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Abstract. Non–rigid motion estimation from image sequences is essential in analyzing and understand-
ing the dynamic behaviors of physical objects. One important example is the dense field motion analysis
of the cardiac wall, which could potentially help to better understand the physiological processes associ-
ated with heart disease and to provide improvement in patient diagnosis and treatment. In this paper,
we present a new method of estimating volumetric deformation by integrating intrinsic instantaneous
velocity data with geometrical token displacement information, based upon continuum mechanics princi-
ples. This object–dependent approach allows the incorporation of physically meaningful constraints into
the ill–posed motion recovery problem, and the integration of the two disparate but complementary data
sources overcomes some of the limitations of the single image source based motion estimation approaches.
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1. Introduction

Motion and deformation analysis has been of great
interest in computer vision research and applica-
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tions. The goal is to quantitatively extract the
temporal kinematic changes, rigid or non–rigid, of
the objects depicted in the image sequence. In
general, it is a correspondence problem which in-
volves finding the positions of the object points
at successive image frames (the motion of each
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point). It is also a classification problem which
deals with measuring motion differences among
different object points (the deformation of the ob-
ject) if non–rigid motion is present. The results
are often essential in analyzing the dynamic be-
havior of many physical objects. While three–
dimensional (3D) non–rigid cardiac motion recov-
ery is the focal example of this paper, where the
heart translates, rotates, and deforms in 3D space,
it is of interest to note that other motion related
applications include robot navigation [21], facial
recognition [9, 20], articulated motion [25, 47],
satellite weather map analysis [52], etc.

1.1. Motion Recovery

Traditionally, the primary emphasis on motion
measurement from image sequences has been on
the determination of optical flow, a problem long
studied in the computer vision literature and
which these papers illustrate: Anandan [3], Ba-
jcsy [6], Hildreth [29], Horn [32], Kanade [15],
Nagel [44], and Tsotsos [70], etc., as well as med-
ical application oriented works [40, 63]. Although
many of these optical flow based methods are
based upon solid theoretical foundations, includ-
ing physical and geometrical models of the ob-
ject and various coherent constraints on its mo-
tion pattern, they are generally not very suc-
cessful in estimating the true motion field of de-
formable objects, where non-linear mapping func-
tions are needed to express the point correspon-
dences. One reason seems to arise from the fact
that for discrete image sequences, inter-frame dis-
placements are often larger than image resolution,
which makes it difficult to use local operations to
track the true motion, although multi-resolution
or scale-space approaches [8, 16, 75] do offer pos-
sible remedy for this particular problem. Also,
non–rigid motion makes it more difficult to en-
force the smoothness constraints effectively on the
optical flow field which are necessary to deal with
the aperture problem. Furthermore, as Horn sug-
gested [31], the motion field, defined as the dis-
placement vector field of each point of each object
in the image, is usually not exactly the same as the
optical flow, the apparent motion of the bright-
ness pattern. It has been demonstrated that the
actual correspondence process takes place beyond

the level of the raw gray level intensity values [41].
It has also been suggested in Ullman’s report that,
at least in the human visual system, the edges
or the boundaries of the objects are the tokens
used in the correspondence process [71], which
becomes the foundation of many boundary-based
motion tracking algorithms, and was heuristically
validated by Slager et al [61] in analyzing cardiac
image sequence.

Boundary-based motion analysis of non-rigid
objects has often been seen as a two step process:
first establishing correspondence between certain
sub-sampled points of the boundary at time t and
time t + 1, then using these correspondences as a
guide to solve for a complete mapping of the ob-
ject points between the two time frames. There
have been considerable efforts in general on these
two topics, although rarely have they been ad-
dressed together. While earlier approaches used
simple global distance measures to find correspon-
dence, more recent matching methods have been
mainly based on tracking salient image features
over time, from simple tokens such as points or
line segments to complex structures. Curvatures
of contour and surface are used for non-rigid bend-
ing motion [38, 51, 59], Gaussian curvature is used
to estimate point correspondence when the surface
is undergoing conformal motion with constant, lin-
ear, and polynomial stretching [39], and the prin-
cipal curvatures are used to recover surface mo-
tion under a hybrid bending and stretching model
[1]. A somewhat different but certainly interesting
approach by Sclaroff and Pentland establishes cor-
respondence by matching shapes in eigen-modal
space of a finite element representation of the ob-
ject in different images [57],and then recover the
correspondence in the object space.

The task of establishing a complete non-linear
mapping between object frames has received more
attention. In all of these approaches, esti-
mates of correspondence between sparse individ-
ual points on objects are either specifically as-
sumed to be known or established based on some
global distance measures. Metaxas and Terzopou-
los have advocated general global parameterized
deformable superquadrics that can be locally de-
formed or modified [17, 67]. Physically-based fi-
nite element models are used by Pentland [33]
and Ayache [45] to provide a framework for the
mappings, and modal analysis is adopted to re-
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duce computational cost. Other finite element
mesh-based approaches have introduced flexible
adaptive-size models [68]. Bookstein [11] used
deformable thin-plate spline models to interpo-
late dense correspondence from very sparse ini-
tial matches. To certain extent, our proposed
approach is following this physically-motivated
paradigm. However, we try to employ truly phys-
ically meaningful constraints, instead of merely
physically motivated models, on the dynamic be-
haviors of the object, which enable us to incorpo-
rate naturally actual known physical parameters
into the motion estimation framework.

1.2. Cardiac Deformation Analysis

Accurate estimation of cardiac deformation has
long been an interesting and important study case
for non-rigid motion recovery [1, 39, 45, 54, 33,
59, 58]. The complexity of the myocardial motion
and the absence of internal landmarks imply that
the true motion characteristics of heart tissue el-
ements are, at best, difficult to infer from sequen-
tial images. In addition, it is not only a challeng-
ing computer vision problem, but is also essential
in evaluating the cardiac physiological and patho-
logical conditions to detect ischemic heart disease.
The ability to make cardiac motion measurements
has a variety of benefits, including that image-
based serial analysis of regional function is helpful
in assessing the efficacy of therapeutic agents as
well as mechanical interventions [13, 26].

In addition to the above mentioned general non-
rigid motion algorithms which have been or could
be applied in cardiac image analysis, there are ac-
tive efforts in medical image analysis community
that are more specifically aimed at heart motion
estimation. Several approaches attempt to detect
optical flow of cardiac image sequences [40, 63, 69].
Other approaches try to track the movement of
the pre-extracted boundary points of the cardiac
wall, where geometric tokens are used as track-
ing cues [10, 23, 39, 38, 51]. The use of identifi-
able shape information seems to be supported by
an important validation study in two-dimensional
(2D) image sequences by Slager et al [61]. Some of
these boundary-based methods suffer from using
only the end-diastolic (ED) and end-systolic (ES)
image frames while ignoring the important tem-

poral evolution of the motion pattern [24], some
others have been hampered by relying on 2D im-
age sequence data. The 3D nature of the cardiac
motion means that measurements from 2D image
sequences most likely are not made from the same
points on the cardiac boundaries at different time
instants, and hence do not track the true move-
ment of the heart.

Interestingly, there have been several very im-
pressive development in medical imaging commu-
nity to produce better and information-richer im-
age data on cardiac motion. In magnetic reso-
nance tagging, a spatially varying pattern of mag-
netization is encoded into the myocardium prior
to each phase-encoded data acquisition cycle of a
spin-echo imaging sequence, forming a grid pat-
tern of image voids [4, 78]. Motion that occurs
between the time the tags are laid down and a
later point in time results in a distortion of the
tag pattern which can be tracked over a portion
of the cardiac cycle. In order to obtain data per-
taining to deformation in three dimensions, 2D tag
data must be acquired in two orthogonal views [5].
It is important to notice that the same tissue el-
ements are not tagged in each of the two views,
thus the deformation in each view must be seen
as partial 2D data at different points that con-
tributes to an overall scheme aimed at estimat-
ing the complete 3D motion and deformation. A
variety of approaches have been designed to esti-
mate motion from tagging images. Several of the
most relevant ideas are the finite element models
that incorporate spring-like interconnections and
nonlinear basis functions [77], locally deformable
superquadrics [54], B-snake interpolation [2], high
order polynomial fitting of the sparse tag points
[49], and an estimation theory based idea which
uses a stochastic vector field to assist in the inter-
polation [18].

Another new medical imaging data is the so-
called phase contrast MR imaging. The physics
basis is that a uniform motion of tissue in the
presence of a magnetic field gradient produces a
change in the MR signal phase which is propor-
tional to its velocity. In addition, the velocity in
any particular spatial direction can be estimated
by measuring the difference in phase shift between
two acquisitions with different first gradient mo-
ments [46]. Currently, phase contrast velocity esti-
mates near the cardiac wall boundaries are quite
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noisy because spatial averaging must occur. In
addition, since the velocity maps themselves do
not establish the point correspondences between
image frames, methods need to be devised to ac-
curately track each segment of myocardium as it
deforms through the cardiac cycle. Approaches
that use forward, backward, or combined forward
and backward, integration of the velocity to esti-
mate the displacement vector have been proposed
[14, 28, 55, 74]. In addition, Meyer [43] suggests
a framework which combines a spatially regulariz-
ing velocity field with temporal Kalman filtering
to characterize the deforming LV in 2D.

1.3. Possible New Directions In Cardiac Motion

One observation stems from the importance of vol-
umetric analysis of heart motion. The assessment
of degree of transmural injury is one critical as-
pect of evaluating the mechanical performance of
myocardial dynamics in general, and patient prog-
nosis in particular. A complete appreciation of the
image analysis results only occurs from volumet-
ric data. While current approaches have attacked
some aspects of cardiac motion recovery problem
from different angles, they have mostly concen-
trated on either boundary information or mid-wall
but not both, which makes them inherently use in-
complete information. In addition, even though
there are approaches utilizing the new medical
imaging data, there has been no work attempting
to merge complementary computer vision based
matching strategies with imaging physics based
concepts within a unified framework. One possi-
ble reason is the fact that an appropriate compu-
tational framework has not yet been developed for
assembling various complex cues related to cardiac
deformation that are available from image data
sets.

Another observation rises from the very active
research in the biomechanics community that is
aimed at deriving quantitative descriptions of lo-
cal myocardial motion and material character-
istics, including the distributions of stress and
strain, the local tissue properties represented by
constitutive relationships, etc. [27, 30, 37, 48, 72,
76]. These local quantities are particular impor-
tant in understanding the mechanics of pathologi-
cal conditions such as myocardial ischemia and hy-

pertrophy, and they are also invaluable for mathe-
matical and computational modeling of the beat-
ing heart. While in physics-based computer vi-
sion research, efforts have been made to use sim-
ple, generic, and empirical physical principles to
achieve local smoothness and data-driven inter-
polation, there have been little use of known, true
physical constraints pertaining to the objects we
are studying. For biological objects with complex
behavior such as the heart, any additional infor-
mation will certainly help to more accurately de-
rive useful results from the images. It is our asser-
tion that the use of true mechanical models as a
means to guide image understanding is an attrac-
tive new direction for certain image analysis prob-
lems, especially with regards to biological objects.
For the purposes of heart motion estimation, we
are particular interested in computationally acces-
sible ideas that focus on the solid mechanics mod-
eling of the myocardium which are suitable to be
integrated with our image-derived recovery.

1.4. Proposed Approach

We propose here an integrated framework for the
analysis of three-dimensional motion and defor-
mation of the heart. This unified approach is
based upon the use of image analysis strategies
and biomechanical modeling of the myocardial tis-
sue, and is embedded in a finite element frame-
work for the integration of disparate sources of
displacement and velocity information, heretobe-
fore used only separately, to help guide volumetric
motion and deformation analysis. In this man-
ner, noisy and complementary image information
can be jointly utilized from both the heart wall
boundaries (where the shape-based estimated dis-
placements are reliable) and the mid-wall (where
measures such as MR phase velocity, MR tag-
ging, and echocardiographic Doppler are reliable).
In addition, the continuum mechanical properties
of the myocardium provide physically meaning-
ful constraints on the dynamic behaviors of the
myocardial tissue. This, along with the finite el-
ement framework, enable us to incorporate nat-
urally actual known cardiac physical parameters,
such as pressures, into the motion/deformation es-
timation system.
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While the framework presented here is currently
aimed at cardiac motion analysis, we believe that
it has at least two aspects which can be applied
in certain areas of computer vision research in
general. One is the use of true physical proper-
ties of the objects to incorporate more meaningful
constraints, in place of empirical geometrical or
physically-motivated models. The other is the in-
tegration of complementary image-derived data, a
mechanics-based fusion in our example, to achieve
more robust results.

2. Image–Derived Information

It is the aim of the proposed motion and deforma-
tion analysis framework to more completely char-
acterize the transmural function of the left ventri-
cle (LV). Towards this goal, we believe that inte-
gration of several complementary image sources of
LV anatomy and motion provides a more robust
way for quantifying the dynamic behavior of the
myocardium. In this section, we will briefly dis-
cuss several of the image-derived sources of data
which have been used in our framework.

2.1. Shape–Based Boundary Displacement

We have previously proposed that we can use the
shape properties of the endocardial and epicardial
surfaces to track the motion of a dense field of LV
surface points over the entire cardiac cycle [59].
Here, we assume that the myocardium boundaries
have been segmented [12, 65], and we only deal
with boundary surface points. Our motion track-
ing method is based on locating and matching dif-
ferential geometric surface landmarks and using a
mathematical optimization reasoning strategy to
combine a locally coherent smoothness model with
data-derived information to obtain dense field mo-
tion vectors. Favorable tracking results validated
by implanted physical markers have been observed
[59].

2.1.1. Surface Representation Since the motion
tracking strategy is based upon the boundary
shape characteristics, a good surface representa-
tion is needed to infer the geometrical parameters
of the LV surfaces. Delaunay triangulation is most

suitable for volumetric representation of spatial
point set without a priori connectivity informa-
tion, and it defines a symmetrical and isotropic
neighborhood point relationship. For any 3D
point set, the Delaunay triangulation [73] defines
a simplex decomposition of the convex hull of the
point set, where the vertices of all tetrahedra are
contained in the point set. Its most important
property is that the circumsphere of every tetra-
hedron contains no other point from the point set,
which can be used to prove that the Delaunay
triangulation is a globally optimal triangulation
in the sense that the tetrahedra are as regular

as possible. An algorithm based on incremental
point insertion into a pre–existing Delaunay tri-
angulation [73] is implemented, which is of O(N 2)
in the worst case. For the myocardial bound-
ary point set, the two-dimensional Delaunay facets
which are on the boundary of a bounded and con-
strained Delaunay triangulation constitute the LV
endocardial and epicardial surfaces [60]. Figure 1
shows the Delaunay tessellated endocardial and
epicardial surfaces from an MRI dataset.

2.1.2. Surface Shape Characteristics To be
able to analyze the local shape properties around a
point p in a neighborhood of a triangulated surface
S, the trace of the polynomial is used to approxi-
mate this neighborhood in the form of the graph
of a differentiable function. We choose the local
coordinate system in such a way that the origin
O is at p and the z axis is directed along the out-
ward normal at p (thus, the xy plane agrees with
the tangent plane Tp(S)). It follows that a neigh-
borhood of p in S can be represented in the form
z = h(x, y), where h is a differentiable function,
with h(0, 0) = 0, hx(0, 0) = 0, hy(0, 0) = 0. In or-
der to choose a neighborhood of p which is unique
(no folding) and local (no non-neighboring points)
under the local coordinates, the natural neighbor
relationship between surface points should be used
to define a precise and flexible neighborhood [60].

Since the Weingarten mapping matrix only de-
pends on the first and second derivatives of the
graph function h(x, y), biquadratic functions are
all we need to estimate the curvatures of the local
surface, assuming that the local surfaces are well
behaved such that a biquadratic polynomial can
approximate a patch sufficiently closely. The es-
timate of the biquadratic graph function involves
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finding the five coefficients of the polynomial:

z = h(x, y) = a1x
2 +a2xy +a3y

2 +a4x+a5y (1)

If there are at least four neighboring points, say
n − 1(n ≥ 5) points, the least-square estimate of
the five coefficients is evident. Once the coeffi-
cients are found, computing the actual differential
properties on the fiducial point is straightforward
[19].

Since the surface curvatures are the only natural
algebraic invariants of the Weingarten mapping
matrix, they arise naturally in a detailed anal-
ysis of surface shape. Gaussian and mean cur-
vatures are invariant to arbitrary choice of local
parameterization of a surface patch, and are also
invariant to arbitrary rotations and translations
of the surface patch in space. These invariances
are extremely important in uniquely characteriz-
ing the view-independent surface shape proper-
ties. The analysis of the left ventricular surfaces
is based upon these invariances for characterizing
their shape properties. The principal curvatures,
the two eigenvalues of the Weingarten mapping
matrix, provide an equivalent description of the
local surface shape. Moreover, they also provide
the directional information of the surface shape,
which could be important in finding certain higher
order differential features of the surface, such as
ridge lines. Figure 2 shows the curvature maps
of an endocardial and an epicardial surface at one
time point.

2.1.3. Surface Motion Tracking The movement
of a set of LV surface points over the cardiac cy-
cle is determined by following local surface shape
between successive surface frames. First, the my-
ocardial surface at one given time instant is sub-
sampled to create a sparser set of points (the ex-
perimental results shown later are obtained us-
ing a ten percent sampling rate) in order to
avoid cross-overs between local matches. Under
the assumption that the LV surface deforms as
little as possible between small time intervals,
the sub-sampled surface points are matched and
followed over the LV surface sequence under a
minimum bending energy model. Then, match-
confidence-weighted regularization functionals are

constructed to compute the dense field motion for
all the surface points.

Shape-Based Initial Matching. Local sur-
face patches on the LV are modeled as thin flexible
plates, loosely constrained to deform in a prede-
termined fashion. The potential energy of an ideal
thin flexible plate of elastic material is a measure
of the strain energy of the deformation:

ǫbe = A
( (κ1 − κ̄1)

2 + (κ2 − κ̄2)
2

2

)

(2)

The principal curvatures of the initial surface
patch are κ1 and κ2, while the same parameters
of the deformed surface patch are κ̄1 and κ̄2, and
A is material specific constant. This equation
arrives at a numerical value measuring the en-
ergy required to deform the initial surface patch
to achieve a deformed shape. Obviously, if the
surface patch undergoes rigid motion, there is no
bending energy required for the movement since
the shape of the patch does not change. Only non-
rigid deformation requires bending energy, which
is a form of strain energy.

Under the assumption that the surface patch
surrounding each sample point x deforms only
slightly and locally within a small time interval,
we construct a physically-plausible search region
W on the second surface at time ti+1 for each sam-
pled point on the first surface at time ti. Surface
points inside W constitute the candidate point set
{xW,i, i = 0, ..., N − 1}. Bending energy measures
between the surface patch surrounding point x

and surface patches surrounding candidate points
xW,i are computed, and the point x̄ that has the
minimum corresponding bending energy is chosen
as the point corresponding to point x.:

x̄ = arg min
xW ,i

ǫbe(x,xW,i)

= arg min
xW ,i

A
( (κ1(x) − κ1(xW,i))

2

2

+
(κ2(x) − κ2(xW,i))

2

2

)

(3)

Repeating the matching process for all the sub-
sampled points of the surface at ti, the results
yield a set of sparse, shape-based, best-matched
motion vectors dinit(x, ti) = x̄ − x for pairs of
surfaces derived from 3D image sequences. An
example of bending energy-based matching of an
endocardial surface point is shown in Figure 3.
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Confidence Measures. The bending energy
measures for all the points inside each search win-
dow are also recorded as the basis to measure the
goodness and uniqueness of the matching choices.
The value of the minimum bending energy in the
search region between the matched points indi-
cates the goodness of the match:

mg(x) = ǫbe(x, x̄) (4)

Meanwhile, it is also desirable that the chosen
matching point is a unique choice among the can-
didate points within the search window, which
means that ideally the bending energy value of the
chosen point should be much smaller than those of
the rest of the points. We denote the mean values
of the bending energy measures of all the points
inside window W except the chosen point as ǭbe

and their standard deviation as σbe, we define the
uniqueness measure as:

mu(x) =
ǫbe(x, x̄)

ǭbe − σbe

(5)

This uniqueness measure means that if the bend-
ing energy of the chosen point is small compared
to some window-specific value of the remaining
bending energy measures (mean minus standard
deviation), it is quite unique and reliable, other-
wise it is not. Obviously for both goodness and
unique measures, the smaller the values the more
reliable the match are. Combining these two mea-
sures together, we arrive at one confidence mea-

sure for the matched point x̄ of point x:

c(x) =
1

k1,g + k2,gmg(x)

1

k1,u + k2,umu(x)
(6)

where k1,g, k2,g, k1,u, and k2,u are scaling con-
stants for normalization purposes. The confidence
measures for all the surface matches are normal-
ized to the range of 0 to 1. The matches with
the highest confidence have the confidence mea-
sure value of 1, and the matches with the lowest
confidence have the confidence measure value of
0.

The above derived confidence measure rep-
resents our empirical notions of goodness and
uniqueness. While it has worked fine in our ex-
periment of about twenty datasets, further efforts
are needed to formalize and test statistically or
physically more meaningful confidence measures.

Optimized Dense Motion Field. Based upon
the physically-plausible assumption that the dis-
placement fields of the LV surfaces are sufficiently
smooth and that any changes of direction and
magnitude take place in a gradual manner over
space, a regularizing functional which includes
both an initial estimate adherence term and a lo-
cal smoothness term is constructed. Since the reli-
ability of the initial correspondences vary based on
their confidence measures, it should be clear that
good, unique matches from the initial bending en-
ergy matching process should be preserved, while
ambiguous matches should be smoothed over by
their neighboring good and unique matches.

In the continuous domain, the regularizing
smoothing function is constructed as

d∗(x) = arg min
d

∫ ∫
S

{c(x)[d(x) − dinit(x)]2

+(
∂d(x)

∂x
)2}dx (7)

Here, S is the surface space, x is the parameter
vector representing a point in S, dinit and d∗ are
the initial and final displacement vectors, respec-
tively, and c(x) is the confidence measure.

Since we are dealing with discrete polyhedral
surfaces, the derivative of the displacement vec-
tor can be approximated by the weighted aver-
age finite differences performed on the neighboring
points. Furthermore, the discrete version of the
smoothing function can be conveniently posed as
a series of linear equations, and can be solved by a
two-stage iterative procedure which will avoid the
shrinkage problem often hinder the regular one-
step smoothing [66]:

d(x)new1 = (1 − c′
1
(x))d(x)old

+c′
1
(x)

N−1∑
i=0

ωid(xi) (8)

d(x)new2 = (1 − c′
2
(x))d(x)new1

+c′
2
(x)

N−1∑
i=0

ωid(xi) (9)

where {ωi} is the weighting coefficient set associ-
ated with the neighbor points, and c′

1
, c′

2
are de-

rived from the confidence measure c [59].
The solution of this system of linear equations

will yield a dense set of smoothed motion vec-
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tors that adhere to the reliable initial shape-based
matches, yet vary smoothly on the surface space.
Repeating the process for all the LV wall surfaces
and assembling the vectors end-to-end over the
sixteen-frame temporal sequence, we have a dense
set of motion trajectories of the myocardial sur-
face points throughout the cardiac cycle. Figure
4 shows the dense endocardial displacement vec-
tor field of a MRI dataset from ED to ES, sub-
sampled for visualization purposes. The trajecto-
ries are shown against the rendered endocardial
surface at ES.

Extensive validation has been conducted on this
shape-based LV surface motion tracking approach.
Algorithm-derived motion trajectories of four en-
docardial and four epicardial points are compared
to corresponding implanted imaging opaque mak-
ers for twenty image datasets of two imaging
modalities. Overall performance has been vert fa-
vorable, with average position errors within image
resolutions. Please see [59] for more details.

We will use these boundary displacement vec-
tors as the shape-derived boundary information
in our integrated framework. For computational
stability and for not over constraining the bound-
ary motion by shape information, however, only a
subset of boundary displacement vectors in which
we have the highest confidence will be used in
the integrated estimation process. This subset
of boundary displacement vectors is denoted as
Uboundary.

2.2. MR Phase Contrast Images and Mid-Wall

Instantaneous Velocity

As briefly discussed in Section 1, phase velocity
magnetic resonance imaging incorporates veloc-
ity phase encoding into a conventional cine-MR
sequence and produces images of myocardial in-
stantaneous velocity throughout the cardiac cy-
cle. Phase contrast methods can depict motion
parameters with pixel precision and thus provide
a high resolution technique for quantitative mea-
surements [14].

The MR phase contrast velocity technique re-
lies on the fact that a uniform motion of tissue
in the presence of a magnetic field gradient pro-
duces a change in the MR signal phase, φ, that is

proportional to its velocity [56]:

φ = νγM1 = νγ

∫ TE

0

G(t)t dt (10)

where G(t) is the gradient strength as a function
of time (the gradient waveform), ν the tissue ve-
locity, M1 the first moment of the gradient wave-
form, TE the echo delay time, and γ the gyro-
magnetic ratio. The gradient waveform can be
modified to alter the first moment (motion sen-
sitivity) while maintaining the same image local-
ization characteristics. Images acquired with this
altered waveform will have a different phase shift
due to motion. The velocity in a particular spa-
tial direction can be estimated by measuring the
difference in phase shift between two acquisitions
with different first gradient moments. Hence, in-
stantaneous velocity maps encoded for motion in
all three spatial dimensions may easily be obtained
at multiple time instances throughout the cardiac
cycle using a phase contrast cine-MR imaging se-
quence. The acquired velocity maps may then
be used to provide information on tissue displace-
ment, strain, strain rate, and other quantitative
measures of motion and deformation. Figure 5
shows examples of phase contrast images of a ca-
nine mid-ventricle slice. In this dataset, three con-
tiguous short axis slices were collected using the
cine phase contrast gradient echo sequence. It is
important to note that the magnitude image and
the three directional velocity images are perfectly
registered since they are acquired from the same
complex MR signal.

In theory, instantaneous velocity can be derived
for each pixel in each image acquisition to provide
a complete description of instantaneous movement
of the LV at that moment. However, the phase
contrast velocity estimates at interfaces between
structures, e.g. near the endocardial and epicar-
dial boundaries, are extremely noisy [43]. It is dif-
ficult to obtain low noise estimates of velocity at
the boundaries since some spatial averaging must
occur, and thus pixels outside the myocardial wall
(the blood pool for the endocardium and the air or
other tissues for the epicardium) are sometimes in-
cluded for the velocity estimates of the myocardial
points. Thus, phase contrast images only provide
reliable instantaneous motion information for the
mid-wall region of the LV but not at the myocar-
dial boundaries.
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We believe that the weaknesses of the phase
velocity image data, such as noisy boundary
data and uncertainty about point correspondences
(currently, constant velocity conditions between
temporal frames are often assumed to compute
displacements), makes it very difficult to obtain
a reliable and robust assessment of myocardial
motion and deformation over the entire LV and
through the cardiac cycle using these data alone.
It is more appropriate to use phase velocity infor-
mation as one source of data constraints within
an integration framework, where it can be utilized
without gross assumptions about the velocity con-
ditions between temporal frames. Furthermore,
since the phase image is derived from the same
complex magnetic resonance signal as the regular
magnitude MR image data upon which the shape-
based boundary motion algorithm is based, these
two sets of image data are perfectly registered and
can be used synergistically. Hence, we will use
the reliable mid-wall MR phase velocity data as
the mid-wall image information in our integrated
framework, and we denote these mid-wall velocity
vectors as U̇mid−wall.

3. A Mechanics-Based Data Fusion Frame-

work

In this section, we present a new method of es-
timating left ventricular deformation which inte-
grates instantaneous velocity information from the
phase contrast magnetic resonance images within
the mid–wall region with the shape-based dis-
placement information on the boundaries of the
left ventricle. The integration takes place within
a continuum mechanical model of the left ventri-
cle, which is embedded in a finite element analysis
framework.

3.1. Continuum Mechanical Model of the Left

Ventricle

Here, we discuss some of the basic concepts of con-
tinuum mechanics [22, 64] and the modeling of
myocardium based on biomechanics research ef-
forts [35, 36, 42, 48, 62]. Detailed discussion can
be found in the cited references. It should be
pointed out that our emphasis is on using prac-

tical yet realistic mechanical models that could be
used to guide the recovery of the non-rigid motion
of single-body deformable objects.

3.1.1. Continuum Mechanics Continuum me-
chanics deals with the mechanical behaviors of ob-
ject under the action of applied force, where the
materials are continuous (or at least piecewise con-
tinuous) and deformable. The results of applying
forces are often found in the changes of the kine-
matic variables such as displacement, velocity and
acceleration fields of the object.

In 3D, an object point is distinguished by its
material coordinates X = (X1,X2,X3) at the un-
deformed state (t = 0), while its corresponding
coordinates x = (x1, x2, x3) at the deformed state
is called its spatial coordinates. The deformation
gradient tensor F relates the deformed and unde-
formed state by

FiR =
∂xi

∂XR

i, R = 1, 2, 3. (11)

Further, the Lagrangian strain tensor E is defined
as :

E =
1

2
(FT

F− I) (12)

where I is identity matrix. This is a suitable mea-
sure of deformation since it reduces to the zero
tensor when there is only rigid-body motion.

However, the strain measure is insufficient to
describe the mechanical behavior of any particular
object, which means that by itself it cannot de-
termine the changes of kinematic variables when
forces are applied, or determine the changes of
stress when strain is induced. Following the law of
conservation of energy, the material time deriva-
tive of the sum of the kinetic energy and internal
energy is equal to the sum of the rate at which
mechanical work is done by the body and surface
forces acting on the object and the rate at which
other energy (heat flux, chemical energy, radia-
tion energy, electro-magnetic energy, et al) enters
the object [64]. If other energy is absent or ne-
glected, then all the mechanical work done on an
object either creates kinetic energy, or is stored as
strain energy W which depends only on the defor-
mation. For a general finite elastic deformation of
an unknown material, W depends in an arbitrary

manner on the deformation gradient F. However,
the specific manner of this dependence determines
the mechanical behavior of any specific material.
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In general, the constitutive equations for a finite
elastic solid are defined as:

Ti,j =
ρ

ρ0

FjR

∂W (F)

∂FiR

i, j, R = 1, 2, 3. (13)

where T is the stress tensor, ρ0 and ρ the initial
and final material density respectively. The equa-
tion’s apparent simplicity is deceptive, because W

is a function of the nine components of F, which
makes it impractical to perform experiments to
determine this function for any particular elas-
tic material. In practice, various assumptions un-
der different conditions have been made to derive
practical yet realistic strain energy functions of
the materials, from which the material constitu-
tive laws can be derived.

Since the material constitutive law character-
izes the kinematic effects on an object when forces
are applied, it represents a true physical model of
the object, as least from mechanics point of view.
Because of the continuum nature of this type of
model, smoothness and other desirable physical
and geometrical properties in computer vision are
implicitly guaranteed if we use this type of me-
chanical model. Actually, it can be shown that
almost all the geometrical and empirical physical
models in computer vision research are equivalent
to some forms of simplified constitutive laws, but
they may not be in the mechanically plausible
manners to preserve the most basic and impor-
tant material properties of the object [53]. Hence,
we believe that using realistic yet computation-
ally plausible constitutive models are essential in
deriving correct results from image analysis.

3.2. Models of the Myocardium

The mechanical behavior of the myocardium is
very diverse and complex, and it would be an ad-
mirable but extremely difficult goal to formulate
its constitutive equations under all circumstances.
Rather, for our purposes, we seek to establish
equations which describe the most important fea-
tures of the material while retaining physical and
computational plausibility. Ideally, the constitu-
tive equations of the myocardium should charac-
terize the non-linear, anisotropic material proper-
ties of the cardiac muscle in a compact way with

as few parameters as possible. The relationship
should also be formulated based on experimental
measurements.

There has been a fair amount of active research
in the biomechanics community in developing my-
ocardial constitutive laws under different condi-
tions and assumptions [35, 36, 42, 48, 62]. In gen-
eral, two aspects of the mechanical properties of
the myocardium have been considered: the passive
tissue properties and the active muscle tension de-
velopment. A constitutive law for passive tissue
properties requires a fully three-dimensional rela-
tionship between the six components of the stress
and the six components of the strain (assuming
symmetric material), whereas the active muscle
law requires only a one-dimensional relationship
between the fiber strain and the active muscle ten-
sion in the myofiber direction [36]. Since the pur-
pose of our system is to use the constitutive rela-
tionship to help recover motion and deformation
from image data, not to model the forward acti-
vation of the left ventricle, we have focused on the
passive constitutive laws. However, we do realize
that the active muscle tension development largely
determines the active contraction and expansion
of the myocardium, and incorporating active mus-
cle law into our framework would add important
actual physical constraints into the recovery pro-
cess.

The simplest constitutive relationship is that of
the linear (Hookean) elastic solid under infinitesi-
mal deformation, where the strain energy function
has the form

W =
1

2
cijklǫijǫkl (14)

Here, ǫij and ǫkl are components of the infinites-
imal strain tensor and cijkl are material specific
elastic constants. Under this model, the constitu-
tive equation can be simplified to:

σij = cijklǫkl (15)

where σij is a stress tensor component. It is ev-
ident that the stress components are linear func-
tions of the infinitesimal strain components. Un-
der the assumptions that the strain and stress ten-
sors are symmetric, and the material is isotropic
(the elastic properties are identical in all direc-
tions), there are exactly two elastic constants
which characterize the material and the constitu-
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tive equation is further reduced to:

σij = λδijǫkk + 2µǫij (16)

where constants λ and µ are the so called Lame

constants. Further, the familiar material con-

stants Young’s modulus E = µ(3λ+2µ)
λ+µ

and the

Poisson’s ratio ν = λ
2(λ+µ) can be derived. It

should be noted that these linear, isotropic con-
stitutive equations do not properly describe the
mechanical behaviors of the myocardium because
myocardium is non-linear and anisotropic material
undergoing finite deformation. However, they are
very simple to use in a computational framework,
and are often treated as the first order approx-
imations of more sophisticated constitutive laws
under small deformation conditions.

More sophisticated models of the myocardium
often take into account the micro-structures of the
cardiac muscle. The architectures and orienta-
tions of the myofibers, the organization of the my-
ocardial sheets, and the collagen inter-connections
between the micro-structures determine the non-
homogeneous and non-linear stress-strain relation-
ship throughout the myocardium [36, 42]. Because
the composition of the myocardial tissue is often
too complex to derive constitutive laws from the
knowledge of the mechanical properties and lay-
out of the micro-structural components, simpler
empirical relationships were proposed and con-
stitutive parameters estimated from biaxial test-
ing of the tissue were used [35, 48, 62]. While
such non-linear models more appropriately de-
scribe the complex mechanical properties of the
myocardium, they are often computationally very
expensive.

In this paper, all the experiments have been
conducted using the linear isotropic model, which
is more computationally feasible. However, the
different choices for the continuum models of the
myocardium do not change the fundamental un-
derlying concepts of the integrated framework to
recover motion and deformation from image data,
although we do realize that more sophisticated
non-linear models probably will produce more re-
alistic and accurate results. And we are in the pro-
cess of implementing more realistic models [53].

3.3. Finite Element Representation

The finite element method (FEM) is a numerical
analysis technique for obtaining approximate so-
lutions to a wide variety of engineering problems,
especially continuum mechanics problems [7]. Its
basic premise is that a solution region can be an-
alytically modeled or approximated by replacing
it with an assemblage of discrete finite elements,
and by expressing the unknown field variable in
terms of assumed approximating or interpolation
functions within each element. In essence, a com-
plex problem over a large solution region can be
reduced to a series of greatly simplified problems
over many finite elements, and the solutions to
a series of governing equations of the elements
give a piecewise approximation to the solution
of the governing equation of the original system
[34]. For our framework of left ventricular mo-
tion and deformation analysis, the LV (the solu-
tion region) is represented by many small tetrahe-
dra (the finite elements) constructed from the De-
launay triangulation of the sampled points. Also,
the displacement-based solutions of the govern-
ing equations give the approximate motion at the
sampled points and the deformation of the ele-
ments.

We derive the governing equations of the dy-
namics of the three-dimensional myocardium us-
ing the minimum potential energy principle, based
on an isotropic linear elastic model. If Π(u, v, w)
is the potential energy, Up(u, v, w) is the strain en-
ergy, and Vp(u, v, w) is the work done by the ap-
plied loads during the displacement changes, then
we have at equilibrium (by neglecting other energy
terms such as heat)

δΠ(u,w, v) = δ[Up(u, v, w)− Vp(u, v, w)]

= 0 (17)

In this case, the strain energy is solely a function of
the strain and stress tensors, and can be expressed
as:

Up(u, v, w) =
1

2

∫ ∫ ∫
Ω

[ǫ]T [σ]dV (18)

where Ω is the volume of the body. The work
done by the external forces, including the body
forces [Rb], the surface traction [Rs] and the con-
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centrated forces [Ri], is given by:

Vp(u, v, w) =

∫ ∫ ∫
Ω

[U]T [Rb] dV

+

∫ ∫
S

[U]T [Rs] dS

+
∑

i

[U]T [Ri] (19)

For the left ventricle, the body forces [Rb] are
mostly gravitational which are from the my-
ocardium density, surface traction [Rs] and con-
centrated forces [Ri] include forces arising from
the ventricular blood pressure on the endocardium
(often available) and the reaction forces from the
adjoining structures such as the lung (difficult to
measure). The displacement field U (congregate
of all the 3D displacement vectors of the myocar-
dial points) that minimize Π and satisfies all the
boundary conditions is the equilibrium displace-
ment.

Assume that the volume Ω of the linear elas-
tic body is divided into M discrete elements. We
may write the potential energy of the body (the
assemblage of the elements) as the sum of the po-
tential energies of all elements, and we may deal
with the potential energy of an isolated element e

and arrive at the governing equilibrium equation
for element e

[M ](e)[Ü](e) + [C](e)[U̇](e) + [K](e)[U](e)

= [R](e) (20)

where [M ](e) is the mass matrix of the element,
[C](e) the damping matrix, [K](e) the stiffness ma-
trix, [R](e) the force vector, and [U](e) the dis-
placement field of element e.

It is worth to pointing out that even though
the element matrices [M ](e), [C](e), and [K](e) for
any element e all take the same forms, the actual
terms of the mass, damping, and stiffness matrices
can vary even among elements with the same ge-

ometry and same interpolation functions. This is
because different elements can have different ma-
terial constitutive laws, different material densi-
ties, and different damping characteristics. This
non-homogeneity gives us the flexibility to model
different regions of the left ventricle differently,
based upon any prior knowledge about the tissue.
To a certain degree, it also justifies the choice of
the computationally efficient linear elastic model

because each small piece of tissue can always be
approximated to be a linear isotropic elastic mate-
rial if the size and the deformation of the element
are small enough.

After the governing equilibrium equations of all
the elements have been found, the next step in
the finite element analysis of the left ventricle is to
combine all these equations to form a complete set
of system equations which govern the composite of
elements. The system assembly procedure is based
on the insistence of compatibility at the element
nodes. By this we mean that at any node where
elements are connected the values of the unknown
nodal variables (displacement) are the same for
all elements connecting at that node. When these
displacements are matched at the nodes, the nodal
stiffness, mass, damping, and loads for each of the
elements sharing the node are added together to
obtain the net stiffness, mass, damping, and loads
at that node:

[M ][Ü] + [C][U̇] + [K][U] = [R] (21)

where [U] the nodal displacement vector field for
the entire body. It should be noted that while the
finite element mesh provides the basis for approxi-
mating a continuous spatial model of the left ven-
tricle, the governing equations provide the basis
of an appropriate temporal model for the motion
and deformation analysis.

3.4. Our Approach: Integrated Motion Analysis

Following the procedures described above, we have
developed a finite element framework of the left
ventricle, modeled by linear isotropic elastic ma-
terial, and we can use this system to pursue the
integrated approach of quantifying LV motion and
deformation. Complementary image derived in-
formation are incorporated into the framework to
recover the volumetric deformation. For the re-
mainder of this paper, we will assume that the
image-based sources include boundary constraints
(shape-based displacements), computed from seg-
mented MR magnitude images, and mid-wall con-
straints (instantaneous phase velocity) from cor-
responding MR phase contrast images. We should
also point out that we are analyzing frame-to-
frame motion and deformation, which means that
the framework only attempts to quantify the LV
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tissue movement between pairs of temporally con-
secutive image frames. Even though we do ana-
lyze motion and deformation for all sixteen pairs
of image frames, and changes between each pair
can always be referred back to the chosen original
undeformed state, we do not claim to have a tem-
poral motion and deformation model beyond two
image frames, although we are actively pursuing
multi-frame approach [38].

3.4.1. Initial Conditions The integrated mo-
tion and deformation analysis framework is for-
mulated such that the mid-wall velocity and the
boundary displacements are used as data-based
constraints. The unknown field variables are the
displacement vectors at the nodal points, although
the derivatives of the displacements (velocity and
acceleration vectors at the nodal points) can also
be derived from the system equations. Since we
are only doing frame-to-frame analysis within the
time interval T , we assume that the first image
frame is sampled at time t = 0 and the second
image is sampled at time t = T . For each pair
of image frames at time t = 0 and t = T , the
phase velocity data at t = 0 determine the initial
conditions of the governing equations, while the
shape-based displacements at the boundaries are
treated as the boundary conditions of the system
which impose prescribed displacements at certain
boundary nodal points. Under these two image-
based constraints, the integrated motion and de-
formation recovery can be performed within the
finite element framework.

At time t = 0, the initial conditions for the
system governing equations are as follows:

• The initial displacements of all the points
[Uall(0)] are always zero (the object has not
moved).

• The three MR phase contrast images pro-
vide the three components of the initial ve-
locities [U̇mid−wall(0)] for the true mid-wall
points (mid-wall point which are at least one
pixel away from the boundaries). For all
other points (boundary points and mid-wall
points next to the boundaries), we could as-
sume their velocities, [U̇boundary(0)], to be
zero. (This could become a problem because
the true mid-wall points and the boundary
points now have discontinuity in their velocity

values. To avoid this discontinuity problem,
we may use the average of true mid-wall ve-
locity values near each boundary point as its
initial velocity.)

• The initial accelerations of all the points
[Üall(0)] are assumed to be zero.

• The initial equivalent total loads [R(0)] can
be computed from the governing equations:

[R(0)] = [M ][Üall(0)]

+ [C][U̇all(0)]

+ [K][Uall(0)] (22)

where [U̇all(0)] includes both [U̇mid−wall(0)]
and [U̇boundary(0)].

It should be pointed out that since we will ana-
lyze pair-wise motion throughout the cardiac cy-
cle, the estimated velocities and accelerations at
time t = T from the previous pair of images can
be used as the initial conditions of velocities and
accelerations at time t = 0 of the current pair
of images. However, we must validate these esti-
mates to be accurate before we can trust them. In
this paper, we do not use these estimates.

3.4.2. Boundary Conditions From our shape-
based boundary motion tracking algorithm, the
displacements of some nodal points from t = 0 to
t = T are known. We note that within the med-
ical imaging domain, several other strategies are
also useful for finding displacement information,
such as MR tagging [4, 78]. These displacements
can be used in our framework with minimal modi-
fication. Denoted as [Uboundary], known displace-
ments are used as the boundary conditions of the
system at time T . There are a number of ways
to apply the boundary conditions to the govern-
ing equations. When the boundary conditions are
applied, the number of nodal unknowns and the
number of equations to be solved are effectively
reduced. However, it is most convenient to intro-
duce the known displacements in a way that leaves
the original number of equations unchanged and
avoids a major restructuring of the system equa-
tions [7, 34].

One way to include prescribed nodal displace-
ments while retaining the original structure of sys-
tem equations is to modify certain diagonal terms
of the stiffness matrix [K] and the corresponding
terms of the load vector [R]. Let the prescribed
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value of the displacement variable Ui (the ith term
of the column vector [U]) to be b, the following
constraint equation

kUi = kb (23)

is added to the system governing equation, with
k ≫ Kij . The modified governing equation for
this displacement variable becomes:

3N∑

j=1

MijÜj +

3N∑

j=1

CijU̇j +

3N∑

j=1

KijUj + kUi

= Ri + kb (24)

Therefore, the solution of this modified governing
equation must now give

Ui ≈ b (25)

Physically, this procedure can be interpreted as
adding a spring of vary large stiffness, and speci-
fying a load which produces the required displace-
ment b for variable Ui. This procedure is repeated
until all prescribed displacement variables have
been treated. After these modifications have been
made, we proceed with the simultaneous solution
to the complete set of 3N differential equations.

In very strict terms, this modifying procedure
will not give the exact values for the prescribed
displacements at the corresponding nodal points
because we have only modified the [K] and [R]
matrices but not the [M ] and [C] matrices. In
addition, the left side of the ith governing equa-
tion includes the sum of the products of the ijth
(j = 1, ..., 3N) term of [K] and the j term of [U].
Even though the terms KijUj(j 6= i) are small
comparing to KiiUi, they still make the solution
of the prescribed displacement Ui inexact. How-
ever, if the chosen large multiplying factors are
indeed very large compared to the values of the
matrix terms, the errors will be negligible.

In addition, this inexactness provides a possible
method for the incorporation of confidence mea-
sures into the displacement boundary conditions.
From the discussion in Section 2, we know that
the confidence of shape-based point matching be-
tween pairs of surfaces can be measured by a met-
ric based upon the goodness and uniqueness of
the match. Since we are using the displacement
between these matched points as the prescribed
displacements in the unified framework, we treat
these displacements differently based on their con-

fidence measures. From this point of view, the
large multiplying factor is weighted by the confi-
dence measure for each prescribed displacement.
The displacements with high confidence measures
have really large multiplying factors to enforce
the system solution to give the exact prescribed
values at these nodal points, while the displace-
ments with low confidence measures would have
relatively small multiplying factors to have inex-
act solution values, which are the compromise of
the prescribed conditions and the smoothness con-
straint which is implicitly enforced by the consti-
tutive laws of the materials.

3.4.3. Numerical Solution After setting up the
initial and displacement boundary conditions, the
finite element system is regarded as an elastic ob-
ject in static conditions when some outside loads
are applied to certain nodal points. Therefore,
the object moves and deforms because of these
forces. Mathematically, the governing equations
represent a system of differential equations of sec-
ond order and, in principle, the solution to the
equations can be obtained by standard procedures
for the solution of differential equations with con-
stant coefficients. However, the procedure pro-
posed for the solution of general systems of differ-
ential equations can become very expensive if the
order of the matrices is large. In practice, these
types of systems are almost always solved by nu-
merical means.

In direct integration, the governing equations
are integrated using a numerical step-by-step pro-
cedure. Instead of trying to satisfy Equation 21
at any time t, it is aimed to satisfy the governing
equations only at discrete time intervals ∆t apart.
This means that equilibrium, which includes the
effects of inertia and damping forces, is sought at
discrete time points within the interval of solution.
In addition, a variation of displacements, veloci-
ties, and accelerations within each time interval is
assumed. It is the form of assumption on the vari-
ation that determines the accuracy, stability, and
the cost of the solution procedure [7]. We have
chosen the Newmark method, which is uncondi-
tionally stable, to solve the equations.

One additional step is applied to make the inte-
gration process more stable and accurate. To re-
duce the oscillation of the elastic body of the left
ventricle, the displacement boundary conditions
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are enforced gradually. If there are n integration
steps between t = 0 and t = T , the enforced dis-
placement Uk

i at step k of the integration is:

Uk
i = Uisin

(

π

2

k

n

)

(26)

where Ui is the prescribed displacement at T . By
enforcing the prescribed displacements this way,
the elastic object makes larger movement at the
beginning of the integration, and it moves less to-
wards the end of the time interval. Hence, the
system is more stable when it reaches time t = T .

The numerical solution obtained from the inte-
gration of the governing equations produces the
estimated displacements, velocities, and accelera-
tions of the left ventricle at time t = T , the end
time of the pair of image frames. These motion
estimates are derived from an integrated frame-
work which is based on a linear elastic mechanical
model of the myocardium, and is constrained by
the initial velocity information from the MR phase
images and the shape-based boundary displace-
ments. It takes advantage of the complementary
nature of these image sources, and uses the ma-
terial constitutive relationships to produce a me-
chanically plausible solution to the system gov-
erning equations. It should be pointed out that
the motion analysis can be done for every pair
of the images throughout the cardiac cycle. If the
global coordinate systems are the same for all pair-
wise operations, the displacements at any time
frame can always be referred to the chosen initial
state, usually the end of diastole. After the dis-
placements have been calculated, the coordinate-
dependent strain tensor ǫ for each tetrahedral el-
ement can be computed. Furthermore, the prin-
cipal strain tensor ǫp of each tetrahedral element
can also be computed as the eigenvalues and eigen-
vectors of the tensor ǫ.

In principle, using the finite element framework
to track motion between temporal images can be
regarded as a predictor from time t = 0 to time
t = T . Since we already have data information
at t = T in terms of the segmented endocardial
and epicardial surfaces, as well as the mid-wall
velocities, we can refine the motion estimate be-
tween t = 0 and t = T by comparing how close
the image-driven, model-based prediction comes
to the actual data. The differences between the
data and the prediction can be used as a recur-

sive feedback term to improve the matching pro-
cess. Initial work regarding this feedback process
in two-dimensional case has been reported [58].

4. Experimental Results

The integrated motion and deformation analysis
framework proposed has been implemented. Ex-
periments have been conducted with real cardiac
MR phase contrast images from a normal canine
study.

Figure 5 shows an example of phase contrast im-
ages of a canine study. In this dataset, three con-
tiguous short axis slices were collected using the
cine phase contrast gradient echo sequence for six-
teen time frames. The imaging parameters were:
flip angle = 30◦, TE = 34msec, TR = 34msec,
FOV = 28cm, 5mm skip 0, matrix 256x128, 4
nex, venc = 15cm/sec. The in-plane resolution
of the dataset is 1.09mm/pixel, and the inter-
plane resolution is 5mm. The intensity values
of the velocity images range from −150mm/sec
to 150mm/sec, with the signs of the value indi-
cating the directions of the velocities. The dog
was infarcted to cause dyskinetic motion at the
inter-ventricular septum (the lower left part of
the LV). Again, it is important to notice that the
magnitude image and the three directional veloc-
ity images are perfectly registered since they are
acquired from the same complex MR signal. It
should also be noted that because of the time (ten
to fifteen minutes) to acquire each set of direc-
tional phase velocity images (three slices are ac-
quired at each time), the image dataset only covers
a small part of the left ventricle. However, this
does not alter the validity of using this dataset
to test the capability of the integrated framework
except that there is 3D motion out of the field of
view vertically.

Since it is more desirable to have roughly equal
resolutions in all three dimensions to track sur-
face motion, interpolation is needed between the
data contour slices. A chamfer distance based con-
tour interpolation is used to insert three interpo-
lated contours to every two consecutive data con-
tours. Figure 6 shows the bending energy maps
and the wireframes of the interpolated endocar-
dial and epicardial surface at end diastole. The
shape-based surface motion tracking process is
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then applied to the sixteen interpolated surface
sequences, once for the endocardium and once
for the epicardium. This way, the surface dis-
placements have 1.09mm in-plane resolution and
1.25mm inter-plane resolution. A subset of the
surface point displacements (ten percent) are used
as the boundary displacement constraints in the
integrated volumetric framework.

The velocity images currently have 5mm inter-
plane resolution. To handle this relatively lower
resolution, we have either inserted three tri-
linearly interpolated velocity images into every
two data velocity images, or for computational
reasons, we have coarsely re-sampled the in-
plane images to reduce the in-plane resolution to
4.36mm. In the example given in this section,
the velocity images are re-sampled to lower res-
olution to save computation time. The mid-wall
velocities of the phase contrast images are used
as the initial velocity constraints in the integrated
volumetric framework. The myocardial surfaces
are also re-sampled to the same lower resolutions
of 4.36mm/pixel in-plane and 5mm/pixel inter-
plane after the surface motion tracking has been
performed. This way, even though the final re-
sampled dataset has only 4.36mm in-plane and
5mm inter-plane resolutions to form larger tetra-
hedral elements to save computational expense,
the boundary displacements still have 1.09mm in-
plane and 1.25mm inter-plane resolutions. The
myocardial sample points which are bounded by
the endocardial and epicardial boundaries are De-
launay tessellated to form the finite element mesh
of the myocardium. Figure 7 shows the low reso-
lution tetrahedral finite element mesh of the mid-
ventricle covered by the three-slice image set. In
this case, there are 2147 tetrahedra in the mesh.

After the boundary displacement tracking pro-
cess, the velocity image re-sampling process, and
the finite element mesh construction process, we
can now perform the integrated volumetric motion
and deformation analysis. Following the proce-
dures established in the previous sections, the gov-
erning equations of the myocardium are derived
from the minimum potential energy principle. A
linear isotropic elastic myocardial model is used,
and the material-related constants that have been
established experimentally for the myocardium in
the biomechanics literature [76] are used, with
Young’s modulus set to be 75, 000Pascal, Pois-

son’s ratio set to around 0.5, the myocardial mass
density set to 1.5g/mm3, and the damping pa-
rameter set to under 0.1. The velocity values
at the mid-wall points are used as the initial ve-
locity conditions, and the surface displacements
are used as the displacement boundary condi-
tions. Since the temporal resolution of the dataset
is 0.03125sec/frame, we choose the integration
time step ∆t = 0.003125sec to have 10 integrated
steps. Using these constraints and parameters, the
motion and deformation parameters of the my-
ocardium at all sixteen time frames are calculated
using the Newmark integration process. In the ex-
periment shown here, there are 2147 tetrahedra in
the finite element mesh. The required computer
memory for the system to handle this data set
is around 60MB. The computation time for each
pair of images is about half hours on a Silicon
Graphics HighImpact workstation with 195 MHZ
R10000 processor and 128MB memory.

Figure 8 presents the two-dimensional projec-
tion of the three-dimensional dense field displace-
ment vector map of the middle slice from ED to
the next time frame, found from the integrated
framework. The use of 2D projections instead
of a true 3D vector map is only because of the
ease of visualization. Here, a vector arrow be-
gins from its position at present time (ED), and
ends at its position in the next time frame. The
non-homogeneous nature of the myocardial mo-
tion is very evident from this displacement map:
different regions of the myocardium display very
different motion characteristics in direction and
magnitude.

While the displacements or path lengths of
the myocardial points are useful for predicting
the state of health of the left ventricle, the ele-
ment strain tensors of the myocardial tissues pro-
vide the non-homogeneous deformation informa-
tion among regions which could be used to quan-
tify transmural function, especially issues related
to the extent of myocardial injury [26]. Even
though we believe more detailed and sophisticated
analysis on a range of image datasets under dif-
ferent physiological conditions is required to in-
fer any useful information for clinical and research
purposes, we still proceed to compute the strain
measures on this particular dataset to test the
capability of our integrated framework. To that
end, we have calculated the strain tensors for each
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tetrahedral element of the finite element grid to
depict the non-rigid deformation, excluding the
rigid bulk motion of the elements. Figure 9 shows
the three normal components (xx, yy, and zz com-
ponents) and three shear components (xy, yz and
zx components) of the strain tensor for the defor-
mation between ED and ES. It seems that these
three slices of mid-ventricle myocardium undergo
very little z direction deformation. The large
strain at lower left part of the LV may be ex-
plained by the dyskinetic motion caused by the in-
farction (we want to emphasize that this is a very
intuitive explanation for these strain maps, there
should be no conclusion drawn from this initial
experiment). Figure 10 shows the more object-
centered principal strain maps of the same de-
formation: the three principal components of the
strain as well as the two-dimensional projections
of the three-dimensional dense directions of the
maximum principal strain (middle slice). Once
again, large strain is observed at the lower left
part of the LV. In both Figure 9 and 10, the strain
values are mapped back to the myocardial grid at
its original state (ED). In these figures, the neg-
ative strain values (contraction) are represent by
different shades of blue, and the positive values
(expansion) are represent by different shades of
red. Also, we want to point out that the appar-
ent non-uniform strains transmurally across the
heart wall, which could be extremely important
in validating the clinical hypothesis that the is-
chemic disease progresses transmurally overtime.
Of cause, any significant claim can only be made
after more carefully designed validation on a range
of image datasets. Figure 11 shows a cutaway
view of the maximal principal strain map at ES
with respect to ED. In addition, we are currently
looking into the possibility of calculating strains
in the myofiber directions which have been docu-
mented [36]. This way, it can not only more ac-
curately and meaningfully compute and interpret
the strain information, it can also facilitate the
future plan of including active myocardial tension
development.

The temporal changes of the strain tensors are
investigated and compared to earlier observations
available from biomechanics and cardiology liter-
ature [50, 72]. Since we have only three mid-
ventricle image slices, it is difficult to reliably
define the radial, longitudinal, and circumferen-

tial directions and the associated strain measures
in those directions which are commonly used in
the cardiology community. Instead, the tempo-
ral changes of the object-centered principal strains
are compared to the data from literature. Previ-
ously, the available principal strain data are often
observed at isolated positions of the myocardium
varying from study to study. Here, we compare
the average values of strains of all the elements
to these isolated strain data. In the literature
[50, 72], the values of the first (maximum) princi-
pal strain has been observed to reach a maximum
strain of 30% to 40% at ES, the second princi-
pal strain has very small values, and the third
(minimum) principal strain reaches an extreme
value of −20% at ES. For our experiment, we ob-
serve that the average value of the first principal
strain reaches a maximum strain of 32% at ES,
the average second strain is very small and sta-
ble, and the third principal strain reaches −18%
at ES. Obviously, these results are quite consistent
with previous studies. However, we should point
out that our integrated motion and deformation
framework can noninvasively obtain the dense mo-

tion and strain fields instead of only finding these
information at isolated positions, as was done pre-
viously. In addition, the framework’s ability to
quantify the difference of motion and deforma-
tion characteristics between myocardial tissue el-
ements makes it valuable to evaluate cardiac re-
gional function. Figure 12 shows the temporal se-
quence of the first principal strain maps from ED
to ES. Note the different strain values between
different regions.

We want to point out that although the pro-
posed framework is intended to integrate comple-
mentary image constraints within a unified sys-
tem, it also can be used for motion and deforma-
tion analysis using only one image source. The
uniqueness of this framework is that it can take
single or multiple image based data constraints,
often very noisy by themselves, and estimate the
best compromise motion and deformation param-
eters from these data and the mechanical model of
the left ventricle, which provides a natural way to
enforce the physically plausible potential energy
functional and smoothness constraints. Further,
the actual physical constraints related to known
cardiac parameters such as pressure can also be
incorporated into the system as external loads.
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5. Conclusions

We have developed an integrated framework for

the analysis of left ventricular motion and defor-

mation. This unified approach is based upon the

use of image analysis strategies and mechanical

modeling of the myocardium, and is embedded in

a finite element framework for the integration of

complementary image sources.

This integrated motion and deformation analy-

sis framework estimates the optimal motion and

deformation parameters from noisy and comple-

mentary image data. Image-derived information

from myocardial surfaces and the mid-wall are

used in locations where they have the best sig-

nals. These data constraints are used as the initial

and boundary conditions in the system govern-

ing equations of the finite element framework. A

continuum mechanical model of the myocardium

is applied to provide physically meaningful con-

straints on the dynamic behaviors of the LV tis-

sue. Experiments have been performed on canine

MR phase contrast images. Motion and deforma-

tion parameters are estimated from the integra-

tion of boundary displacement information and

mid-wall phase velocity information. Results have

been compared to previous studies in the litera-

ture.

Ongoing and future work includes adopt-

ing more sophisticated continuum biomechanical

models of the myocardium based on the theory of

finite deformation. Temporal periodic character-

istics of the heart motion as well as 3D feedback

mechanism will also be incorporated into the cur-

rent framework. Data from sixteen canine exper-

iments are being complied for testing and valida-

tion over the next one and half years.

While the framework presented here is aimed

at cardiac function analysis, some aspects of it

should have more applications in certain areas

of computer vision research in general. The use

of true physical models of the objects enables us

to incorporate more meaningful constraints, and

the integration of complementary image-derived

sources will help achieve more robust results from

noisy data.
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