore, large differences between
several landmarks on the model and the tar-
get skull �the nose tip e.g� generate caricature-
like final outlooks of the reconstructions due
to the large amount of non-affine deformation
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(a) (b)

(c) (d)

Fig. 4. Two static facial templates ��a� generic face, �c�
specific face�, and their TPS-based reconstruction

results �b,d�.

that has been applied. Especially, when using
the subject-specific face, the nose of the recon-
struction �figure 4 �d�� looks unrealistic.

A facial reconstruction of the skull in figure 3
was also made with our proposed flexible statis-
ticalmodel, as explained in section 5. In the first
test, the property values were set to: bmi � 20
�thin person�, age � 25 and gender � 1. Then
the model was initialized with the average face
of the property-normalized database. During
reconstruction, the flexible model and the TPS
deformation were iteratively updated, resulting
in the facial template and the reconstruction de-
picted in figure 5 �a� and �b�, respectively. In
the second test, we used a subject-specific face
of the normalized database as initialization for
the model and we observed that the final tem-
plate and reconstruction were exactly the same
as in figure 5 �a,b�. In fact, any face from the
property-normalized database could have been
used to initialize the model leading to the same
template and reconstruction results. When ob-
serving the reconstruction in figure 5 �b�, more
characteristic facial features are apparent in the
reconstruction than in the one based on the av-
erage model in figure 4 �b�, but they cannot
be attributed to a subject-specific face in the
database, unlike the reconstruction based on the
subject-specific face model in figure 4 �d�. In

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Three different reconstructions of the skull in
figure 3 based on a statistical model in combination with
a TPS deformation �a,b� Template and reconstruction

for bmi � 20, Age � 25 and gender �1; �c,d� Template
and reconstruction for bmi � 30, Age � 25 and gender
�1; �e,f� Template and reconstruction for bmi � 20,

Age � 70 and gender �1.

other words, no bias towards a specific face
in the database is introduced into the recon-
struction. Finally, the plausibility of the recon-
struction being a human face in figure 5 �b� is
much higher than the caricatural ones in figure
4 �b,d�, especially when observing the nose.
This can be explained by the fact that the dif-
ferences between the model landmarks and the
skull landmarks are reduced during reconstruc-
tion by applying face-specific variations so that
a smaller amount of TPS deformation is needed.
Indeed, the difference between the final statisti-
cal model template and the final reconstruction
is much smaller than the differences between
templates and reconstructions in 4. �a,c� and
�b,d�, respectively.

Two more reconstructions were made based on
different property values to illustrate the possi-
bilities of the proposed reconstruction method.
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When a different set of property values is sug-
gested, manual reconstructions by means of
modeling plasticine need to be completely re-
done, while reconstruction methods based on
a static model require a new facial template
with the proper properties to start from. With
our proposed method, no new template is re-
quired and a new facial reconstruction is made
within a few seconds. In figures 5 �c� and �d�
the facial template and reconstruction for an in-
crease of bmi �30� are shown, while figures 5
�e� and �f� show the results for an increase in
age �70�. When observing the different tem-
plates and reconstructions in figure 5, one can
see that the major facial characteristics remain
visible over the different reconstructions, while
the property-specific characteristics are clearly
different. This is because the set of basis vec-
tors describing property-dependent characteris-
tics, model a change in property with minimal
shape variation.

7. Conclusion

We proposed a flexible statistical facial model
of combined tissue-depths and complete facial
surfaces, which can be used for 3D computer-
ized forensic facial reconstructions. The main
difference with currently used facial models
is the automatic adjustment or improvement
of the model by making use of face-specific
modes of variation, which in combination with
a TPS-based interpolation results in unbiased
and more realistic reconstructions. To adjust
the statistical facial model parameters we aug-
mented the TPS minimal bending energy in-
terpolation functional with a face-specific reg-
ularization term. Minimizing the augmented
energy functional was done iteratively by al-
ternating the estimation of the PCA-based sta-
tistical model parameters and the TPS defor-
mation parameters until convergence. Before
the iterative reconstruction procedure, property
values of a given skull specimen were imposed
as hard constraints by removing the variability
in the database and the statistical model coded
by differences in property values. As a result,
multiple reconstructions of the same skull, but
with different property conditions, can be made
within a few seconds. A comparison was made
between a reconstruction with the proposed
model and reconstructions with a generic and

a subject-specific static facial model on a real-
case skull. The result of this approach might be
interpreted as an improvement in terms of fa-
cial plausibility of the reconstruction. Different
initializations of the model were used, leading
to the same template and reconstruction results,
which indicate that no bias towards a specific
face was introduced into the reconstruction. Fi-
nally, multiple reconstructions were made in or-
der to illustrate the possibilities of the proposed
statistical method for alternating the skull prop-
erty values. Some extensions can be proposed
to the reconstruction based on a flexible model
in combination with a TPS deformation. First
of all, having a larger and more diverse database
increases the flexibility of the model. The more
the model can be adjusted towards the skull in
a face-specific way, the smaller the amount of
TPS deformation required. Ideally, no more
extra TPS deformation is needed in order to sat-
isfy the interpolation conditions. The current
database of 118 faces is rather limited and will
be expanded in the future. Secondly, the indi-
cation of the skull landmarks is currently done
manually and is error-prone. It would be in-
teresting to relax the interpolation conditions
during TPS fitting according to error ranges
on the landmark indications. Another solution
could be the automatic extraction of the skull
landmarks from the skull, such that the indi-
cation would be less error-prone and such that
the complete reconstruction pipeline would be
automatic. Finally, a proper validation scheme
for cranio-facial reconstructions is to be defined
and applied in order to evaluate and compare the
performance of different reconstruction meth-
ods. The goal of cranio-facial reconstruction
is recognition or identification. However, these
concepts are hard to translate into a proper and
easy validation scheme.
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