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Volumetric lung nodule 
segmentation using adaptive Roi 
with multi‑view residual learning
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Byung‑il Lee2 & Yeong‑Gil Shin1

Accurate quantification of pulmonary nodules can greatly assist the early diagnosis of lung cancer, 
enhancing patient survival possibilities. A number of nodule segmentation techniques, which either 
rely on a radiologist‑provided 3‑D volume of interest (VOI) or use the constant region of interests 
(ROIs) for all the slices, are proposed; however, these techniques can only investigate the presence of 
nodule voxels within the given VOI. Such approaches restrain the solutions to freely investigate the 
nodule presence outside the given VOI and also include the redundant structures (non‑nodule) into 
VOI, which limits the segmentation accuracy. In this work, a novel semi‑automated approach for 3‑D 
segmentation of lung nodule in computerized tomography scans, has been proposed. The technique is 
segregated into two stages. In the first stage, a 2‑D ROI containing the nodule is provided as an input 
to perform a patch‑wise exploration along the axial axis using a novel adaptive ROI algorithm. This 
strategy enables the dynamic selection of the ROI in the surrounding slices to investigate the presence 
of nodules using a Deep Residual U‑Net architecture. This stage provides the initial estimation of the 
nodule utilized to extract the VOI. In the second stage, the extracted VOI is further explored along 
the coronal and sagittal axes, in patchwise fashion, with Residual U‑Nets. All the estimated masks 
are then fed into a consensus module to produce a final volumetric segmentation of the nodule. The 
algorithm is rigorously evaluated on LIDC–IDRI dataset, which is the largest publicly available dataset. 
The proposed approach achieved the average dice score of 87.5%, which is significantly higher than 
the existing state‑of‑the‑art techniques.

Lung cancer is one of the most severe and highly-prevalent cancers and is the leading cause of cancer deaths 
 worldwide1. It has been forecasted to be one of the greatest single cause of mortality among the European popula-
tion in  20192. Early diagnosis of lung cancer is crucial to enable possible life-saving  interventions3, which relies on 
accurate quanti�cation of pulmonary nodule; albeit pulmonary nodules can be associated with several diseases, 
their recurrent diagnosis is lung cancer. �e continuous monitoring of lung nodule volume is vital to estimate 
the malignancy and to better forecast, the probability of lung  cancer45. For calculation of volume, the nodule 
is �rst segmented, while the manual segmentation of nodule is a tedious and time-consuming task which also 
introduces the inter and intra-observer  variabilities6.

Computer-aided diagnosis (CAD) systems have huge potential to overcome the challenges faced during 
manual segmentation of pulmonary nodules and can remarkably enhance the productivity of radiologists. �ere-
fore, several automatic nodule segmentation techniques have been proposed to facilitate radiologists, including 
advanced deep learning and classical image processing based  techniques7. All existing techniques require a 3-D 
volume of interest (VOI) as an input to precisely estimate the shape of a  nodule8–10, this VOI can either be an 
output of nodule detection module or can be provided by the radiologist. However, despite of having VOI, the 
shape variations within a nodule and the visual similarity between a nodule and its surroundings (i.e., non-nodule 
tissue) act as barriers toward the development of a highly accurate and robust nodule segmentation solution. 
Figure 1 illustrates intra-nodule variations in slices of axial view and also inter-nodule variations, wherein the 
diversity between the shapes of di�erent nodules and multiple axial views of a single nodule are observable.
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Volumetric segmentation of pulmonary nodule can be performed either by using 3-D VOI-based segmenta-
tion technique or by performing 2-D region of interest (ROI) based segmentation in the patch-wise fashion. 
However, there are several challenges associated with 3-D VOI-based segmentation, such as demand for a large 
amount of training data and higher computation cost. On the other hand, 2-D ROI-based segmentation is sig-
ni�cantly faster, required less training data and computational power, which makes it a popular choice. Moreover, 
recent  studies711 have also demonstrated that through patch-wise investigation, 2-D segmentation scheme can 
be e�ciently exploited to estimate the 3-D volumetric shape of a lung nodule.

In this work, we propose a novel approach for volumetric segmentation of pulmonary nodules by taking 
only the 2-D ROI input from the radiologist. �e solution �rst explores the presence of a nodule within the 
provided ROI by employing a Deep Residual U-Net and then extends the search into surrounding slices (i.e., 
in both directions). To investigate possible penetration of the nodule within adjacent slices, we introduce the 
concept of adaptive ROI (A-ROI) that allows the solution to dynamically change the position and size of ROI 
while searching into other slices. To the best of our knowledge, such A-ROI algorithm has never been proposed 
for the optimization of volumetic segmentation in any medical imaging modality. �e application of this A-ROI 
algorithm along the axial plane provides an initial estimation of the nodule shape, which is leveraged to extract 
a 3-D VOI from the scan automatically. �is VOI is further utilized to create coronal and sagittal views of the 
nodule, and slices of both are investigated with two Deep Residual U-Nets. Finally, three estimated segmentation 
masks (i.e., for the axial, coronal, and sagittal views) are fed into a consensus module to build a �nal segmentation 
mask. To validate the performance of the proposed method, an extensive set of experiments has been conducted 
on LIDC–IDRI  dataset12, which is the largest publicly available dataset. �e results suggest that the approach is 
robust and signi�cantly improves the performance in terms of dice score as compared to the previous state-of-
the-art techniques.

Related work
An accurate assessment of the lung nodule is required to investigate its malignancy and possibility of lung 
cancer. Due to the exceptional importance of nodule segmentation, several e�orts have been made to develop 
a highly accurate and robust automatic nodule segmentation system that may assist radiologists. �ese e�orts 
can be distinguished into two categories: deep learning-based techniques and classical image processing-based 
 techniques711. In this section, we incorporate a brief review of recently proposed techniques from each category.

Jamshid et al.13 proposed an algorithm that utilized two-region growing techniques (i.e., fuzzy connectivity 
and contrast-based region growing) to perform nodule segmentation. �e region growing is operated within 
a volumetric mask that is created by �rst applying a local adaptive segmentation algorithm to identify the 
foreground and background regions within a speci�ed window size. �e algorithm performed well for a sepa-
rated nodule but failed to segment the attached nodules. Stefano et al.14 proposed a user interactive algorithm 
that adopts geodesic in�uence zones in a multi-threshold image representation to allow the achievement of 
fusion–segregation criteria based on both gray-level similarity and objects shape. �e same author extended 
this  work15 by removing the user interaction component and performing corrections according to 3-D local 
shape analysis. �e correction procedure re�ned an initial nodule segmentation to split possible vessels from 
the nodule segmentation itself.

Figure 1.  Multiple visual appearances of the pulmonary nodule are shown. �e intra-nodule variation in slices 
of axial view is depicted from column (a) to (e), and the inter-nodule di�erence is presented from rows (i) to 
(iii).
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�reshold and morphological techniques were adopted in Elmar et al.16 to eliminate the background and 
other surrounding information from the provided ROI. �en, a support vector machine (SVM) was employed 
to classify each pixel in the detected space. Similarly, Wang et al.17 tried to segment solitary pulmonary nodules 
in digital radiography (DR) images by incorporating a sequential �lter to construct new representations of the 
weight and probability matrices. However, this method is limited to DR images, which constrains the application 
for CT images. Additionally, Julip et al.18 segmented ground-glass nodules (GGN) in chest CT images using an 
asymmetric multi-phase deformable model. However, this technique lacks the robustness to address segmenta-
tion requirements for other nodule types.

Shakibapour et al.9 employed the notion of optimally clustering a set of feature vectors comprising intensity 
and shape-related features in a given feature data space extracted from a predicted nodule. �e size is obtained 
by measuring the volume of a segmented nodule via an ellipsoid approximation using the equivalent diameters 
of the segmented regions in a 2.5-D representation; thus, the uncertainty persists into the �nal results. Shakir 
et al.19 proposed the voxel intensity-based segmentation scheme that incorporates mean intensity-based thresh-
olding in the Geodesic Active contour model in level sets. �is work was validated on limited set of scans, so the 
robustness of the proposed technique is dubious.

Despite extensive research, classical image processing techniques were unable to provide su�ciently robust 
and accurate volumetric nodule segmentation. On the other hand, recent advancements in deep learning (DL) 
have revolutionized image  enhancement20 and segmentation-related  applications2122, including lung nodule seg-
mentation  tasks23. Especially the introduction of the U-Net  architecture24, for segmentation in medical images, 
has remarkably enhanced the performance for these tasks. Subsequently, many e�orts have been made to leverage 
DL-based techniques for lung nodule segmentation, such as Wang et al.8 developed the Central Focused Convo-
lutional Neural Network (CF-CNN) that takes a volumetric patch around a selected voxel as the input and returns 
the segmentation of nodule. �e same authors  in25 presented a multi-view CNN for lung nodule segmentation, 
which takes the axial, coronal and sagittal view around a given voxel of a nodule as input and provides nodule 
segmentation. �e method of patch (axial, coronal, and sagittal) extraction around the given nodule is kept �xed 
for all nodules which may lead to compromised segmentation if the nodule is larger than the extracted patch size.

Guofeng et al.26 improved the performance of U-Net for nodule segmentation by including skipped connec-
tions within the encoder and decoder paths. �e study reports an enhanced performance of U-Net but lacks from 
3-D volumetric analysis. Similarly, Amorim et al.27 modi�ed the U-Net architecture to investigate the presence of 
nodules through a patch-wise approach. �ey manually extracted a VOI containing the nodule and performed 
2-D segmentation along each axis, so a �nal segmentation is calculated by summing the three predicted masks. 
�e VOI selection criterion was static and is �xed as a 128 × 128 × 12 window around the given voxel, which 
deprives the solution to achieve high accuracy on the large nodules. Hancock et al.28 presented an extension of 
the vanilla level set image segmentation method in which instead of being manually designed, the velocity func-
tion is learned from data via machine learning regression methods. �ey employed their segmentation scheme 
for lung nodule segmentation and reported slightly improved performance. A residual block based dual-path 
network in Liu et al.10 extracts local features and rich contextual information of lung nodules, which resulted in 
a signi�cant performance enhancement. However, they also used a �xed VOI that refrains the free search of the 
nodule and subsequently reduces the performance.

In this work, we eliminate the downsides of the �xed VOI by introducing the adaptive 2-D ROI selection 
algorithm, which greatly assists the solution to exploit the power of deep learning. A�erwards, we utilize the 
Deep Residual U-Net29, which has shown excellent performance for other segmentation tasks but has never been 
employed for nodule segmentation. Finally, We investigate the automatically extracted VOI along the coronal 
and sagittal axes to determine an accurate segmentation of a lung nodule.

proposed method
Our method consists of two stages, as described in Fig. 2. In the �rst stage, we estimate the nodule 3-D shape 
along the axial axis to extract the VOI. In the second stage, we utilize the extracted VOI to further perform 2-D 
patch-wise investigation along the sagittal and coronal axes. Finally, we use the consensus module to calculate 
the 3D segmentation of the nodule. Details of each stage are described below.

Stage I. �e 2-D ROI containing a nodule is manually provided by the radiologist and may be selected 
from any portion of the nodule (i.e., from any slice). �is ROI is then processed by the Deep Residual U-Net 
architecture to obtain a 2-D segmentation of the nodule, which is next forwarded into the A-ROI algorithm; the 
algorithm utilizes the position of nodule within the current ROI to determine the size and position of the ROI 
for the subsequent slice. Finally, the volumetric segmentation mask of the nodule is built by concatenating all 
the 2-D segmentation masks.

Descriptions of the A-ROI algorithm and Deep Residual U-Net architecture are provided in the following 
sections.

Adaptive ROI algorithm. �e adaptive ROI algorithm dynamically selects the ROI for next slice to search for 
the presence of a nodule. �e objectives of this algorithm include: to keep the ROI concentric to the predicted 
nodule mask by adjusting the position of the ROI and to maintain the ratio between the area of the nodule and 
ROI below a threshold level ( RT ), by changing the the size of the ROI. Figure 3 illustrates the a�ect of A-ROI 
algorithm, current and next slices have been presented in (a) and (b), respectively. Red colour ROI demonstrates 
the change in the size of ROI by A-ROI algorithm and green colour ROI presents the change in the position of 
ROI from current to next slice.
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Figure 2.  An illustration of the stages of the proposed method. At stage I, a manual ROI along the axial axis is 
provided by the user, and a Deep Residual U-Net along with the adaptive ROI algorithm is employed to extract 
the volume of interest (VOI). A�er getting the VOI during stage II, a patch-wise segmentation of the nodule 
is performed along the coronal and sagittal axes. Eventually, a consensus module is employed on all estimated 
segmentation masks to obtain the �nal 3-D nodule segmentation mask.

Figure 3.  �e change in position and shape of the ROI a�er employing our A-ROI algorithm, is presented. 
�e current and next slice of VOI have been shown in �gure (a,b), respectively. �e red ROI demonstrates the 
change in size of ROI by A-ROI algorithm while the change in position of the ROI is depicted by green ROI.



5

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:12839  | https://doi.org/10.1038/s41598-020-69817-y

www.nature.com/scientificreports/

Algorithm 1 describes the steps of the nodule penetration search into adjacent slices. First, nodule segmenta-
tion is performed on the manual ROI provided by the user. A�er obtaining a predicted segmentation of a nodule, 
the ROI position and size are adjusted by considering the margins identi�ed in the predicted mask.

In Algorithm 1, ANi
 , AROIi , and AROIi+1

 indicate the area of a nodule in the current ( ith ) slice, the area of the 
ROI in the current ( ith ) slice, and the suggested area of ROI in next ( (i ± 1)th ) slice, respectively. DL , DR , DT , 
and DB are the le�, right, top and bottom margins of the predicted mask, respectively, as shown in Fig. 4, while 
�DX and �DY provide the di�erentials in the margins along the x and y axes, respectively. X1,X2 and Y1,Y2 are 
the beginning and ending coordinate points along the x and y axes of the current ROI, and X ′

1,X
′

2 and Y ′

1,Y
′

2 are 
the beginning and ending coordinate points along the x and y axes of the updated ROI in the next slice ( Si±1 ), 
respectively.

Figure 4.  �e margins on the four sides of the predicted mask are highlighted as DL,DR ,DT , and DB , for the 
le�, right, top, and bottom margins of the predicted nodule segmentation, respectively.
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A�er determining the position of the next ROI, Algorithm 1 determines the optimal size of the ROI. �e 
shape of the ROI remains square so that each side of the calculated ROI has the same length. �e algorithm 
retains the ratio between AN and AROI , which is less than the constant value of the selected ratio threshold ( RT ). 
�e value of RT is crucial, as it determines the size of the ROI to be selected for the next slice, which is directly 
linked to the maximum possible movement of the nodule within two adjacent slices. �e size of the ROI should 
be adequate to address the maximum possible displacement of the nodule that is directly proportional to the 
slice thickness (ST). �erefore,

�e optimum value of RT is determined experimentally by using validation data and is discussed in the “Results 
and discussion” section. Eventually, the A-ROI algorithm tends to retain the condition,

Here, the minimum possible value of AROI can be equal to AN , so RT ∈ (0, 1).
If the ratio of ANi

 and AROIi becomes greater than RT , then the algorithm calculates the di�erential ( �A ) 
between the current area of the ROI ( AROIi ) and the required area of the ROI for next slice ( AROIi+1

 ). �en, �A 
is utilized for updating the coordinates of the ROI to obtain the required size.

In Fig. 3, the ROI within the current slice and the estimated ROI (calculated using the A-ROI algorithm) 
for the next slice are shown in red and green, respectively. �e change in the position of the ROI is presented in 
Fig. 3a,b, the change of the size of the ROI is depicted.

�e entire e�ect of the A-ROI algorithm is observed in Fig. 5, where two constant ROIs and an adaptive ROI 
are shown. �e segmentation of the nodule starts from column (a) with the manual ROI and ends at column 
(f). �e conventional ROIs (i.e., in red and blue) are the same in each slice while the adaptive ROIs, presented in 
green, feature di�erent positions and sizes in each slice. In a conventional approach when the ROI remains close 
to the nodule in the initial slice (as shown in red), it fails to cover the nodule area present in the other slices. �en, 
a constant and larger ROI (shown in blue ) is required to incorporate the complete area of a nodule spanning 
all slices. �is approach also adds redundant information into the ROIs, which impacts the performance of the 
segmentation model. On the other hand, our adaptive ROI strategy not only enables the user to select the ROI 
without the need to look into other slices, but also optimally chooses the ROIs for the remainder of the slices to 
facilitate improved performance of the segmentation model.

Deep Residual U-Net architecture. For nodule segmentation in the provided and calculated ROIs by A-ROI 
algorithm, we employ the Deep Residual U-Net  architecture29. �e network utilizes the residual learning in the 
U-Net architecture, which is state-of-the-art for segmentation. �e involvement of residual units eases the train-
ing process, and the skip connections allow the �ow of information without degradation from low levels to high 
levels of the network. �is combination enables the network to learn the patterns with fewer parameters, which 
is signi�cant for our application, and increases the performance on conventional U-Net architectures.

We leverage a 9-level architecture of the Deep Residual U-Net , as shown in Fig. 6. �e network consists of 
three sections for encoding, a bridge, and decoding. �e encoding section contracts the input image into a com-
pact representation. �e decoding section recovers the required information (i.e., the semantic segmentation) 

(1)RT ∝

1

ST
.

(2)RT ≤
AN

AROI

.

Figure 5.  �e constant and adaptive region of interests (ROIs) have been shown in a sequence of slices in which 
nodule is present. Blue and red boxes represent the constant ROIs, while green boxes depict the adaptive ROI.
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into a pixel-wise representation. �e bridge connects these two sections. All sections of the network are built 
with residual units consisting of two 3 × 3 convolution blocks that include a batch normalization layer, a ReLU 
activation layer, and a convolutional layer. �e identity mapping connects the input and output of the unit.

�e encoding path has four residual units. In each unit, instead of using a pooling operation to down-sample 
the feature map size, a stride of 2 is applied to the �rst convolution block to reduce the feature map by half. 
Correspondingly, the decoding path also comprises four residual units. Preceding each unit, an up-sampling of 
the feature maps occurs from the lower level, and a concatenation of the feature maps is applied from the cor-
responding encoding path. A�er the �nal level of the decoding path, a 1 × 1 convolution and sigmoid activation 
layer is used to project the multi-channel feature maps into the desired segmentation. �e parameters and output 
sizes of each step are listed in Table 1.

Loss function. Given a set of training images and the corresponding ground truth segmentations, Ii , si , we esti-
mate the parameter W of the network, such that it produces accurate and robust nodule segmentation masks. 

Figure 6.  �e architecture of Deep Residual U-Net, which is employed along the axial axis with the A-ROI 
algorithm to perform the lung nodule segmentation.

Table 1.  �e network structure of the Deep Residual U-Net that performs patch-wise segmentation along the 
axial axis.

Unit level Conv layer Filter Stride Output size

Input 128 × 128 × 1

Level 1
Conv 1
Conv 2

3 × 3/64
3 × 3/64

1 128 × 128 × 64

128 × 128 × 641

Level 2
Conv 3
Conv 4

3 × 3/128
3 × 3/128

2 64 × 64 × 128

64 × 64 × 1281

Level 3
Conv 5
Conv 6

3 × 3/256
3 × 3/256

2 32 × 32 × 256

32 × 32 × 2561

Level 4
Conv 7
Conv 8

3 × 3/512
3 × 3/512

2 16 × 16 × 512

16 × 16 × 5121

Level 5
Conv 9
Conv 10

3 × 3/1024
3 × 3/1024

2 8 × 8 × 1024

8 × 8 × 10241

Level 6
Conv 11
Conv 12

3 × 3/512
3 × 3/512

1 16 × 16 × 512

16 × 16 × 5121

Level 7
Conv 13
Conv 14

3 × 3/256
3 × 3/256

1 32 × 32 × 256

32 × 32 × 2561

Level 8
Conv 15
Conv 16

3 × 3/128
3 × 3/128

1 64 × 64 × 128

64 × 64 × 1281

Level 9
Conv 17
Conv 18

3 × 3/64
3 × 3/64

1 128 × 128 × 64

128 × 128 × 641

Output Conv 19 1 × 1 1 128 × 128 × 1
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�is optimal value is achieved through minimizing the loss between the segmentations generated by Net(Ii ,W) 
and the ground truth si . We use the dice similarity coe�cient (DSC)30 as the loss function,

where N is the number of training samples. We use stochastic gradient descent (SGD) to train our network.

Stage II. �e second stage of our approach is further designated into two phases. �e �rst employs patch-
wise nodule segmentation along the coronal and sagittal axes, and the second reconstructs the �nal 3-D segmen-
tation mask of the nodule from all estimated nodule segmentations. �ese phases are detailed in the following.

Multi-view investigation. �e VOI extracted from stage I is utilized to perform patch-wise nodule segmenta-
tion along the coronal and sagittal axes independently with two networks. By considering the fact that slice 
thickness is o�en greater than the voxels spacing in the x–y plane, we resize the coronal and sagittal patches to 
128 × 64 . �e segmentation is performed using a similar Deep Residual U-Net architecture as that used during 
stage I. However, owing to the smaller size of the images, the number of levels is reduced to seven (i.e., three 
encoding, one bridge, and three decoding units), which decreases the number of parameters in the network; this 
is shown in Table 2. �e output of each model is resized to the original size of the ROI; original size refers to the 
size in which the ROI was extracted from scan. Finally, all the inferences are concatenated in the same manner 
as it was performed during stage I to reconstruct the 3D segmentation of a nodule.

Reconstruction of the nodule shape. A�er obtaining the nodule segmentation for each plane, we apply the con-
sensus module to calculate the �nal segmentation. �e value of kth consensus pixel ck of segmentation mask is 
calculated as

where S represents the estimated segmentation, M is the number of estimations (three in our case, axial, coronal, 
and sagittal), N is the number of voxels in the VOI, and Ŵ is de�ned as

Here, CR is the consensus ratio set as 0.5 to represent a 50% consensus.

experimental setup
Dataset and pre‑processing. All the experiments were carried out in accordance with relevant guide-
lines. We acknowledge the National Cancer Institute and the Foundation for the National Institutes of Health, 
and their critical role in the creation of the free publicly available database; the Lung Image Database Consor-

(3)L(W) =
1

N

N
∑

i=1

[

1 −
2 ∗ Net(Ii;W) ∩ si

Net(Ii;W) ∪ si

]

(4)ck = Ŵ

[

M−1
∑

i=0

Ski

]

,where k ∈ [0,N − 1]

(5)Ŵ(g) =

{

1, if g ≥ (M ∗ CR)

0, Otherwise

Table 2.  �e network structure of the Deep Residual U-Net to perform patch-wise segmentation along the 
coronal and sagittal axes.

Unit level Conv layer Filter Stride Output size

Input 128 × 64 × 1

Level 1
Conv 1
Conv 2

3 × 3/64
3 × 3/64

1 128 × 64 × 64

128 × 64 × 641

Level 2
Conv 3
Conv 4

3 × 3/128
3 × 3/128

2 64 × 32 × 128

64 × 32 × 1281

Level 3
Conv 5
Conv 6

3 × 3/256
3 × 3/256

2 32 × 16 × 256

32 × 16 × 2561

Level 4
Conv 7
Conv 8

3 × 3/512
3 × 3/512

2 16 × 8 × 512

16 × 8 × 5121

Level 5
Conv 9
Conv 10

3 × 3/256
3 × 3/256

1 32 × 16 × 256

32 × 16 × 2561

Level 6
Conv 11
Conv 12

3 × 3/128
3 × 3/128

1 64 × 32 × 128

64 × 32 × 1281

Level 7
Conv 13
Conv 14

3 × 3/64
3 × 3/64

1 128 × 64 × 64

128 × 64 × 641

Output Conv 15 1 × 1 1 128 × 64 × 1
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tium and Image Database Resource Initiative (LIDC–IDRI)  Database1231 used in this study is freely available 
to browse, download, and use for commercial, scienti�c and educational purposes as outlined in the Creative 
Commons Attribution 3.0 unported License.

�e LIDC–IDRI is the largest repository of CT scans to facilitate computer-aided systems on the assessment 
of lung nodule detection, classi�cation and quanti�cation. �is dataset is composed of 1,018 cases of diagnostic 
and lung cancer screening thoracic CT scans with marked-up annotated lesions belonging to 1,010 patients. Each 
subject in the dataset includes images from a clinical thoracic CT scan and the results of a two-phase image anno-
tation process performed by four experienced thoracic radiologists. We consider the nodules that are annotated 
by all the four radiologists and have a diameter of no less than 3 mm, as in used previous  studies3233. Because 
of the inter-variability among the four radiologists, a 50% consensus  criterion34 is opted to generate the ground 
truth boundary of the pulmonary nodule segmentation and a python library named pyLIDC is used for this 
purpose. From LIDC dataset, a total of 893 nodules are selected and randomly divided into training, validation, 
and testing sets consisting on 356 (40%), 45 (5%), and 492 (55%) of nodules, respectively.

LIDC dataset contains scans acquired from various facilities and scanners. �erefore, it comes with the range 
of pixel spacing and slice thickness. �ese parameters play a vital role in nodule appearance. Especially, slice 
thickness greatly a�ects the coronal and sagittal views of nodule. In most of the LIDC scans, slice thickness is 
greater than pixel spacing, ranges from 0.45 to 5.0 mm. �erefore, slice thickness of each scan has been normal-
ized to its corresponding pixel spacing to improve the visualization of nodule along coronal and sagittal view. For 
instance, if a scan has pixel spacing and slice thickness of 0.66mm × 0.66mm and 2.5 mm, respectively. �en, 
the slice thickness is normalized to pixel spacing (i.e., 0.66 mm). However, the pixel spacing has kept intact, since 
it is was less than one for all the scans, which results good quality axial view of nodules.

�e intensities of DICOM images are also normalized, from 0 to 1, by leveraging the DICOM tags informa-
tion about window center (WC) and window width (WW). It can be de�ned as:

where Min = WC − WW/2 , Max = WC + WW/2 , I represents the original and Inormalized denotes the nor-
malized image.

Unlike previous  studies825–27, those used a �xed margin strategy while extracting the ROIs for training pur-
pose, we use random margins strategy. In the �xed margin approach, the margins shown in Fig. 4 are kept con-
stant and of same size, subsequently nodule always appears at the centre of the ROI, which refrains the model 
learning from the possibility of nodules existence at the corners of ROI. However, in our solution, it is crucial 
to detect the nodule presence anywhere within a given ROI, since the A-ROI algorithm calculates the ROI for 
next slice by exploiting the nodule position in the current ROI. �e networks are enabled to detect the nodule 
at any position within the ROI, by preparing the training data with random margins strategy. �e values of all 
four margins are generated with a random function; restricted between zero and the maximum diameter of a 
nodule within the slice.

For patch-wise investigations of a nodule, the network should also learn about the absence of nodule in a given 
ROI to accurately determine the VOI, so we also include multiple non-nodule-containing ROIs from both sides 

(6)Inormalized =

I − Min

Max − Min
,

Figure 7.  �e graph of training and validation accuracy vs. the number of training epochs of Res-UNet.
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(i.e., a�er the top and bottom slices) of the nodule. Since, nodule consists of several number of slices (as shown 
in Fig. 5), depending upon the nodule size, and we extract the ROI from each slice, thus, we get multiple ROIs 
from single nodule. �erefore, from 356 nodules, which are used for training, a total of 12,821 ROIs (images) 
are created and are utilized for training purpose.

Implementation details. �e proposed model was implemented using  Keras35 framework and optimized 
by minimizing Eq. (3) through SGD algorithm, and trained on 12,821 images sized 128 × 128 . We begin training 
the model with random weights and with learning rate of 10−4 . We use mini-batch size of 8 on a NVIDIA TESLA 
V100 TENSOR CORE GPU. �e network converges within 700 epochs and it takes 4 h and 51 min to complete 
the training. �e learning curve of the network has been shown in Fig. 7.

Evaluation parameters. We use following evaluation parameters to evaluate the perform of our proposed 
method.

Dice similarity coe�cient. Equation (7) de�nes the dice similarity coe�cient (DSC), which is widely used 
parameter to evaluate the degree of overlap of predicted segment ( SPred ) with reference segment ( SRef )

818. �e 
DSC values ranges [0,1], while 0 and 1 indicate no overlap and complete overlap, respectively.

Sensitivity and positive predictive value. �e pixel classi�cation performance and correctness of the segmenta-
tion area are measured by the sensitivity (SEN) and the positive predictive value (PPV), which are de�ned as

Hausdor� distance. Hausdor� distance (HD)36 is another commonly used metric for the evaluation of medical 
 segmentation37, which measures the dissimilarity between two sets of points. �e directed Hausdo� distance 
(H) between two point sets SRef  and SPred is the maximum distance between each point x ∈ SRef  to its nearest 
neighbour y ∈ SPred . �at is

where �·, ·� is any norm i.e., the euclidean distance function. Note that H(SRef , SPred)  = H(SPred , SRef ) and thus 
the directed Hausdor� distance is not symmetric. �e Hausdor� distance HD is the maximum of the directed 
Hausdor� distances in both directions and thus it is symmetric. HD is given by:

(7)DSC =
2 ∗ SPred ∩ SRef

SPred ∪ SRef

(8)SEN =
SPred ∩ SRef

SRef

(9)PPV =
SPred ∩ SRef

SPred

(10)H(SRef , SPred) = maxx∈SRef {miny∈SPred {�x, y�}},

(11)HD(SRef , SPred) = max{H(SRef , SPred),H(SPred , SRef )}.

Figure 8.  �e graph between various values of RT and the corresponding performances in term of % DSC on 
the validation data.
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Results and discussion
We performed various experiments on the LIDC-IDRI dataset to evaluate the performance of our approach . 
�e results were analyzed based on aspects of the e�ect of the RT value, overall performance, robustness, and 
visual performance. �e following subsections review our analysis.

Performance sensitivity to the RT value. �e value of RT is determined experimentally by using valida-
tion data; multiple experiments were performed with various values of RT to obtain its optimum value. Figure 8 
shows a range of RT values and their respective overall performance. With an increase in the value of RT , the 
performance also increases until it reaches a speci�c point (i.e., 0.6), a�er which the performance decreases. �e 
graph illustrates that for lower RT representing a larger ROI, the performance is degraded because the ROI is 
not focused on a single nodule and includes redundant information or non-nodule structures. �is extraneous 
information makes the segmentation process challenging, consequently reducing overall performance. On the 
other hand, when a high value of RT is selected, the ROI not only focuses on a nodule but also remains very close 
to the nodule boundary, which is insu�cient to handle small displacements of the nodule across adjacent slices. 
�erefore, a moderate value of RT provides the best performance, and we used the same value of 0.6 for RT in all 
experiments reported.

Overall performance. �e overall performance of the proposed method is evaluated by using all evalua-
tion parameters mentioned above. Table 3 lists these results for various methods, and the adaptive ROI method 
signi�cantly outperforms previous state-of-the-art techniques. To demonstrate the e�ectiveness of adaptive ROI, 
we also applied a constant ROI with Multi-view Residual leaning, which also outperformed the existing tech-
niques re�ecting the power of residual learning, as it has not been previously used for nodule segmentation.

�e results in Table 3 also suggest that the incorporation of adaptive ROI signi�cantly improves the results, 
with the average DCS value increasing by approximately 3%. �e reason for such high performance is due to the 
advantage explained in Fig. 5. �e approach reduces the size of the ROI enabling it to focus only on the nodule 
and eliminating possible redundant information (i.e., similar non-nodule structures) from the ROI, which sub-
sequently assists the residual U-Net architecture for the classi�cation of the nodule and non-nodule voxels. On 
the other hand, the constant ROI must cover a large area (i.e., surrounding of nodule) to incorporate the entire 
shape of the nodule, which impacts the performance of the network.

Table 3.  �e mean ± standard deviation for quantitative results of various segmentation methods with the 
best performance indicated in bold.

Methodology DSC (%) SEN (%) PPV (%)

Central focused  CNN8 78.55 ± 12.49 86.01 ± 15.22 75.79 ± 14.73

Multi-crop  CNN38 77.51 ± 11.40 88.83 ± 12.34 71.42 ± 14.78

Multi-view  CNN39 75.89 ± 12.99 87.16 ± 12.91 70.81 ± 17.57

Multi-view deep  CNN25 77.85 ± 12.94 86.96 ± 15.73 77.33 ± 13.26

Multichannel ROI based on deep structured  algorithms40 77.01 ± 12.93 85.45 ± 15.97 73.52 ± 14.62

Cascaded dual-pathway Res-Net10 81.58 ± 11.05 87.30 ± 14.30 79.71 ± 13.59

Unsupervised metaheuristic  search9 82.34 ± 5.40 87.10 ± 9.78 85.59 ± 11.06

Constant ROI with multi-view deep residual learning 84.35 ± 11.72 89.02 ± 8.91 86.73 ± 10.11

A-ROI with multi-view deep residual learning 87.55 ± 10.58 91.62 ± 8.47 88.24 ± 9.52

Table 4.  Average DSC for di�erent nodule types in the LIDC-IDRI testing set.

Characteristics

Characteristic scores

1 2 3 4 5 6

Calci�cation _ _ 84.61 [18] 83.88 [42] 86.24 [27] 88.15[405]

Internal structure 87.62 [487] 79.27 [3] _ 81.48 [2] _ _

Lobulation 86.96 [201] 88.78 [164] 86.56 [78] 85.94 [31] 89.74 [18] _

Malignancy 85.67 [39] 86.56 [114] 89.26 [163] 86.67 [98] 87.52 [78] _

Margin 86.42 [9] 85.61 [37] 86.73 [78] 88.21 [232] 87.51 [136] _

Sphericity _ 86.79 [38] 85.28 [153] 89.16 [218] 88.12 [83] _

Speculation 89.29 [257] 85.18 [165] 86.96 [32] 86.37 [14] 86.68 [24] _

Subtlety 80.52 [4] 82.65 [22] 87.51 [131] 87.09 [238] 90.17 [97] _

Texture 82.18 [11] 85.67 [18] 86.54 [26] 87.55 [107] 87.93 [330] _
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Figure 9.  �e segmentation results of proposed approach, at di�erent stages (i.e., a�er employing segmentation 
along axial, coronal, sagittal axis) and �nally the segmentation outputs of consensus module have been 
presented with their respective dice scores.

Figure 10.  �e segmentation performance of our proposed approach on each slice of a single nodule with 
the corresponding dice scores. From columns 1–9, the sequence of slices is observed with the nodule seen in 
columns 2–7 and no nodule in columns 1 and 9. �e squares marked in the predicted segmentation row depict 
the ROIs, where yellow represents the initial (manually provided) ROI, and blue represents the adaptive ROIs.
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Evaluation of robustness. �e LIDC–IDRI dataset also provides annotations about the levels of nine 
characteristics of the nodules, such as Subtlety, Internal Structure, Calci�cation, Sphericity, Margin, Lobulation, 
Speculation, Texture, and Malignancy. �e sphericity of nodules, the likelihood of malignancy, and other prop-
erties are represented by these  characteristics8. We partitioned the test data into groups according to the level of 
each characteristic and extracted the results against each level, as presented in Table 4. �e dice score achieved 
for each group is similar, indicating the robustness of our approach.

Visual analysis. �e results of our method are visualized to analyze its performance at various stages of the 
proposed approach. In Fig. 9, the segmentation outputs, following the axial, coronal, and sagittal view investi-
gations, are shown with the output of the consensus module presented in the last column. Nodules of various 
types from test data are randomly selected, including the attached, non-attached, and nodule with extreme 
subtlety. �e results suggest that adaptive ROI with residual learning enhances the performance of the axial view 
investigation. However, in the cases where the penetration of the nodule along the z-axis is higher than the pres-
ence of the nodule on the x–y plane, the performance along the sagittal and coronal axes is only slightly higher. 
Subsequently, in a few cases, the performance following the consensus module is also slightly reduced. However, 
according to the dice scores of the outputs following the axial, coronal, sagittal, and consensus modules listed in 
Table 5, the performance still improves signi�cantly a�er applying the consensus module.

Because our method automatically extracts the VOI, an estimation of nodule penetration in the surround-
ing slices must be evaluated. Figure 10 shows the visual results from a complete nodule. As described above, 
a manual ROI is needed to initialize the segmentation process, which is presented in yellow, and the adaptive 
ROIs are calculated through the A-ROI algorithm for the surrounding slices, as presented in blue. �e detected 
presence of a nodule in each slice is highlighted with the corresponding dice scores. Our method successfully 
detects the penetration of the nodule in each slice and stops the investigation immediately a�er the end of the 
nodule is reached from both sides.

Limitations of A‑ROI algorithm. Figure 11 shows representative challenging images where the proposed 
A-ROI algorithm could not accurately segment the pulmonary nodule. �ere are two main reasons of this fail-
ure. First, as it can be observed in Fig. 11a,b that nodules are largely connected with non-nodule structures in the 
lungs and nodules boundaries are extremely fuzzy from two sides. �erefore, during the patch-wise investigation 
of nodule, A-ROI algorithm fails to determine the optimum ROI for next slice, which subsequently results into 
compromised performance. �is limitation can remedied by manually re-adjusting the ROI.

Secondly, in the cases where the nodule appearance along the axial axis is very small as compared to other 
axes as shown in Fig. 11c, A-ROI algorithm su�ers to accurately detect the boundary of nodule because of higher 
re-scaling size (i.e., 128 × 128 ). For instance, the nodule size in axial slice view is 5 × 5 and according to A-ROI 
algorithm the optimum size of ROI is 9 × 9, which is further resized to 128 × 128 to fed into Res-UNet for seg-
mentation. Such huge di�erence between the actual size and the re-scaling size distort the resultant image and 
network fails to accurately segment the nodule. �is limitation can be overcome by training multiple networks 
with di�erent re-scaling dimensions (i.e., 64 × 64 , 32 × 32 , and 16 × 16 ) so radiologist may opt according to 
the nodule size.

Table 5.  Average dice score and Hausdor� distance for each stage of the proposed approach.

Axial Coronal Sagittal Consensus

Dice score (%) 85.29 ± 9.78 84.76 ± 12.45 83.58 ± 8.93 87.55 ± 10.58

Hausdor� distance (mm) 2.76 ± 1.68 4.78 ± 2.21 3.41 ± 1.94 2.93 ± 1.87

Figure 11.  Visual examples of pulmonary nodule segmentation results on which the proposed method failed to 
accurately segment the nodule boundary.
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conclusion
We introduced a novel, two-stage pulmonary nodule segmentation technique that generates a highly accurate, 
3-D segmentation of a nodule with minimum human interaction. First, the technique requires a 2-D ROI along 
the axial axis containing the nodule as input and then automatically estimates the volume of interest (VOI). 
For VOI extraction, we proposed the novel adaptive ROI algorithm with a Deep Residual U-Net architecture 
to leverage the position of the nodule within the ROI of the current slice to adjust the position and shape of the 
ROI for the next slice. Second, additional patch-wise segmentations of the nodule along the coronal and sagittal 
axes are performed by applying two Residual U-Nets. Finally, the segmentation outputs of the axial, coronal, 
and sagittal axes are processed through the consensus module to generate the �nal segmentation mask. Our 
technique was evaluated on the LIDC-IDRI dataset with quantitative and visual results. We demonstrated that 
our approach outperforms the previous state-of-the-art techniques in terms of segmentation dice scores and is 
signi�cantly robust for various nodule types, suggesting its suitability for real-time implementation to minimize 
the radiologist e�ort through the automatic estimation of the VOI and to enhance the accuracy of segmentation. 
Future research will include an extension of the framework to perform a time-based analysis of a selected nodule 
by using sequential scans of a patient, which will assist radiologists in estimating the malignancy of an identi�ed 
nodule by observing its development over time.
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