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Abstract

Purpose—Differentiation of colon lesions according to underlying pathology, e.g., neoplastic 

and non-neoplastic lesions, is of fundamental importance for patient management. Image 

intensity-based textural features have been recognized as useful biomarker for the differentiation 

task. In this paper, we introduce texture features from higher-order images, i.e., gradient and 

curvature images, beyond the intensity image, for that task.

Methods—Based on the Haralick texture analysis method, we introduce a virtual pathological 

model to explore the utility of texture features from high-order differentiations, i.e., gradient and 
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curvature, of the image intensity distribution. The texture features were validated on a database 

consisting of 148 colon lesions, of which 35 are non-neoplastic lesions, using the support vector 

machine classifier and the merit of area under the curve (AUC) of the receiver operating 

characteristics.

Results—The AUC of classification was improved from 0.74 (using the image intensity alone) to 

0.85 (by also considering the gradient and curvature images) in differentiating the neoplastic 

lesions from non-neoplastic ones, e.g., hyperplastic polyps from tubular adenomas, tubulovillous 

adenomas and adenocarcinomas.

Conclusions—The experimental results demonstrated that texture features from higher-order 

images can significantly improve the classification accuracy in pathological differentiation of 

colorectal lesions. The gain in differentiation capability shall increase the potential of computed 

tomography colonography for colorectal cancer screening by not only detecting polyps but also 

classifying them for optimal polyp management for the best outcome in personalized medicine.
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Computer-aided diagnosis

Introduction

According to the up-to-date statistics from the American Cancer Society, colorectal cancer 

ranks second for most common occurrence and total cancer death since 2012 in the United 

States [1]. Fortunately, most colorectal cancers arise from colonic polyps, which may take 

years or even decades to become cancer, and early detection and removal of polyps prior to 

malignant transformation can effectively reduce the incidence of colon cancer [2,3]. 

Computer-aided detection (CADe) [4–8] has been introduced to improve the detection 

capability of CT colonography (CTC), which has shown several advantages as a potential 

minimally invasive screening technique comparing to the traditional optical colonography, 

e.g., safer and less expensive. Once a polyp of size greater than a certain threshold is 

detected, it will be resected regardless whether it is adenoma or not in current clinical 

practice. Given the knowledge that the majority of polyps are hyperplastic [9], the current 

practice of resecting these harmless growths may not be optimal. Therefore, differentiating 

hyperplastic polyps from adenomas would be useful to potentially reduce the number of 

unnecessary colonoscopy procedures.

The main task of computer-aided diagnosis (CADx) is to differentiate the pathological 

stages to which each detected lesion belongs. Typically, colorectal lesions can be categorized 

into three groups, i.e., hyperplastic, adenomas and malignant lesions. Hyperplastic polyps 

(H), usually found in the distal colon and rectum, are non-neoplastic and seldom show 

malignant potential [10]. Neoplastic lesions include adenomas and malignant lesions. In 

general, adenomas are benign in nature; however, they are at risk for malignant 

transformation. Adenomas are divided into three subtypes, based on histological criteria, as 

follows: tubular, tubulovillous and villous adenomas, with the degrees of dysplasia 

increasing. Tubular adenomas (TA) are usually non-advanced neoplastic lesions, while the 
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other two subtypes, i.e., tubulovillous adenoma (TVA) and villous adenoma (VA), are 

generally more advanced neoplastic lesions [11]. Colorectal adenocarcinomas (A) are 

malignant lesions (advanced neoplastic) which invade into the submucosa and beyond, 

including metastatic spread. Colorectal lesions belonging to different pathologic categories 

have distinct tissue patterns [12], which is a main factor based on which the pathologists 

make their diagnosis decision. Inspired by this fact, if we could extract useful pattern 

information from the detected polyps, we would achieve our CADx task goal.

Texture features are, in fact, mathematical parameters computed from the image intensity 

distribution of pixels/voxels in two-/three-dimensional (2D/3D) space which characterize the 

texture types and thus the underlying structures of the objects embedded in the image. 

Various texture feature extraction algorithms have been introduced [13], and among them, 

the co-occurrence matrix (CM)-based Haralick method [14] has been widely used as a 

standard way to perform the task of texture feature extraction [15–19]. Texture features have 

been employed for CADe, in which it usually serves as ancillary features to other features, 

e.g., geometric features, for classification of interested lesions (e.g., colon polyps) against 

false positives (FPs) or patches of normal tissues, fecal residues and image artifacts. In the 

study [20], the feasibility of using CT image intensity texture as biomarker to predict patient 

survival and the close relationship between texture and tumor staging have been shown. As 

reported in [21], with the assistance of CADx, radiologists’ differentiation performance can 

be improved significantly. To the best of our knowledge, employing texture feature analysis 

techniques for differentiating colonic lesion neoplasm has not been widely reported in this 

field.

Based on our previous study [22], in which we introduced gradient–intensity CM, we take a 

further step and propose a novel texture feature extraction strategy by including high-order 

derivative images, e.g., gradient (first order) image and curvature (second order) image, in 

mimicking the amplification operation in pathology. Our approach first generates the 3D 

gradient and 3D curvature images using Sobel operator [23] and Monga’s method [24], 

respectively. Then, the corresponding CMs are computed based on the Haralick method. The 

details of our texture feature extraction strategy are given in “Material and methods” section 

below. The diagnostic performance of different combinations of the computed texture 

features is evaluated and compared in “Results” section. The discussion, which includes the 

previous similar studies, the limitation of this study and our future work, can be found in 

“Discussion” section. At last, conclusion is drawn in “Conclusion” section.

Material and methods

In this section, we first describe how to generate the high-order derivative images, followed 

by an introduction of a 3D expansion from the original Haralick’s 2D texture model. Then, 

our volumetric feature extraction strategy is presented. Figure 1 shows the flowchart of 

texture feature extraction process in our study. The database information and experiment 

design are discussed in the last two parts of this section.
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3D gradient image

Gradient distribution reflects the intensity changing degree. The combination of intensity–

gradient pair has shown some potential of differentiating pathology phases of colon lesions 

[22]. And here we try to study the property of texture features considering gradient only. 

Sobel operator [23] is a common discrete filter kernel for gradient estimation. 3D Sobel 

operator is employed here to generate the gradient image. A standard 3D Sobel kernel has 

size 33 for each of the three orthogonal axes. The z-direction 3D Sobel kernel is shown as 

(with 1/32 as the normalization factor):

(1)

By rotating the z-direction kernel matrix, we can easily get the x and y direction kernel. For 

a voxel in image I, denoted as I (i,j,k), we can compute the derivatives Gx(i, j, k), Gy(i, j, k) 

and Gz(i, j, k) in the three orthogonal directions. The corresponding gradient value for that 

voxel is defined as:

(2)

Then, the 3D gradient image Ig is generated. The gradient image would reflect a major 

aspect, i.e., the rate of image intensity changing across the 3D space.

3D curvature image

Given an iso-surface, gradient is closely related to first-order derivative, considering the fact 

that it is one-to-one correspondence to a tangent plane for a point. We would also like to 

study the property of texture features based on the second-order derivative-related scalars, 

i.e., curvature. Intuitively, curvature is the amount by which a geometric object deviated 

from being flat. Curvature analysis with application to CADe has been widely reported [4–

6,25]. Since curvature calculation can be considered as a 3D operator, it can be directly 

applied to 3D image like the Sobel operator above. If certain iso-surface-like patterns exist 

inside a 3D volumetric image, the curvature information can help to catch the pattern 

distribution. It would reflect another major aspect, i.e., the rate of image intensity gradient 

changing and surfacelike pattern across the 3D space. In the report [24], a voxel curvature 

estimation method was proposed by directly using partial derivatives of a 3D image. The key 

point for calculating the curvature in the 3D volume image is to construct the Hessian matrix 

(HM):

(3)

where I is the partial derivatives of the gray-level image function I (x, y, z). The 3D Deriche 

filters [26] are used to compute the partial derivatives of the image data, where we set the 

calculation formulas as:
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(4)

The normalization coefficients c0, c1, c2, c3 are set to be:

(5)

where α controls the degree of suppressing noise amplification during the high-order partial 

derivative calculation. Then, the partial derivatives can be calculated as following:

(6)

where Iyy, Iyz, Ixz, Izz can be determined by substituting the variables in the equations above. 

Two principal curvatures, i.e., κ1 and κ2, can be calculated using H, and then, Gaussian 

curvature is calculated based on κ1 and κ2 to form the curvature image:

(7)

3D expansion of Haralick’s texture analysis model

In 1973, Haralick texture model [14] was first introduced to analyze 2D gray-level image. 

The main idea is to construct the co-occurrence matrix (CM), which is defined over an 

image to reflect the distribution of co-occurring values at a given offset. By assuming all the 

texture information is contained in the CM, a set of 13 measures of textural features are 

derived, e.g., angular second moment, contrast, correlation and entropy. These features have 

been used with success on biological cell images, X-ray images, satellite images, aerial 

images, etc. [13,15–19,27–30].

While the above 2D applications generated encouraging results, 3D image processing is 

attracting growing amount of attention in volumetric medical imaging area, e.g., CADe/

CADx studies based on 3D volumetric analysis have been reported for CTC [30–32]. Since 

Haralick texture analysis is based on the CM extraction, which is a counting matrix storing 

spatial value patterns for certain direction, its 2D model can be expanded to 3D space, as 

introduced in [16,22,30]. Here, we briefly introduce the 3D expansion model, very similar to 

[22], in this section. A comparison of 2D and 3D model can be found in “Results” section.

With a given direction θ and distance d,a Ng × Ng square gray-level co-occurrence matrix 

(GLCM), based on gray-level CT intensity image, can be built based on each 2D image:

(8)
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where p(·,·) is the normalized frequency. θ can take four values (directions), i.e., 0°(180°), 

45°(225°), 90°(270°) and 135° (315°), and d indicates our choice of value pair from the dth 

neighborhood of current center point shown in Fig. 2.

As introduced in [16,22,30], the 2D model structure can be expanded to 3D case by simply 

adding more directions. A 3×3×3 cubic model is shown in Fig. 3 (we only consider d = 1 

neighbor in this study, 26 neighbors). Total 13 distinct directions are defined to generate the 

CM. Features calculated from the CM for each direction are listed in Table 1.

By employing the 3D expansion model on different 3D images, i.e., gray-level, gradient and 

curvature images, we can obtain the GLCMs, gradient co-occurrence matrices (GCMs) and 

curvature co-occurrence matrices (CCMs). The corresponding features can be extracted from 

each CM. The mean and range value over the 13 directions for each feature are outputted as 

the final features, and there are a total of 26 features for each 3D image.

Semi-automatic operation for volume of interests (VOIs)

In implementing the 3D texture model for differentiation of polyp types, we assume a polyp 

candidate has been detected by a radiologist expert or a CADe pipeline via CTC. Now, our 

interest is to obtain a volume of interest or VOI for the polyp and extract features from the 

volume of interest (VOI) to determine its lesion type. Very similar to [19,20,33], a 

semiautomatic technique is employed here to extract the VOIs. Based on the CTC reports 

from radiologists with the coordinates of each polyp in the original CT images, the VOI of 

each lesion was firstly outlined manually on the 2D image slices by the experts using the 

CTC software (V3D Colon, Viatronix Inc., Stony Brook, NY, USA). After that, an automatic 

air cleaning algorithm was developed to remove air voxels inside the outline and an air-free 

3D lesion CT image or VOI was generated [34,35]. Figure 4 shows the details of this semi-

automated procedure. Validation and discussion of this procedure can be found in Results 

and Discussions section.

Database

Evaluation of the newly proposed high-order texture feature extraction strategy was 

conducted on a CTC database of 110 scans from 56 patients (most patients have a supine 

and prone scans; there are two patients with only one scan because of the lack of 

pathological report confirmation) with polyps of size from 8mm (clinically significant and 

computationally meaningful) to 30mm, see Fig. 5a. Total of 148 lesions are included in our 

study, among which 35 are H, 72 are TA, 36 are TVA and 5 are A. Since there is only one 

VA case, we categorized it into TVA group because of their similarity in risk (with presence 

of a prominent ≥25% villous component). Detailed pathological information of the dataset is 

shown in Fig. 5b.

It is noted that the above database, which is a part of the DoD clinical study [36], was 

downloaded from the online public domain (http://imaging.nci.nih.gov) where the CTC 

database was made by the Walter Reed Army Medical Center (WRAMC) after the clinical 

trial study [36]. Part of the DoD trial datasets do not have the location information of the 

lesions and, therefore, could not be used in this study. The rest has the locations information, 

but some cases may not have exact matches between VC and OC reports and certain cases 
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even do not have clear reports. After the removal of the uncertain cases, the remaining cases 

were used in this study. The information about bowel preparation, data acquisition, CT 

image reconstruction parameters, patient population, gold standard (optical colonoscopy and 

pathology) is given at the Web site and also in the full paper [36]. All examinations were 

performed in adherence following standards [37] with a full cathartic bowel preparation, 

fecal tagging, without IV contrast and with multi-detector CT scanners. The image data was 

acquired in helical mode with collimations of 1.25–5mm, pitch of 1–2, reconstruction 

intervals of 1.25–5mm, and modulated tube current–time products ranging from 50 to 

200mAs and tube voltages from 80 to 120kVp. The indication for CTC was screening for 

colorectal cancer in all individuals. The human studies had been approved by appropriate 

ethical committee and have therefore been performed in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki and its later amendments. All 

subjects gave their informed consent prior to their inclusion in the study. The subjects’ 

identities have been fully anonymized.

Experimental design

For each lesion or VOI, 26 features are calculated for each 3D image (i.e., the intensity, 

gradient or curvature), so we have 78 features for each lesion in total. In pathology, H 

lesions are considered as non-neoplastic and the other three types are considered as 

neoplastic lesions, which has the risk of uncontrollable abnormal growth or division of cells 

[9,33]. TA is considered as non-advanced neoplastic, while TVA and A are considered as 

advanced neoplastic lesions. We coded type H as class “0” and all the rest as class “1.” We 

generated different feature set by combining the intensity, gradient and curvature features. A 

total of seven feature sets can be generated, and their classification performance was 

compared.

The binary SVM classifier was employed here to perform the classification task. In 

implementation, the widely used SVM package LIBSVM [38] with RBF kernel was 

employed in this study. Following the guideline of LIBSVM, the two parameters (cost: the 

model slack variable and gamma: the parameter in the RBF kernel) were determined by a 

grid search process (fivefold cross-validation) in the training step, detailed implementation 

can be found in [39]. The ROC analysis and the AUC merit were used as the measure for 

evaluation. For one experiment, we randomly split the dataset into training and test set with 

same size while keeping the original class proportion rate. The SVM model was trained 

using training set and tested using test set. Figure 6 shows the flowchart of single evaluation 

experiment in this study. The whole process was repeated 100 times to avoid time running 

error, and the average results are shown in the following section.

Results

Linear size versus volumetric size

As discussed in [9], polypoid lesions, which refer to both sessile and pedunculated polyps, 

account for the vast majority of lesion cases, including most advanced adenomas and 

cancers. Meanwhile, based on several studies, detected flat lesions are less likely to be 

neoplastic compared to polypoid ones, even with larger size [40–42]. For example, 8 (5.4%) 
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of 148 lesions in our database are flat, where 6 (75%) of which belongs to H group, with the 

rest of the database being polypoid ones. This indicates that the distribution of lesion 

morphology in our database is consistent with the previous reports and therefore is 

representative.

To assess our semi-automatically extracted 3D volumes, we intend to check whether there 

exists a linear relationship between the clinically reported linear size and our 3D volume 

voxel number to make sure that the extracted volume does not bias the results. As introduced 

in [6,7], ellipsoid or sphere-like convex ball is reasonable to model the structure the polypoid 

lesions, and therefore, we regress the third root of the volume of each lesion on its 

corresponding linear size. The regression results are shown in Fig. 7. The P value of 

coefficient of independent variable size is <0.001. Combining the fact that R2 (coefficient of 

determination, which indicates how well the points fit the model) is 0.80, we can conclude 

that the sizes of our extracted 3D lesion volumes are consistent with the reported linear 

sizes. Even though several outliers, especially those for large size lesions, can be observed 

from the regression scatter plot, the result is still acceptable based on the R2 measure. This 

may be explained by facts that the appearance of lesions is changing due to the scan position 

of patient and the changing degree is proportional to the size.

As reported in [9,43], the size of lesion is an important biomarker, which correlates with its 

risk of malignancy and guides its clinical treatment. The risk of malignancy increases with 

increasing polyp size. However, as stated in [44], one main drawback of linear polyp size 

measurement is that there exists 1–3mm variability among measurements in pathology, OC 

and CTC. And CTC polyp measurements were generally underestimated by 2–3mm 

compared with OC. Most studies nowadays on colon cancer detection have focused on 

lesions <10mm, in which case 1–3mm measure error would be non-negligible and may 

affect the decision accuracy. Therefore, an accurate and consistent merit on the polyp size is 

desired. As pointed out in a recent study [33], 3D volume size may be a more robust 

measurement than linear size. This point was also verified in this study. By using the 

reported linear size and our extracted 3D volume size as decision value, we plot their ROC 

curve, respectively, in Fig. 8. The AUC measures are nearly the same (0.62 level), which 

indicates that both size measurements contain pathology differentiation information, while 

the ROC curves are quite different. In Fig. 8a, there are only 10 points forming the ROC 

curve, while in Fig. 8b nearly each lesion case is corresponding to a single constructing 

point (there are more than 140 points). This is understandable because the linear lesion size 

is usually recorded in integer millimeter in pathology report; and comparing to the 3D 

volume size, i.e., the voxel number of the 3D volume, the linear lesion size carries less 

discriminative information. Generally speaking, a ROC curve with less constructing points 

can be more easily affected by outliers, e.g., error measuring cases, which usually lead to a 

larger change in AUC value. Based on the result of Fig. 8 and discussion above, the 3D 

volume size is a better choice to measure the lesion size. However, the 3D volume size alone 

contains limited discriminative information, which can be observed from Fig. 9, where the 

histogram of 3D volume size within each class group is shown. The overlap between H and 

the risk group renders a challenge in differentiation. By the AUC merit, an AUC of 0.62 

cannot be considered as good classification accuracy. In other words, more discriminative 

features are needed, in addition to the size measure.
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Evaluation of feature set

In addition to the agreement analysis of our database with the literature reports and the 

correlation study of our 3D volume measurements with the clinically reported linear 

measurements, we further performed an experiment to compare the original 2D Haralick 

model and its 3D expansion using the image intensity information. The first row of Table 2 

shows the average classification results over the 100 runs of the original Haralick 2D model 

and its 3D expansion. An improvement of classification accuracy by the 3D expansion over 

its original 2D model can be observed, as expected. Based on this experimental outcome, we 

can conclude that our implementation of the 2D and 3D Haralick texture feature extractions 

is successful. Then, we moved on to perform more comparison studies on different feature 

sets, as shown by Table 2. A significant test on the differences over 100 runs was conducted 

comparing these 2D and 3D feature sets, and all the results showed that all the P values are 

<0.001, showing in the last column in Table 2, which indicates that the 3D texture feature 

extraction model is significantly better than the 2D model. Meanwhile, we can also observe 

that by combining the high-order texture features, i.e., gradient and curvature features, the 

classification results are significantly improved than that using the intensity features only. 

The classification performance in differentiating H from the risk group (TA, TVA, A) 

achieved 0.8525 of AUC when Gradient–Curvature texture features are used. From the 

report in Table 2, another fact can be observed that the classification performance of 

individual gradient or curvature features only did not show improvement, while the 

performance of combined features set did show improvement, which indicates that the high-

order features bring new group deterministic information into the CADx paradigm. When 

we use all the features, i.e., intensity–gradient–curvature, its AUC (0.8399) is not the highest 

and even the difference to group gradient–curvature (0.8525) is significant (Table 3). It 

indicates that including all feature sets does not guarantee best performance and a feature 

selection scheme is need to optimize the differentiation performance, which would be our 

next work.

Following the instructions in [45], the averaged ROC curves of the 3D texture feature 

classification are plotted as shown in Fig. 10. The curves are consistent with the AUC results 

of Table 2. From both Table 2 and Fig. 10, we can see that by combining the 3D gradient 

and curvature texture features, we obtained the best classification result. Significance test 

was conducted between 3D gradient–curvature features, and the rest feature groups and 

results are shown in Table 3, from which we can observe that the improvement in AUC of 

gradient–curvature feature set is significant. Based on the averaged ROC curve, a 

sensitivity–specificity table is made as shown in Table 4. By the 35 non-neoplastic lesions 

and 113 neoplastic lesions in the database, the average classification results (i.e., the 

proportion of correctly classified cases within each group) with given sensitivity level can be 

pictured as follows. For instance, taking the gradient– curvature group as an example, when 

we choose 0.8 sensitivity level (sensitivity = 0.8), its corresponding specificity equals 

0.7178. Therefore, the average number of correctly classified neoplastic lesions is 90.4 (of 

113) with 25.1 (of 35) non-neoplastic lesions being recognized by the classifier.
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Discussion

In a previous study, Suzuki et al. [46] obtained similar outcome as ours as reported above, 

where they achieved 0.87 neoplastic lesions classification accuracy with 0.57 on non-

neoplastic lesions. The corresponding AUC of their study was reported to be 0.82. No 

averaged result is reported. This previous study [46] focused more on proposing CADx 

strategy rather than the texture feature analysis. In our texture biomarker study, when 

choosing gradient–curvature group and setting sensitivity to be 0.87, we have achieved a 

specificity of 0.595 with AUC being 0.8525. By comparing the numerical numbers, a 

moderate improvement can be observed over the previous study [46]. Another difference 

between our work and the previous study [46] is the use of average in our experiments. It is 

expected that averaged results would be more reliable and robust to the generalization 

evaluation.

Even though the microscopic pathological pattern may not be exactly reflected by the voxel-

level pattern in the macro medical images, certain tissue-level texture information may be 

embedded in the voxel-level pattern, where the pattern distributional information can be 

captured by our texture analysis. This conjecture can be thought as a hypothesis, where only 

experiments would prove its validity. The outcome of this experimental study indicates the 

validity of the conjecture.

Since the Haralick method is based on the spatial CM, which records the frequency of 

micro-texture patterns, there-fore the sampling space could not be too small. For this reason, 

we only included lesions with size 8mm or larger in this study. It is expected that for lesions 

with different sizes, their texture features may have variable performance in differentiating 

the lesions. This renders one of our future research tasks.

Since gradient and curvature operators are applied to the intensity image in our feature 

extraction, we need to consider the effect brought by the intensity image noise. For gradient 

operator, we do not need to care much about the noise, because the calculation is almost 

linear. The consistent results of Sobel operator with d=1 (3*3*3 window) for all the datasets 

in this study indicate the adequacy of our assessment on the use of the gradient operator. 

However, higher-order derivatives, e.g., the second-order derivative, require greater care 

about the noise in order to achieve reasonable immunity from the noise. For example, we did 

a grid search over the feasible α space for the best fit in all the cases of this study, and an 

empirical value of α = 0.8 was obtained. This empirical value is consistent with the one 

reported in [24]. A too large α value would lead to a homogeneity image with less texture, 

while a smaller α value would result in an unreliable calculation of curvature, and both 

scenarios would lead to inferior classification performance.

It is noticed that the number of our datasets is somehow small, especially for subtypes 

adenocarcinoma and VA. This is one limitation of the study, and we should expand our 

database to include more polyps for further investigation on the presented texture feature 

extraction strategies. Meanwhile, we also noticed that different feature subset combinations 

can result in different differentiation performances, and the whole feature set will not 

guarantee the best performance. Since we only conducted a rough feature set selection 
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(another limitation of the study), a finer feature subset selection is necessary and this renders 

another one of our future research tasks.

Theoretically, more high-order derivative images can be considered by our texture feature 

analysis in the absence of intensity image noise. However, the computation of high-order 

derivatives will amplify the noise quickly. So, a tradeoff must be made for optimal 

performance. Using empirical value will not guarantee a better performance. This is also the 

limitation of our current study. Determining the optimal point is currently an open question 

and would render another task of our future research. Applying the presented strategy for 

differentiation of other lesions, e.g., lung nodules, is also a topic of our future research.

Conclusion

In this paper, we presented a novel texture feature extraction strategy by including high-

order derivative images over the original image intensity distribution, e.g., the first-order 

gradient and the second-order curvature images, in mimicking the amplification operation in 

pathology, based on the 2D Haralick texture analysis method and its 3D expansion for 

CADx of colon polyps via CTC. The results show that by combining the high-order texture 

features, the classification in differentiating neoplastic from non-neoplastic lesions can reach 

an AUC value of 0.8525. We can conclude that the derived new pathology-related 

deterministic information of the high-order gradient and curvature texture features has 

significantly improved the diagnosis accuracy.

Based on the differentiating capability of the extracted texture features, we conjecture that 

the derived pathology-related deterministic information can be a sensitive biomarker not 

only for diagnosis of colon polyps but also for prognosis and prediction of the lesions as 

well as to reveal the insight of the underline biology.
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Fig. 1. 

Overview of our proposed 3D texture feature extraction scheme
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Fig. 2. 

Illustration of 2D Haralick spatial information extraction model with d = 1 and d = 2 

neighbor and four directions
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Fig. 3. 

Illustration of 3D expansion of the Haralick model. The 3D frame shows the 26 neighbors (d 

= 1) of the red cube. Graph a shows the four directions in the middle layer. Graphs b, c show 

the rest nine directions in top layer. Graphs d–f show the direction number corresponding to 

a–c
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Fig. 4. 

Illustration of semi-automatic volume extraction. The first column shows the locations of 

lesions in 2D slices. The second column shows the semi-automatically extracted region of 

interest in 2D view. The green line indicates the manually drawn boundary, and the red 

border indicates the interface between air and polyp after automatic air removal. The third 

column shows the 3D endoscopic views using the software of Viatronix. Row a shows a 

7mm tubular adenoma located in sigmoid colon. Row b shows a 8mm hyperplastic polyp 

Song et al. Page 17

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 October 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



located in descending colon. Row c shows a 9mm tubular adenoma located in hepatic 

flexure. Row d shows a 20mm tubulovillous adenoma in ascending colon
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Fig. 5. 

Distribution information of the database used in study. Graph a shows the histogram of 

linear size information in the pathology report. Graph b is the histogram of pathological 

phase of the 148 lesions
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Fig. 6. 

Overview of our texture feature set evaluation scheme
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Fig. 7. 

Regression scatter plot shows the linear relationship between the third root of extracted 3D 

volume voxel number and its corresponding linear size in the pathology report
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Fig. 8. 

ROC curve with only lesion size information as decision value. Graph a shows the ROC 

curve based only on linear size differentiation. Graph b shows the ROC curve based only on 

3D volume size differentiation

Song et al. Page 22

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 October 03.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 9. 

Histogram of 3D volume size distribution within different groups, i.e., H against 

TA&TVA&A
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Fig. 10. 

Averaged ROC curves from SVM classification results. The curves were conducted 

according to the horizontal axis, where the linear interpolation was employed when needed
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Table 1

Haralick features extracted from co-occurrence matrix (CM)

Feature number Description

f1 Angular second moment

f2 Contrast

f3 Correlation

f4 Sum of squares: variance

f5 Inverse difference moment

f6 Sum average

f7 Sum variance

f8 Sum entropy

f9 Entropy

f10 Difference variance

f11 Difference entropy

f12,13 Information measures of correlation

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 October 03.
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Table 2

Averaged SVM AUC information of the 100 runs for both 2D and 3D features

Group AUC information P value

2D 3D

Intensity 0.6210 ± 0.0950 0.7403 ± 0.0529 <<0.001*

Gradient 0.6823 ± 0.0905 0.7407 ± 0.0493 <<0.001*

Curvature 0.5827 ± 0.0860 0.7652 ± 0.0543 <<0.001*

Int–Gra 0.7263 ± 0.0944 0.8368 ± 0.0392 <<0.001*

Int–Cur 0.7187 ± 0.0668 0.8161 ± 0.0511 <<0.001

Gra–Cur 0.7318 ± 0.0500 0.8525 ± 0.0431 <<0.001

Int–Gra–Cur 0.7413 ± 0.0533 0.8399 ± 0.0427 <<0.001*

Format: mean ± standard deviation

*
indicates the normality assumption for paired t test is not hold, in which case we use Wilcoxon signed-rank test instead. Int, Gra and Cur are the 

abbreviation for intensity, gradient and curvature, respectively
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Table 4

Sensitivity-specificity pairs on the averaged ROC curve

Group Corresponding specificity with different sensitivity
level

Sen* = 0.6 Sen=0.7 Sen=0.8 Sen=0.9

Intensity 0.7384 0.6284 0.4910 0.3043

Gradient 0.7535 0.6254 0.4630 0.2523

Curvature 0.7640 0.6681 0.5433 0.3895

Int–Gra 0.8808 0.8060 0.6773 0.4834

Int–Cur 0.8241 0.7507 0.6469 0.4980

Gra–Cur 0.9087 0.8264 0.7178 0.5251

Int–Gra–Cur 0.8732 0.8101 0.7070 0.5188

*
“Sen” is the abbreviation of “sensitivity”. Int, Gra and Cur are the abbreviation for intensity, gradient and curvature, respectively
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