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Abstract: Numerical modeling of physical phenomena frequently involves processes across a wide
range of spatial and temporal scales. In the last two decades, the advancements in wavelet-based nu-
merical methodologies to solve partial differential equations, combined with the unique properties of
wavelet analysis to resolve localized structures of the solution on dynamically adaptive computational
meshes, make it feasible to perform large-scale numerical simulations of a variety of physical systems
on a dynamically adaptive computational mesh that changes both in space and time. Volumetric
visualization of the solution is an essential part of scientific computing, yet the existing volumetric
visualization techniques do not take full advantage of multi-resolution wavelet analysis and are not
fully tailored for visualization of a compressed solution on the wavelet-based adaptive computational
mesh. Our objective is to explore the alternatives for the visualization of time-dependent data on
space-time varying adaptive mesh using volume rendering while capitalizing on the available sparse
data representation. Two alternative formulations are explored. The first one is based on volumetric
ray casting of multi-scale datasets in wavelet space. Rather than working with the wavelets at the
finest possible resolution, a partial inverse wavelet transform is performed as a preprocessing step
to obtain scaling functions on a uniform grid at a user-prescribed resolution. As a result, a solution
in physical space is represented by a superposition of scaling functions on a coarse regular grid
and wavelets on an adaptive mesh. An efficient and accurate ray casting algorithm is based just
on these coarse scaling functions. Additional details are added during the ray tracing by taking
an appropriate number of wavelets into account based on support overlap with the interpolation
point, wavelet coefficient magnitude, and other characteristics, such as opacity accumulation (front
to back ordering) and deviation from frontal viewing direction. The second approach is based on
complementing of wavelet-based adaptive mesh to the traditional Adaptive Mesh Refinement (AMR)
mesh. Both algorithms are illustrated and compared to the existing volume visualization software for
Rayleigh-Benard thermal convection and electron density data sets in terms of rendering time and
visual quality for different data compression of both wavelet-based and AMR adaptive meshes.

Keywords: adaptive mesh; volumetric rendering; volume rendering; wavelet compression; scientific
visualization

1. Introduction

Numerical modeling of physical phenomena frequently involves processes across a
wide range of spatial and temporal scales. To ensure better capturing of the flow physics
on a near optimal adaptive computational mesh with substantially smaller computational
cost, while resolving the localized structures of the solution, a number of wavelet-based
adaptive computational methods have been developed recently (e.g., [1–4]).

Similarly to adaptive mesh refinement (AMR) methods (e.g., [5–7]), adaptive wavelet-
based methods [3,8] provide a convenient and efficient approach to resolving multi-scale
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processes on dynamically adaptive computational mesh, which would be hard-pressed
to be solved by conventional finite-difference techniques on a uniform non-adaptive grid.
Wavelet-based methods take advantage of the wavelet compression properties, as a result,
functions with localized regions of sharp transition are well compressed using wavelet
decomposition briefly discussed in Section 2. The adaptation is achieved by retaining
only those wavelets, whose coefficients are greater than a given wavelet threshold (see
Equation (2)). Thus, high-resolution computations are carried out only in those regions,
where sharp transitions occur. In addition to controlling global L2 approximation error,
wavelet based adaptive grid provides a compression factor of 10–102 relative to the uniform
grid of the same effective resolution.

Since all the computations are performed in wavelet space on the adaptive grid, it
makes sense to utilize the available data compression and perform data visualization in
wavelet space on the same adaptive grid. Despite the wide use of AMR methods in high
performance computing (e.g., [9,10]) and fast growing development of adaptive wavelet-
based methods (e.g., [3,4,11–14]) visualizing data on adaptive grids has only limited level of
support in widely used visualization packages such as VTK [15], ParaView [16], VisIt [17],
and ChomboVis [18]. Rendering such data on adaptive meshes interactively with high
visual quality, i.e., without holes and artifacts, still constitutes a challenge [19].

One of the first adaptive mesh volume rendering systems based on cell projection
volume rendering was introduced by Ma and Crockett [20]. Over the years, a number
of approaches for volume rendering of data on AMR meshes have been developed. For
example, a slice-based volume rendering of 3D textures [21] and its multi-pass [22] and
single-pass [23] extensions were developed for adaptive mesh overlapping coarse and
fine-resolution AMR levels. An efficient method for rendering AMR data-based inter-
block interpolation was developed in [24]. Examples of multi-resolution volume rendering
methods for adaptive meshes based on the submission of lower-resolution hexahedral cells
and local interpolants can be found in [25].

Despite the development of many successful volume-rendering methods for AMR
data and the constantly growing need for widely available AMR data visualization tools,
these methods have not been implemented in existing visualization packages. We present
here several techniques for volume rendering of multi-scale data sets while capitalizing
on the available sparse data representation. The first visualization technique is based on
the direct summation of wavelet coefficients during volumetric ray casting. The second
approach is to complement our adaptive wavelet grid with the appropriate number of
nodes in order to produce a traditional AMR grid. Volume rendering on an AMR grid is
performed either with the existing or with our own software. Our work has some parallels
with a recently developed non-wavelet-based volume rendering method for representing
and traversing adaptive octree data [19], where, similarly to the present paper, it was
also demonstrated that the developed approach could be adopted for production use in
ParaView [16].

2. Wavelet Based Solution of PDEs

The use of second generation wavelets [26] for the solution of partial differential
equations has been extensively discussed in [4,27,28]. Partial differential equations are
discretized at collocation points thus leading to a system of algebraic equations for the
unknown wavelet coefficients at these collocation points. Grid adaptation is obtained
by keeping the points with wavelet coefficients (from a previous time step) larger than a
predefined threshold limit.

As a result of the wavelet transform, a function in physical space f (x) is represented by
a superposition of scaling functions φ0

l (x) (l ∈ L0), at the coarsest level of resolution, and

wavelets ψ
µ,j
k (x) (k ∈ Kµ,j) of different families (µ = 1, . . . , 2n − 1) and levels of resolution

(j = 1, . . . , jmax) on an adaptive mesh:
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u(x) = ∑
l∈L0

c0
l φ0

l (x) +
jmax

∑
j=1

2n−1

∑
µ=1

∑
k∈Kµ,j

dµ,j
k ψ

µ,j
k (x), (1)

where n is the dimensionality of the space, the bold subscripts l and k denote n-dimensional
indices, while L0 and Kµ,j stand for the associated index sets, and J is the maximum level
of resolution that is present or allowed in the wavelet approximation. The scaling functions
φ0

l and the wavelets ψ
µ,j
k are constructed on a set of nested tensorial meshes with one-to-one

correspondence between grid points and functions. The coefficients c0
l and dµ,j

k represent,
respectively, the averaged values and the local variation details of the field f (x) at different
scales. The value of f (x) in physical space can be obtained either through an inverse
wavelet transform to a regular grid of required resolution or through a direct application of
Equation (1) at the required point of physical space. Scaling and wavelet functions normally
have local support (see one-dimensional scaling function φ(ξ) and wavelet ψ(ξ) Figure 1),
which significantly limits the number of coefficients to sum in the Equation (1).

Wavelet-compressed solution f
>ε
(x) on an adaptive mesh is obtained in the wavelet

space by using wavelet coefficient thresholding. Namely, the wavelet filtered function is
defined by

u>ε
i (x) = [ui(x)]

>ε
= ∑

l∈L0

c0
l φ0

l (x) +
jmax

∑
j=0

2n−1

∑
µ=1

∑
k ∈ Kµ,j

|dµ,j
k | > ε‖u‖

dµ,j
k ψ

µ,j
k (x), (2)

where ε > 0 stands for the non-dimensional (relative) threshold value, ‖ f ‖ being the
(absolute) dimensional scale of f . For the details of the adaptive wavelet collocation
method, the reader is referred to Refs. [4,27,28]. Note that a substantially larger threshold
value ε can be used for visualization purposes compared to the one used in computations.
Thus, an additional level of compression is possible if the data are further compressed with
larger ε, which would further improve the efficiency of the visualization.

φ(ξ) ψ(ξ)

ξ ξ

Figure 1. A 4-th order interpolating scaling function φ(ξ) and wavelet ψ(ξ) vs. non-dimensional
coordinate ξ.

3. Volume Rendering in Compression Domain

Compression properties of wavelet transform have been widely used for the visualiza-
tion of large data sets [29–33]. Regularly sampled data have been projected into a wavelet
basis. Depending on the required image quality, a large number of wavelet coefficients were
neglected, thus leading to a significant reduction of memory usage during a local rendering
(or during a network transmission for the rendering on a remote client). Interactive time
rendering has been implemented for X-ray-like images via wavelet splatting and Fourier
projection slice theorem [34,35]. Another interactive rendering technique, a walk through
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the large data set by Guthe et al. [32] has been performed with the help of a block-wise
wavelet transform [36,37]. The relevant blocks of voxels have been decompressed on the
fly and rendered using hardware texture mapping [32].

Ray tracing in wavelet domain has been performed in non-interactive time. A func-
tion value f (x) has been reconstructed from its wavelet decomposition and used for the
computing of rendering integral [31]. Alternatively, separate wavelet decompositions have
been used for the reconstruction of opacity and color values used in the computing of
rendering integral [38].

Interactive frame rates have been obtained in a parallel ray casting implementation
by using block-wise wavelet transform on a multiprocessor system [36]. Also, interactive
rendering of large data sets (fastest along axes directions) has been obtained by using
“thick rays” in a shear-warped “foveated volume” [39]. This approach resembles volume
rendering on adaptive mesh refinement (AMR) grids.

Adaptive mesh refinement has been extensively used for the simulations of multi-scale
physical phenomena. A number of visualization techniques have been developed directly for
the adaptive meshes, without resampling the data on a uniform grid (e.g., [40–42]). Extrapo-
lation of wavelet-based grid data into some additional nodes will generate a correspondent
AMR grid suitable for the application of the existing adaptive mesh visualization algorithms
and software.

4. Numerical Results and Discussion

A number of open-source software for volume rendering is currently available. Mostly,
the rendering is performed on a regular grid, the size of which is limited by the avail-
able machine memory, e.g., VolPack library [43,44]. Unstructured grid software is more
appropriate for the purposes of wavelet-based data visualization. VTK, the visualization
toolkit, provides a number of libraries capable of dealing with unstructured grids [45].
ParaView [16], a VTK-based parallel visualization application, can display data on an un-
structured grid [16]. Additionally, VisIt [17] and ChomboVis [18] are capable of displaying
volume data on unstructured adaptive mesh.

Available Volume Rendering Software

A number of open-source software for volume rendering is currently available. Mostly,
the rendering is performed on a regular grid, the size of which is limited by the available
machine memory, e.g., VolPack library [43,44]. Unstructured grid software is more appro-
priate for the purposes of wavelet-based data visualization. VTK, the visualization toolkit,
provides a number of libraries capable of dealing with unstructured grids [45]. ParaView, a
VTK-based parallel visualization application, can display data on an unstructured grid [16].
Additionally, VisIt [17] and ChomboVis [18] are capable of displaying volume data on
unstructured adaptive mesh.

5. The Proposed Rendering Techniques

Several techniques for volume rendering of multi-scale data sets are presented. The
first approach is based on the direct summation of wavelet coefficients during volumetric
ray casting.

5.1. Direct Summation of Wavelets

First of all, rather than working with a wavelet scaling function of the largest possible
support at the initially defined coarse grid, we perform a partial inverse wavelet transform
as a preprocessing step to obtain scaling functions on a coarse grid at a user-prescribed
resolution (643 seems to be an optimal one for the current implementation). This prepro-
cessing step is performed in a fraction of a second, although it may require some additional
memory to store new scaling coefficients.

Interactive time ray casting algorithm is based just on these scaling coefficients. Addi-
tional detail is added during the ray tracing by taking an appropriate number of wavelets
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into account based on support overlap with the interpolation point and wavelet amplitude.
Other characteristics, such as opacity accumulation (front to back ordering) and deviation
from frontal viewing direction could also be taken into account.

5.2. Ray Casting

The main goal of ray casting is to evaluate the solution of radiative transfer equation:

I =
∫ ∞

0
C α e−

∫ s
0 α ds′ds , (3)

where color and opacity are determined by the function f (x) in physical space, C = C( f (x))
and α = α( f (x)), respectively. In the current implementation we use the following approxi-
mation of the rendering integral:

I ≈
n(α)

∑
i=0

Ciαidi

i−1

∏
j=0

(1− αjdj) , (4)

where i corresponds to the index of ray point, di is the current step along the ray, and n(α)
is the total number of points along the ray.

In our current implementation of the algorithm, the step along the ray di is constant,
depending on the number of fine levels on the adaptive mesh. A coarse image (of 643 scaling
coefficients) is obtained in an interactive time by linear interpolations from the nearest
eight coarse mesh scaling coefficients into the correspondent points on a ray. Computing
of additional details requires the summation of fine level wavelet coefficients, which is
currently non-interactive. It should also be noted that no hardware acceleration is used in
the current implementation.

5.3. Data Structure

A data structure has been built for the rendering process (Figure 2). A linear array
of coarse mesh nodes has been created for the storage of the scaling coefficients (an array
of size of 643 in the current implementation) (Figure 2). Each coarse mesh node keeps the
values of 8 nearest scaling coefficients. It should be noted that such redundancy provides
30% or so acceleration versus a non-redundant array of the scaling coefficients due to a
better cache coherence of the redundant structure.

CoarseMeshNode coarse_mesh_node [N*N*N];

struct CoarseMeshNode {
float scaling_coefficients [8];
WaveletNode* wavelet_node_array;
int number_of_wlt_nodes_of_level [J-1];

};

struct WaveletNode {
float wavelet_coefficient;
float wavelet_coordinates [3];
int wavelet_type;

};

Figure 2. Data structure used for volume rendering. Scaling coefficients are stored as N3 array of
“Coarse Mesh Nodes” (N = 64 in the current implementation). Wavelet coefficients inside a coarse
mesh block are stored in a dynamically allocated array of “Wavelet Nodes”.

Each coarse mesh node has a pointer to a dynamically allocated adaptive array of
wavelet coefficients located inside the correspondent coarse mesh block (“Wavelet Nodes”
at Figure 2). The length of the array of wavelet coefficients is determined during the
preprocessing step and is a constant for the rendering of time-independent data. The length



Fluids 2022, 7, 245 6 of 12

is also stored inside the coarse mesh node. While computing the function f (x) value during
ray tracing by using the Equation (1), one cache miss happens during access to the scaling
coefficients and at least one cache miss happens during the summation of the wavelet
coefficients inside each coarse mesh block. To increase the cache coherence of the data
structure, the wavelet coefficients in the adaptive array are sorted by the wavelet levels
and types. Each wavelet coefficient is stored together with its coordinates and wavelet
type. Though storing of wavelet type is redundant, it saves computation time during the
expensive operation of summation of wavelet coefficients according to Equation (1) thus
leading to an additional speedup of 10% or so.

In order to perform the summation of wavelet coefficients even faster, we compute the
values of scaling and wavelet functions φ0

i (x) and ψ
j
i (x) through a table lookup. Addition-

ally, we artificially decrease the support of scaling and wavelet functions by introducing
“cutoff” limits ξ0 such that φ(ξ), ψ(ξ) ≡ 0, for ξ > ξ0 (Figure 1). The current implementation
uses “cutoff” limits 1 and 2 for scaling and wavelet functions, respectively.

5.4. Adaptive Wavelet Grid and AMR

The second approach to volume rendering of wavelet-based data is to complement the
adaptive wavelet grid with the required number of nodes in order to produce a traditional
AMR grid. Though some additional storage is required for the supplementary nodes,
several software products have been already developed for volume rendering of AMR
grid data.

5.5. Completing Wavelet Based Grid to AMR

As a preprocessing step, first, we create a node-centered AMR grid. Then an inverse
wavelet transform is performed on all the nodes of the obtained AMR grid. It should be
noted that contrary to the previously considered approach of direct summation in wavelet
space, in this approach, we deal with the actual function values on a traditional node-
centered AMR grid. The preprocessing step requires some additional memory and may
take a significant time, depending on the complexity of the wavelet grid. Although, for a
time-dependent problem the timing of the preprocessing step is expected to be of the same
order of magnitude as the computational time for a single time step.

The process of AMR creation is illustrated for a two-dimensional grid at Figure 3.
Any wavelet node inside a cell will induce that cell “bisection” up to the level of that
node. A wavelet node located at the cell’s face or edge will induce “bisection” of all of the
adjacent cells.

Figure 3. Completing wavelet based grid (filled circles) to AMR in two-dimensional case by adding
the required nodes (white circles). Total number of cells in the final AMR grid is 23.

5.6. AMR Volume Rendering

To perform volume rendering, we write the obtained AMR grid data in the form of an
unstructured (tetrahedral) mesh VTK file [VTK, 2000]. This format is readable by Paraview,
VisIt, and by VTK itself. A different input file format, HDF5, is required by ChomboVis.
Although ChomboVis provides some volume rendering for cell-centered AMR data [Ligocki,
2000] and the opacity function can be tabulated, ChomboVis uses gray colormap for its
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volume rendering. Additionally, the quality of volume rendering is low and seems to be
inappropriate for our purposes of visualization. Thus, AMR grid data are to be written in
an unstructured mesh VTK format.

Each cubic cell of the AMR grid is considered to be a combination of six tetrahedra
(Figure 4). If we number all the nodes in the cell according to the numbering of VTK_VOXEL
cell type, six correspondent tetrahedra, or VTK_TETRA cells, will be: 0125, 1325, 0245, 2645,
3725, 7625 [VTK, 2000]. It should be noted that such a triangulation is not compatible across
the neighboring cells (i.e., T-junctions may appear) and therefore is potentially subject to
various rendering artifacts, including gap (empty space) appearance during isosurface
generation [46]. Note when a size of the input file is a concern one may save AMR data in a
VTK_VOXEL cell format instead of VTK_TETRA cell format [VTK, 2000]. It might be convenient
for slice or isosurface generation. As for the volume rendering, VTK seems to perform it on
an unstructured tetrahedral mesh only; hence the volume is still to be tetrahedralized (and
the additional memory for the tetrahedra to be requested).

0 1

3

5

7

4

6

2

Figure 4. Tetrahedral subdivision of cubic cell of AMR grid. The tetrahedra are: 0125, 1325, 0245,
2645, 3725, 7625.

6. Results

We have timed our volume rendering implementations for several data sets on a
single processor system: Pentium 4, 3.2 GHz, 2G RAM, with Nvidia GeForce Fx5200-TD128
graphics card. Preprocessing time was not taken into account. The direct summation
algorithm has been implemented through a C++ code and the rendering time was the time
to compute the values of all the pixels of 500× 500 image matrix. VTK-based rendering has
been performed through a Tcl/Tk script and the rendering time has been computed as the
time of execution of vtkRenderWindow class command Render. We note that the rendering
studies were performed on old generation system and the reported timings would be much
shorter for systems with more modern processors.

6.1. Convection Data Sets

Constant viscosity 2563 thermal convection data with Rayleigh number of 1010 has
been processed to simulate the output of a wavelet-based PDE solver. A 4-th order second
generation wavelet transform [26] has been used for the data processing. The data has been
assumed to be periodic in order not to deal with the distortions of wavelet functions near
the boundaries.

The summary of the data set properties is shown in Table 1. Different thresholds for
wavelet coefficients produce different data compressions (relative to the regular 2563 grid).
Completing the original wavelet-based grid to the AMR grid may significantly increase the
number of grid nodes for the data set, especially if the original wavelet grid compression is
relatively high.



Fluids 2022, 7, 245 8 of 12

Table 1. Data set properties and timings: ε is the threshold, σ is the compression for the original
wavelet based grid, σamr is the compression for the correspondent AMR grid, F and Fvtk are binary
file sizes (in megabytes) to store the original wavelet and tetrahedralized AMR grid in VTK format,
respectively. Twlt, TPT , TRC, and TZS are the rendering times (in seconds) for the direct wavelet
summation algorithm and for the VTK library unstructured grid renderers: ProjectedTetrahedra,
RayCast, and ZSweep, respectively. A hyphen (-) implies the lack of RAM for the rendering.

Data Set ε σ, % σamr ,
% F, M Fvtk, M Twlt TPT TRC TZS

0.0005 22.5 87.1 101 2199 254 - - -
0.001 16.7 74.9 75 1847 198 - - -
0.005 6.85 39.9 31 915 94 149 - -

Convection 0.01 4.51 27.3 21 607 70 96 - -
0.05 1.99 8.15 9.0 167 42 25 100 -
0.1 1.72 3.82 7.8 83 41 10 58 -
0.5 1.56 1.55 7.1 38 39 4.8 43 97

10−7 8.12 28.8 37 706 107 106 - -
10−6 3.69 12.9 17 306 58 46 - -
10−5 1.84 4.71 8.3 109 37 16 54 7400

3D
electron 10−4 1.21 1.65 5.5 41 32 5.2 35 210

10−3 0.83 1.04 3.8 26 31 3.6 29 78
10−2 0.41 0.60 1.9 15 29 2.1 25 57
10−1 0.10 0.22 0.5 5 19 0.7 22 38

6.2. Hydrogen 3D Orbital Data Sets

An analytical function, electron density for 3D hydrogen orbital, has been used to
generate the data set on a regular 2563 grid. A 4-th order interpolating wavelet transform
has been used to compress the data to simulate the output of a wavelet-based PDE solver.
The summary of the data set properties is shown in Table 1.

6.3. Rendering Results

Rendering times for both data sets are shown in the Table 1 for the direct wavelet
summation approach and for three VTK library unstructured grid renderers with VTK’s
default settings. The projected tetrahedra renderer seems to provide fast volume rendering
with adequate quality. Although the best rendering quality is provided by the much
slower ZSweep renderer. It should be noted that VTK rendering with the default settings
requires a lot of memory (Table 1) and therefore is not appropriate for large data sets.
Apparently, ∼5 × 107 is the maximum number of tetrahedra to be rendered on our system
by VTK library.

VTK rendering through projected tetrahedra gives the rendering time linear to the
number of tetrahedra in the unstructured mesh (Figure 5). In the direct wavelet summation
approach, the rendering time is linear relative to the number of rays, the average number of
points on a ray, and the number of wavelet coefficients in the sum of Equation (1) (Figure 5).
Contrary to VTK, the direct summation approach does not require much memory and
works successfully for all the data sets (Table 1). The rendering quality of direct wavelet
summation on adaptive mesh is comparable to that of VTK’s renderers as well as to the
quality of Amira [47], volume rendering on a regular 2563 grid for both convection and
hydrogen data sets (Figures 6 and 7). Noticeable color discrepancies in the rendering results
are attributed to different ray integration approaches in the different renderers. Some
rendering artifacts appear in the images produced by some VTK’s renderers (Figure 7).

Increasing the threshold value ε leads to a smaller number of wavelet coefficients
being taken into account during the rendering. The error in the determining the function
value f (x) through the truncated version of Equation (1) with all wavelet coefficients
greater than the threshold is O(ε) (e.g., [27]). For both data sets considered, the rendering
results appear not to be changed for all the threshold values below 0.01. Therefore, we
recommend to use that threshold value as an optimal one for a preprocessing step, before
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direct summation or tetrahedralization. The estimated errors in the rendering image, ∼1%,
seem to be admissible for visualization purposes. Additionally, a larger threshold value
strongly decreases the number of tetrahedra in the correspondent AMR grid hence making
memory-consuming VTK-based visualization approach feasible.

Figure 5. Direct summation rendering time Twlt vs. data compression σ for the convection (a) and
electron density (c) data sets. The coarse mesh is 643, the number of rays is 5002, the average number
of points per ray is 170. The cutoff limits for the scaling and wavelet functions are 1 and 2, respectively.
VTK projected tetrahedra rendering time TPT vs. the number of tetrahedra in the correspondent AMR
grid for for the Rayleigh–Benard convection (b) and electron density (d) data sets.

(a) (b) (c)

Figure 6. Convection data set. Direct wavelet summation adaptive mesh rendering (a) vs. Amira
volume rendering (after extrapolation to a regular 2563 grid) (b) vs. VTK’s projected tetrahedra
volume rendering (after completing an AMR grid) (c). Wavelet compression is ∼4.5% relative to 2563

regular mesh.
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Figure 7. 3D electron density data set. Direct wavelet summation adaptive mesh rendering (a) vs.
Amira volume rendering (after extrapolation to a regular 2563 grid) (b) vs. VTK’s projected tetrahedra
(c), ray casting (d), and z-sweep (e) volume rendering. Wavelet compression is ∼1.2% relative to 2563

regular mesh.

7. Conclusions and Future Work

Two visualization techniques have been presented for volume rendering on wavelet-
based adaptive grids: direct summation of wavelet coefficients during volumetric ray
casting, and complementing adaptive wavelet grid to a correspondent AMR grid for the
subsequent VTK-based rendering. Both approaches provide relatively good image quality
and reasonable timing. The direct summation approach provides a better image quality. In
addition, it does not subject to memory restrictions, i.e., if the data set has been computed at
some system using a wavelet-based PDE solver, the volume rendering can be performed on
the same system. Although, “completing to an AMR” approach seems to be more general
in the sense that it moves the problem of volume rendering on a wavelet-based grid into
the more developed area of AMR grid visualization. Additionally, VTK provides a large
number of tools to make the visualization process, if memory permits, more general. For
memory saving, the number of nodes in a wavelet-based grid and therefore the number of
tetrahedra in the corresponding AMR grid should be decreased. The obvious approach is to
change thresholding. It is also possible to consider a different tetrahedralization technique
than the one presented.

As for the summation of wavelet coefficients approach, alternative ways of ray in-
tegration could be considered. Particularly, the step along the ray is to be adaptive and
the number of rays should not be fixed from the beginning of the rendering. Additionally,
direct summation through Equation (1) could be changed to an exact wavelet transform
into the corners of the block (of appropriate resolution) around the point of interest on
a ray.

Hardware acceleration could be used for wavelet coefficient summation as well as
for the coarse mesh interactive rendering. Additionally, coarse mesh interactive rendering
could be performed through a faster algorithm, e.g., through shear-warp approach [43] It
would allow interactive rendering on a regular grid larger than the current 643 grid, which
could filter out several levels of wavelet coefficients to sum during the non-interactive
phase of the rendering.

These alternative approaches to the volume rendering on wavelet-based adaptive
grids are currently under consideration.
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Abbreviations
The following abbreviations are used in this manuscript:

AMR adaptive mesh refinement
PDE partial differential equation
VTK Visualization Toolkit
VT VOXEL orthogonal parallelepiped-type VTK cell
VTK TETRA tetrahedra type VTK cell
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