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ABSTRACT

Invariant shape descriptors are instrumental in numerous
shape analysis tasks including deformable shape compari-
son, registration, classification, and retrieval. Most existing
constructions model a 3D shape as a two-dimensional sur-
face describing the shape boundary, typically represented as
a triangular mesh or a point cloud. Using intrinsic properties
of the surface, invariant descriptors can be designed. One
such example is the recently introduced heat kernel signa-
ture, based on the Laplace-Beltrami operator of the surface.
In many applications, however, a volumetric shape model
is more natural and convenient. Moreover, modeling shape
deformations as approximate isometries of the volume of an
object, rather than its boundary, better captures natural
behavior of non-rigid deformations in many cases. Here, we
extend the idea of heat kernel signature to robust isometry-
invariant volumetric descriptors, and show their utility in
shape retrieval. The proposed approach achieves state-of-
the-art results on the SHREC 2010 large-scale shape re-
trieval benchmark.

Categories and Subject Descriptors

I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—Feature representation, Invariants

General Terms

Algorithms

Keywords

Volumetric Laplacian, Heat Kernel Signature

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
3DOR’10, October 25, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-4503-0160-2/10/10 ...$10.00.

Broadly, shape analysis approaches can be divided into
global and local methods. The former try constructing global
shape descriptors using, for example, volume and area [42],
wavelets [27], statistical moments [19, 25, 38], self-similarity
(symmetry) [20], distance distributions [26], Laplace-Beltrami
eigenvalues [29]and eigenfunction [3, 31], metric spaces [13,
23, 7], skeletons [37] and Reeb graphs [16, 4].

Local descriptors have recently gained popularity in the
shape analysis community, following the success of feature-
based shape representations in computer vision and image
analysis [22]. Local descriptors can be used in shape analysis
in the bag of features framework [34, 9, 40], or in combina-
tion with global descriptors, such as in the recent extensions
of the Gromov-Hausdorff framework [39, 12], first introduced
to shape matching in [23] and [7].

There is a plethora of different local shape descriptors,
including shape contexts [1], local moments [11], local diam-
eter [14], volume descriptors [15], spherical harmonics [32],
local patches [24], histograms of local geodesic distances [28]
conformal factors [2], SIFT-like descriptor applied to func-
tions defined on manifolds [41], and heat kernels [36, 10].
However, predominantly, the underlying assumption is a
model of a 3D shapes as a 2D manifold, thus looking at
the boundary surface of the physical 3D object, which is
assumed to deform approximately isometrically. Here, we
argue that in many natural phenomena, the isometry of the
volume enclosed by the boundary better captures it deforma-
tions. This more restrictive set of isometries better preserve
the volume of an object, and is thus more suited for many
applications.

As the main instrument, we use diffusion geometry, which
has been lately increasingly employed for shape recognition
and in particular, the heat kernel descriptors proposed in
[36]. For dealing with volume isometries, we replace the
heat diffusion on the shape boundary by diffusion inside the
shape and show that such an approach has advantages in
various shape analysis applications. Philosophically simi-
lar approaches, namely considering the interior of the shape
rather than its boundary, have been used in 2D shape and
image analysis [21, 17, 5]. Most recently, Rustamov [30]
proposed a shape descriptor based on volumetric distance
distributions.

The rest of the paper is organized as follows. In Section 3,
we formulate the problem and overview the heat kernel de-
scriptors. In Section 4, we propose the volumetric heat ker-



nel descriptors, and address their numerical computation.
In Section 5, we outline the construction of bag-of-feature
shape descriptors from the local volumetric heat kernel de-
scriptors. Section 6 shows experimental results, and Sec-
tion 7 concludes the paper.

2. PROBLEM FORMULATION
We model a 3D object as a closed and connected three-

dimensional submanfiold X ⊂ R
3, with boundary ∂X repre-

sented as a smooth closed two-dimensional surface. A clas-
sical and predominant approach for 3D object analysis is
by studying the intrinsic geometry of the boundary surface
∂X. In these approaches, one of the desired properties of a
shape descriptor is invariance to isometric deformations of
the surface ∂X (referred here as boundary isometries), or in
other words, such transformations that preserve the lengths
of shortest paths between any pair of point on ∂X. These
isometries are opposed to volume isometries, in which short-
est paths between points inside X do not change. It is worth-
while noting that exact isometries of X in R

3 are limited to
the set of rigid transformations of X, that is, no non-trivial
isometries of the volume exist. However, non-rigid deforma-
tions can still be modeled faithfully as approximate volume
isometries. We argue that such nearly isometric deforma-
tions are more suitable to model natural non-rigid defor-
mations and articulations of solid objects than approximate
boundary isometries. This is illustrated in Figure 1 showing
a glove and a human hand. A glove is an illustration of ∂X,
and its deformations are boundary isometries. The hand il-
lustrates the solid object X, and its deformations can be ap-
proximated as volume isometries. This example shows how
in many cases using ∂X to model X can be wrong: some of
the isometries of the glove, such as “deflating” it, are clearly
inadmissible for the solid hand object. Approximate bound-
ary isometries constitute a large class of deformations, some
of which (e.g., volume-changing deformations) do not model
well the natural deformations of the solid.

In this paper, we propose dealing with the object X as
with the volume enclosed inside the boundary rather than
the ∂X itself, and derive a descriptor based on volumetric
heat propagation properties similarly to [36].

3. HEAT KERNEL SIGNATURES
Heat diffusion on the surface ∂X is governed by the heat

equation,
(

∆∂X +
∂

∂t

)

u(t, x) = 0, (1)

where the scalar field u : ∂X × [0,∞) → R is the value of
heat on object boundary surface ∂X at time t, and ∆∂X is
the positive semi-definite Laplace-Beltrami operator, a gen-
eralization of the Laplacian to manifolds. The fundamen-
tal solution kt(x, z) : ∂X × ∂X × [0,∞) → R of the heat
equation, also called the heat kernel, is the solution of (1)
initialized by a point heat distribution at x.

Sun et al. [36] proposed using the diagonal of the heat
kernel kt(x, x) at multiple scales as a local descriptor, re-
ferred to as the heat kernel signatures (HKS). The HKS is
invariant under isometric deformations of ∂X, insensitive
to topological noise at small scales, and informative in the
sense that under certain assumptions one could reconstruct
the surface (up to an isometry) from it.

Figure 1: Deformations of a glove (left) and a solid
hand (right) are an illustration of the difference be-
tween boundary and volume isometries.

Furthermore, the computation of the HKS descriptor re-
lies on the computation of the first eigenfunctions and eigen-
values of the Laplace-Beltrami operator, which can be done
efficiently and across different shape representations.

A disadvantage of the HKS is its dependence on the global
scale of the shape, manifested as scaling of the descriptor
and the time parameter. As a remedy, a local normal-
ization based on logarithmic scale space and magnitude of
the Fourier transform, dubbed the scale-invariant HKS (SI-
HKS), was proposed in [10].

4. VOLUMETRIC HEAT KERNEL SIGNA-

TURES
In order to generalize heat kernel signatures to volume, we

consider the heat equation in the volume X with Neumann
boundary conditions on ∂X,

(

∆ +
∂

∂t

)

U(x, t) = 0 x ∈ int(X),

〈∇U(x, t), n(x)〉 = 0 x ∈ ∂X (2)

where n is the normal to the boundary surface ∂X, ∆ is the
standard Laplacian in R

3, and U : (X ⊂ R
3) × [0,∞) → R

is the volumetric heat distribution in X.
We denote by Kt(x, y) : X×X× [0,∞) → R the heat ker-

nel of (2). By the spectral decomposition theorem, Kt(x, y)
can be written as [18]

Kt(x, y) =

∞
∑

l=0

e−λltΦl(x)Φl(y). (3)

where λl, Φl are the eigenvalues and eigenfunctions of the
Laplacian operator with the above boundary conditions,

∆Φl(x) = λlΦl(x);

〈∇Φl(x), n(x)〉 = 0 x ∈ ∂X (4)

The heat kernel of (2) gives rise to volumetric heat kernel



signatures (VHKS) which we define exactly in the same way
as HKS. Namely, for each point x ∈ X,

h(x) = (Kt1(x, x), . . . , Ktn
(x, x)), (5)

is used as an n-dimensional local descriptor, where t1, . . . , tn

are different time-scales.
VHKS are related to a geometric quantity called the scalar

curvature or the trace of the Ricci curvature by

Kt(x, x) =
1

(4πt)3/2

(

1 +
1

6
s(x)

)

, (6)

where s(x) is the scalar curvature. s(x) can be defined as
the ratio of the volume of a small ball centered at x to the
volume of a three-dimensional Euclidean ball of the same
radius.

4.1 Numerical computation
In our experiments, we sampled the interior of the volumes

on a regular Cartesian grid with square voxels, which allows
to use the standard Laplacian in R

3 as the Laplace-Beltrami
operator. We use the finite difference scheme to evaluate
the second derivative in each direction in the volume, and
used the shadow variables technique to enforce Neumann
boundary conditions.

Since the coefficients e−λlt decay fast for t > 0, we can
approximate the VHKS descriptor (3) by the truncated sum

Kt(x, y) ≈

k
∑

l=0

e−λltΦl(x)Φl(y). (7)

Thus, in practice, the computation of the VHKS descriptor
boils down to computing k smallest eigenvalues and corre-
sponding eigenvectors of the Laplacian operator in R

3 re-
stricted to the volume X. In our experiments, k = 150 was
used.

5. VOLUMETRIC BAGS-OF-FEATURES
In order to aggregate local point descriptors into a single

global volume descriptor, we follow the ShapeGoogle frame-
work introduced in [9]. Given a volume X, a dense point
descriptor h(x) ∈ R

n is first computed for every x ∈ X.
The second step consists of vector quantization of the de-
scriptors. Given a vocabulary V = {h1, . . . ,hV } of repre-
sentative descriptors, h(x) at each point is replaced by the
V -dimensional distribution

θθθk(x) = exp{−‖hk − h(x)‖2/2σ2}, (8)

where σ is a parameter. In the limit σ → 0, the process
boils down the the standard hard vector quantization as-
signing each descriptor the index of its nearest neighbor in
the vocabulary. The vocabulary is created offline by cluster-
ing a training set of descriptors.

After vector quantization, the point-wise distributions θθθ(x)
are integrated over the entire volume, resulting in the volu-
metric bag-of-features

f(x) =

∫

θθθ(x)dx. (9)

Volumetric bags-of-features are compared using a standard
metric in R

V , e.g. the L1 metric.

Figure 2: Similarity matrix using HKS (left) and
VHKS (right) on a dataset containing three shape
classes (human, dog, horse) undergoing boundary
and volumetric isometric deformations. Bright col-
ors stand for large dissimilarity. HKS are unable to
distinguish between deformations that substantially
violate the natural “state of aggregation” of a shape.

6. RESULTS
In order to test our approach, we used local feature de-

scriptors to construct global shape descriptors, which were
used to compare shapes. Global shape descriptors were con-
structed using bags of geometric words proposed in [9]. A
geometric vocabulary of size 64 was built using clustering in
the space of descriptors. We used the first 150 eigenpairs
of the Laplacian to approximate the heat kernel and 6 time
scales (t = 1024, 1351, 1783, 2353, 3104 and 4096 ) in the
construction of the VHKS. Shapes were represented as vol-
umes; the VHKS at each point in the volume of the shape
were replaced by the closest geometric word from the vo-
cabulary using soft vector quantization. The distribution of
geometric words (64-dimensional bag of features) was used
as the shape descriptor. L1 distance was used to compare
the bags of features.

6.1 Boundary vs volume isometries
In the first experiment, we designed a special dataset to il-

lustrate the difference between boundary and volume isome-
tries and thus emphasize the problem of approaches consid-
ering 3D shapes as 2D boundary surfaces. Our dataset con-
tained objects from three classes (humans, dogs, and horses).
In each class, the null pose of the object underwent five ap-
proximate volume isometries (being also boundary isome-
tries) and five boundary isometries which change the vol-
ume significantly (such as inverting the human head inside
the torso). For all the shapes we computed local HKS de-
scriptors on the boundary following [9], and volumetric HKS
descriptors proposed here. These local descriptors were ag-
gregated into a global bag of features as described above.

Figure 2 shows the distance matrices between the shapes
using HKS (left) and VHKS (right). HKS fail to distinguish
between volume-changing deformation, though they render
the shapes visually very different. With VHKS, on the
other hand, such deformations are distant from the volume-
preserving ones. This fact is further visible from Figure 3
depicting the two descriptors under volume-changing and
volume-preserving isometries of the boundary. Observe that



 

Figure 3: RGB representation of the first three
components of the HKS descriptor (first row) and
VHKS descriptor on the shape boundary (second
row). Second and third columns show, respectively,
a volume-preserving and a volume changing bound-
ary isometries.

while both descriptors are capable of discriminating between
non-isometric shapes, HKS are invariant under volume-changing
isometries of the boundary, while VHKS are not.

6.2 Shape retrieval
In order to evaluate the performance of the proposed de-

scriptors for shape retrieval, we used the SHREC 2010 ro-
bust large-scale shape retrieval benchmark, simulating a re-
trieval scenario, in which the queries include multiple mod-
ifications and transformations of the same shape [6].

Dataset. The dataset used in this benchmark was aggre-
gated from three public domain collections: TOSCA shapes
[8], Robert Sumner’s collection of shapes [35], and Prince-
ton shape repository [33]. The shapes in the original SHREC
dataset are given as triangular meshes with the number of
vertices ranging approximately between 300 and 30,000. We
converted the shapes into a volumetric representation using
rasterization, with fixed voxel size. Typical volume size was
150× 150× 150 The original dataset consisted of two parts:
715 shapes from 13 shape classes with simulated transfor-
mation (55 per shape) used as queries and the rest of 456
shapes, totalling in 1184 shapes.

Queries. The query set consisted of 13 shapes taken
from the dataset (null shapes), with simulated transforma-
tions applied to them. An insignificant number of shapes
containing thin structures was removed due to our inabil-
ity to accurately convert them into a volumetric representa-
tion. For each null shape, transformations were split into 10
classes shown in Figure 4 (we removed the partial view trans-
formation present in the original benchmark, as it represents
a partial occlusion of the boundary and not what is expected
to be a partial occlusion of the volume). In each class, the
transformation appeared in five different versions numbered
1–5. The total number of transformations per shape was 50,
and the total query set size was 600. Each query had one
correct corresponding null shape in the dataset.

Strength

Transformation 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 100.00 100.00 100.00

Topology 100.00 100.00 100.00 100.00 100.00

Holes 100.00 100.00 100.00 100.00 98.75

Micro holes 100.00 100.00 100.00 100.00 100.00

Scale 0.61 11.94 8.81 6.74 5.46

Local scale 100.00 93.35 81.86 69.04 60.81

Sampling 100.00 100.00 100.00 100.00 100.00

Noise 100.00 100.00 100.00 100.00 100.00

Shot noise 100.00 100.00 100.00 100.00 100.00

Mixed 100.00 61.14 41.65 31.47 25.29

Table 1: Performance (mAP in %) of our approach using

VHKS descriptors.

Evaluation criteria. Evaluation simulated matching of
transformed shapes to a database containing untransformed
(null) shapes. As the database, all 469 shapes with null
transformations were used. Multiple query sets according
to transformation class and strength were used. For trans-
formation x and strength n, the query set contained all the
shapes with transformation x and strength ≤ n.

Performance was evaluated using precision/recall charac-
teristic. Precision P (r) is defined as the percentage of rel-
evant shapes in the first r top-ranked retrieved shapes. In
the present benchmark, a single relevant shape existed in the
database for each query. Mean average precision (mAP), de-
fined as

mAP =
∑

r

P (r) · rel(r),

(where rel(r) is the relevance of a given rank), was used as
a single measure of performance. Ideal performance retrieval
performance results in first relevant match with mAP=100%.

Comparison to other methods. Each shape in the
benchmark was represented as a bag of VHKS features in
a vocabulary of size 64, as described above. Table 1 show
the performance (mAP in %) across transformation classes
and strengths of shape retrieval using bags of features based
on VHKS local descriptors. For comparison, in Table 3 we
show the performance of ShapeGoogle [9] using local HKS
descriptors computed on a mesh using cotangent weigh ap-
proximation of the Laplace-Beltrami operator. One can ob-
serve that our approach is more robust under strong iso-
metric and topological transformations and is less sensitive
to noise and resampling. Since the descriptor is not scale-
invariant, the performance on global and local scaling and
mixed transformations is poor.

Table 2 shows the performance of volumetric ShapeDNA
[29], which represents the shapes as vectors of the corre-
sponding Laplacian eigenvalues. We used the first 150 eigen-
values. Our approach significantly outperforms this method.

The complexity of calculating VHKS is higher than that
of HKS. In surfaces, several thousand points are enough for
constructing a distinguishable signature, while in volumes
that number increases by a factor of ten. Since the Lapla-
cian is represented by a sparse matrix, calculating several
dozen eigenvalues and eigenvectors remains a fast procedure.
Under core 2 Duo 3GHz computer, it takes approximately
several seconds to calculate each VHKS. Training the dic-
tionary is done off-line and takes several minutes.



Figure 4: Transformations of the human shape used as queries (shown in strength 5, left to right): null,
isometry, topology, sampling, local scale, scale, holes, micro holes, noise, shot noise, and mixed.

Strength

Transformation 1 ≤2 ≤3 ≤4 ≤5

Isometry 56.97 53.65 49.82 47.97 48.91

Topology 61.97 59.76 58.83 56.92 55.44

Holes 53.89 53.72 51.91 45.40 41.41

Micro holes 51.20 55.05 56.44 56.15 56.06

Scale 0.91 1.93 1.52 1.24 1.08

Local scale 49.69 37.11 33.63 28.15 23.41

Sampling 58.26 60.18 59.45 60.70 58.84

Noise 50.74 51.18 48.76 43.17 38.50

Shot noise 58.93 57.04 50.53 42.54 36.88

Mixed 55.25 30.09 21.00 16.23 13.26

Table 2: Performance (mAP in %) of volumetric

ShapeDNA.

7. CONCLUSIONS
Our starting point was the fact that not all boundary

isometries of solids correspond to meaningful deformations.
We argued that volume isometries better model natural non-
rigid deformations and constructed local descriptors based
on volumetric heat kernels. Such descriptors readily lend
themselves to the bag-of-features representation used in shape
retrieval. Experimental results on the SHREC 2010 bench-
mark demonstrate that the proposed descriptors are more
robust to topological and geometric noise than previously
proposed approaches, achieving state-of-the-art results in
several deformation categories. In future studies, we intend
to construct a scale-invariant version of the VHKS descrip-
tors.
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Strength

Transformation 1 ≤2 ≤3 ≤4 ≤5

Isometry 100.00 100.00 98.61 98.96 99.17

Topology 100.00 96.04 94.67 90.93 89.32

Holes 100.00 96.43 94.91 85.81 77.41

Micro holes 100.00 100.00 100.00 100.00 100.00

Scale 80.03 90.02 93.34 95.01 96.01

Local scale 100.00 100.00 95.90 86.43 78.38

Sampling 100.00 100.00 100.00 100.00 95.92

Noise 100.00 100.00 100.00 100.00 100.00

Shot noise 100.00 100.00 100.00 100.00 100.00

Mixed 40.84 39.95 46.38 47.79 44.79

Table 3: Performance (mAP in %) of the 2D HKS de-

scriptor computed with cotangent weight discretization

of the Laplacian.
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