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Abstract 

In the last two decades, several techniques have been introduced that are 

capable to extract three-dimensional three-components velocity fields in 

fluid flows. Fast-paced developments in both hardware and processing 

algorithms have generated a diverse collection of methods, with a 

growing range of application in flow diagnostics. The context has been 

further enriched by an increasingly marked trend of hybridization, in 

which the boundaries between different techniques are fading. In this 

review, we carry out a survey of the prominent methods, including optical 

techniques and approaches based on medical imaging. Each one is 

outlined through a sample application from the recent literature, 

focusing on respective strengths and challenges. A framework for the 

evaluation of the velocimetry performance in terms of dynamic spatial 

range is discussed, along with technological trends and emerging 

strategies to exploit 3D data. While critical challenges still exist, these 

observations highlight how volumetric techniques are transforming 

experimental fluid mechanics, and that the possibilities they offer have 

just begun to be explored. 

1. Introduction

The inherent three-dimensional (3D) nature of most fluid flows requires 

suitable tools for their detailed measurement. Yet, until relatively recently only 

single-point or at best planar techniques for velocity measurements have been 

available to the experimentalist. Most often researchers have had to live with 

somewhat questionable assumptions of flow homogeneity in one or more spatial 

directions. The benefits include simpler experimental setups, and more 

straightforward data analysis and processing. Sometimes, this approach yields 

rewarding results. It has long been clear, however, that to gain in-depth 

understanding of complex flows in both natural and man-made settings, the 

reconstruction of the full volumetric (3D-3C, i.e. three-dimensional and three-

component) velocity field is essential. A classic example is the vortex stretching 
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mechanism in turbulent flows, which plays a key role in the transport of 

vorticity along the spectral pipeline of the turbulent scales. This process is 

essentially three-dimensional, thus one- or two-dimensional techniques such as 

hot-wire anemometry and planar Particle Image Velocimetry (PIV) cannot 

capture it in full. This fundamental difficulty extends, albeit in different forms, 

to countless industrial, biological, and environmental flows. 

Following the strong desire for 3D measurements, a number of volumetric 

velocimetry methods have flourished over the last decades. In part, this has 

followed the evolution of techniques already used in experimental fluid 

mechanics, especially particle-based velocimetry. In part, however, the progress 

has been accelerated by concepts and technologies borrowed from adjacent 

fields, including computer vision and medical imaging. It is now evident that the 

advent of tomographic particle image velocimetry (Tomographic PIV, Elsinga et 

al. 2006) has represented a turning point in experimental fluid mechanics, with 

an explosion of applications especially in turbulent flows, and it has fueled 

advancements even in established volumetric techniques such as 3D Particle 

Tracking Velocimetry (3D PTV, Maas et al. 1993) and Holographic PIV (Hinsch 

2002). Additionally, the availability of more powerful and affordable computers 

allowed acquiring and handling larger amounts of data, which was necessary for 

the extension to 3D (see the discussion on the technological drivers in Sec. 3.3). 

In parallel, the continuous progress in medical imaging technology has led to 

the refinement of 3D flow measurements by non-optical methods, in particular 

based on Magnetic Resonance Imaging (MRI, Elkins & Alley 2007, Markl et al. 

2012).  

These advances have paved the way towards novel research trajectories 

whose merits have immediately become apparent, and which are likely to 

remain productive for a long time. The 3D information extraction, however, 

requires the introduction of novel measurement paradigms, concerning both the 

design and execution of experiments. It also comes at the cost of significant 

technical challenges, which have only partially been addressed. Indeed, the 

strive towards accurate flow diagnostics capable to provide full volumetric (and 

ideally time-resolved) information, while attaining sufficient dynamic and 

spatial range, represents an extremely active area of research.  

The potential reward is enormous. The benefit of high-quality 3D velocity 

measurements is not only limited to the description of turbulent flows. 

Volumetric velocimetry is also essential to characterize the flow around and 

inside complex objects, and to validate numerical simulations thereof, while 

providing new opportunities to evaluate quantities which have so far eluded the 

experimentalist.  For example, in the last years several strategies have been 

proposed to extract 3D pressure fields from volumetric velocity measurements, 

e.g. to identify aeroacoustic noise sources (van Oudheusden 2013).  

Considering the above, the aim of the proposed review is twofold. On the one 

hand, for the same general goal of measuring 3D velocity fields, several 

approaches are available today and it is not trivial to identify the most suitable 
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one for a specific application. Our first objective is thus to provide a critical 

assessment of the existing volumetric velocimetry techniques. The description 

will be limited to the fundamentals, with the reader being referred to dedicated 

reviews for further details. The techniques will be illustrated through sample 

applications from the recent literature, to highlight respective strengths and 

challenges. On the other hand, the portfolio of methods has evolved rapidly in 

the last decade, with the introduction of new techniques and the fast 

improvement of others, as testified by the intense scientific production in recent 

years. The second objective is then to discuss the existing approaches in terms 

of their potential growth and application in the near future, and to identify new 

perspectives that emerge from the most recent implementations. 

Without claiming to be exhaustive, we will focus on techniques that are now 

established as valuable tools for the scientific community, and at the same time 

show potential for further developments. In the absence of accepted 

classification criteria, establishing an appropriate order of presentation is not 

trivial. Even a chronological order is not easy to determine, because some 

methods do not have a precise date of birth, and have evolved over relatively 

long times. Therefore, we follow a (somewhat arbitrary) logical order that 

facilitates the exposition. We begin with 3D PTV, which has evolved into 

Lagrangian Particle Tracking using high-speed imaging and whose spatial 

resolution has recently been pushed to new heights. We then address 

Tomographic PIV, which since its introduction has generated an interest in the 

fluid mechanics community only comparable to its planar counterpart, quickly 

progressing through many contributions from research groups around the 

world. We discuss Scanning PIV, originally conceived as a planar method made 

volumetric by assuming a “frozen” flow, but which is increasingly used in a 

hybrid scanning-tomography mode. 3D Holographic velocimetry is discussed in 

the context of its digital in-line version, especially in light of recent efforts to 

overcome longstanding limitations while maintaining signature features that 

have determined its success. Defocusing PIV is presented in its modern form, 

which has moved away from the original multiple-aperture implementation and 

towards a multiple-camera setup, while conserving its benefits in dealing with 

relatively large and deep volumes. Light-field imaging is the most recent 

addition to 3D velocimetry of fluid flows; we review some aspects that 

underscore its potential, as novel dedicated hardware becomes available. We 

conclude the showcase with Magnetic Resonance Velocimetry, a prime example 

of how non-optical imaging technology developed in medical physics can be 

applied to both biomedical and engineering fluid mechanics, offering 

complementary advantages with respect to laser diagnostics. The Discussion 

section will elaborate on criteria for classifications, but also highlight 

hybridization between various methods. We will expand on metrics for 

performance specifically applicable to volumetric measurements, and discuss 

technological trends and emerging approaches that exploit the latest 

improvements. 
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2. Volumetric velocimetry techniques 

2.1 Lagrangian Particle Tracking 

The advancements in recording hardware and the application of 

photogrammetry to full-volume imaging in the 90’s paved the way towards the 

extensive application of PTV for the analysis of tracer particle trajectories (along 

with the velocity and acceleration along them), referred to as Lagrangian 

Particle Tracking (LPT). In this section, we focus on techniques exploiting only 

particle image positions and intensity; methods based on defocusing/aberration 

imaging will be treated in a dedicated section. 

The earliest examples of LPT (Nishino et al. 1989, Maas et al. 1993) were 

based on individual particle triangulation using a set of multiple views. In these 

and later applications a major limit on the seeding concentration (and, 

consequently, on the achievable spatial resolution) arises from the ambiguity of 

the reconstruction process using a limited set of views, generating the so-called 

ghost particles. The number of ghost particles depends on the particle image 

density, the particle image diameter, the depth of the illuminated volume and 

the number of cameras. For relatively low image density (lower than 𝑁𝑝𝑝𝑝 =0.05 

particles per pixel, ppp) Discetti & Astarita (2014) proposed the relations: 

 

 
(𝑁𝑔)2𝑐𝑎𝑚𝑁𝑝 = 𝑁𝑝𝑝𝑝𝑑𝜏∗𝐿𝑧 (1) 

 
(𝑁𝑔)𝑁𝑐𝑎𝑚𝑁𝑝 = (𝑁𝑔)2𝑐𝑎𝑚𝑁𝑝 (1 − 𝑒−𝑁𝑠)𝑁𝑐𝑎𝑚−2 (2) 

 

where 𝑁𝑐𝑎𝑚 is the number of cameras, 𝑁𝑔 and 𝑁𝑝 are respectively the number of 

ghost and true particles, 𝑑𝜏∗ is the particle image diameter in pixels, 𝐿𝑧 is the 

depth of the volume expressed in pixels, and 𝑁𝑠 = 𝑁𝑝𝑝𝑝 𝜋𝑑𝜏∗24  is the source 

density. 𝑁𝑐𝑎𝑚 indicates the number of cameras used for the reconstruction. 

Considering typical values (resolution of 20 pixel/mm, 𝐿𝑧 = 10 mm⋅20 pixel/mm= 200 pixels, 𝑑𝜏∗ = 3 pixels), for a 3 camera system an image 

density of 0.005 ppp (𝑁𝑠 = 0.035) would correspond to 10% of ghost particles, 

while raising the image density to 0.01 ppp (𝑁𝑠 = 0.07) rises the estimate to 

40%. The limitation on seeding concentration (and consequently on 

instantaneous spatial resolution) bounded the development of 3D LPT for long 

time. Nonetheless the technique has been widely used to extract Lagrangian 

statistics, enabling fundamental advances in turbulence research (see for 

instance Voth et al. 2002, Lüthi et al. 2005, Xu et al. 2014). The accuracy 

needed to investigate high-order statistics is achieved by exploiting the temporal 

information, both to determine future particle positions from previous steps 

(Ouellette et al. 2006) and to obtain physically smooth trajectories (Mordant et 

al. 2004). 
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In recent years, the fast development of time-resolved Tomographic PIV had 

the unexpected result of starting a renaissance of LPT. A first attempt to identify 

particles tracks and extract Lagrangian quantities from the reconstructed 

volumes of Tomographic PIV was carried out by Schröder et al. (2011). Later, 

Wieneke (2013) developed a particle-based reconstruction approach (referred 

as Iterative Particle Reconstruction, IPR) exploiting image matching, i.e. adding 

to the traditionally used particle image positions the information on their 

intensity. This process optimizes the matching by “shaking” the particles around 
their predictor position and searching for improvements on the projection 

matching with the original image. The technique built upon the ongoing 

developments on the Optical Transfer Function calibration in the field of 

Tomographic PIV (Schanz et al. 2012). Pushing this approach one step further, 

the Shake-The-Box method (STB, Schanz et al. 2016) incorporates temporal and 

spatial information by combining the IPR image matching process with 

extrapolation of known trajectories to predict particle position at subsequent 

time steps. Using synthetic data, the method has been shown to handle seeding 

densities up to 0.125 ppp with nearly no ghost particles. The particle tracks can 

then be used to extract dense Lagrangian statistics or highly resolved Eulerian 

statistics via volume binning and ensemble averaging (Schröder et al 2015, 

Agüera et al 2016). 

The application of LPT with the STB method is outlined here by the time-

resolved measurements of a periodic hill flow by Schröder et al. (2015). The 

experiments are performed in the water tunnel at TU Munich. The Reynolds 

number range is 𝑅𝑒=8000-33000, based on the hill height and on the bulk 

velocity 𝑈𝑏=0.171-0.698 m/s. Owing to the requirements of time-resolved data 

to extract trajectory, LPT is indeed typically applied to relatively low-speed 

flows (although Novara et al. 2016 recently demonstrated a 36 m/s application 

using multi-pulse illumination). A volume of 90 x 20 x 94 mm3 is imaged by six 

high-speed cameras (Imager pro HS 4M/PCO Dimax). The fluid is seeded with 

30 μm polyamide particles, illuminated by Nd:YLF Quantronix Darwin Duo 

high-repetition laser (20 mJ/pulse). Owing to the limited power of high 

repetition rate lasers and small aperture required for proper focusing, large 

particle size is desirable; additionally, the light intensity is increased by back-

reflecting the laser light with a mirror placed at one extremity of the 

investigated domain. Multi-pass amplification with two facing mirrors (Ghaemi 

& Scarano 2010) has been shown to further increase the light intensity up to 7 

times. The light profile is also cut by a masking window to remove weak 

intensity tails, limiting spurious background intensity in the reconstructed 

images. The illumination and imaging configuration is illustrated in Figure 1. 

Sequences of 3000 particle images were captured at 500 Hz and 1 kHz for the 

lowest and the highest Reynolds number, respectively. The captured images 

have an average resolution of about 21.5 pixel/mm and particle image density 

ranging between 0.04 and 0.06 ppp, with particle image diameters of about 3 

pixels.  
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Figure 1 Imaging and illumination setup for LPT measurements of a periodic hill flow. Left: camera 
arrangement. Right: illumination path with black tape on the background of the imaging region. From 
Schröder et al. (2015). Schröder 2015 © Springer Science+Business Media Dordrecht 2015. With 
permission of Springer. 

The optical calibration is performed with a dual-plane calibration plate, and 

then corrected with a volumetric self-calibration proposed by Wieneke (2008), 

based on the minimization of the disparity between the images of the same 

particle in the various camera images. The STB method is then applied; the 

processing steps are described in Schröder et al. (2015) and in greater detail in 

Schanz et al. (2016). The algorithm is divided in three phases: initialization, in 

which particle positions are estimated for the first few time steps, for instance 

via IPR, and a first set of tracks is determined; convergence, in which the 

trajectories are extrapolated to subsequent time steps and particle “shaking” is 

applied to identify new candidates; and converged phase, in which the process is 

iteratively repeated but the number of tracks is stable, the reconstruction 

changing only due to particles entering or leaving the measurement volume. 

Due to the extensive use of the time history information, Schröder et al. (2015) 

claim an uncertainty as low as 0.0033 pixels for 0.05 ppp under ideal images, 

and of the order of 0.1 pixels in real applications. The data are finally 

interpolated onto a Cartesian grid using an iterative optimization approach 

based on a weighted sum of 3D quadratic B-splines (Gesemann 2015). Physical 

constraints might also be included, for instance penalizing non-zero divergence 

in incompressible flows.  

An example of particle tracks and vorticity isosurfaces is reported in Figure 

2. Data are obtained applying the B-spline interpolation on cells 470 μm (about 

10 pixels) in size. Color-coding by the streamwise component of the velocity 

value highlights the presence of high and low momentum regions and vortices 

embedded in the shear layer past the hill. Strong accelerations are detected in 

proximity of and inside vortex tubes. 
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Figure 2 Lagrangian tracks over 11 time steps obtained by STB method applied to a flow past a hill. Left: 
color-coding with streamwise velocity and iso-contours of vorticity magnitude. Right: zoom into the box 
highlighted on the left panel, with track color-coded by acceleration magnitude. From Schröder et al. 
(2015). Schröder 2015 © Springer Science+Business Media Dordrecht 2015. With permission of 
Springer. 

2.2 Tomographic PIV 

Tomographic PIV (Elsinga et al 2006) is based on full-volume illumination 

and reconstruction of the light intensity field using multiple simultaneous views 

from different viewing directions (generally three or more cameras). The 

volume illumination is usually generated by expanding a laser sheet thickness 

along the imaging depth direction. This sets stringent requirements in terms of 

light intensity of the illumination, and in most cases the imaging volumes are 

kept to an aspect ratio between 1 : 3 and 1 : 10 (depth to in-plane size). The light 

intensity field is discretized into cubic compact support functions (voxels), with 

comparable size to that of the pixels. The imaging process is modelled as a set of 

linear equations, resulting from the discretization of the integral of the light 

intensity along the line of sight of each pixel. The unknowns to be determined 

are the intensity values carried by each voxel; consistency with the intensity 

recorded on each pixel is the condition to be enforced. Owing to the finite 

number of available projections (equal to the number of cameras), the 

reconstruction problem is ill-posed. In the early implementations, the solution 

of the system has been tackled using iterative algebraic methods already 

available in the medical imaging field (Herman & Lent 1976); however, in recent 

years a portfolio of features-oriented reconstruction techniques has flourished. 

The full three components velocity field is then computed via 3D digital cross-

correlation of the reconstructed volumes (even though, owing to the larger 

particle spacing with respect to 2D PIV, particle tracking approaches have 

recently gained popularity, especially in time-resolved applications, see e.g. 
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Novara & Scarano 2013, Schneiders & Scarano 2016). The reader is referred to 

the review by Scarano (2013) for a detailed description of the technique. 

We report an illustrative example of Tomographic PIV, highlighting several 

of the requirements for the successful application of the technique. The case 

study is the measurement by Ceglia et al. (2014) of the swirling flow issuing 

from a model injector for aero engine applications. The swirl injector is confined 

into a nine-sided methacrylate tank filled with water. The walls of the tank offer 

full optical access from the sides, allowing illumination by a laser slab and 

imaging from different directions with optical axis orthogonal to the lateral 

walls. A sketch of the experimental setup and injector is shown in Figure 3. The 

camera arrangement is selected to cover a wide angular spacing to reduce 

elongation of the reconstructed particles in the depth direction and to provide a 

set of complementary views of the particle cloud (Scarano 2013). 

The flow is seeded with neutrally-buoyant polyamide particles (56 μm in 

diameter). The beam of a dual-cavity Gemini PIV Nd:YAG laser (200 mJ/pulse 

at 15 Hz) is shaped into a volume using two spherical and one cylindrical lenses. 

The volume thickness is shaved to 46 mm using a knife-edge mask to cut the 

tails of the beam profile, similar to what described in the LPT case study and 

common to many laser-based volumetric techniques.  

 

 

 

Figure 3 Top: sketch of the experimental setup to investigate a swirl flow injector with Tomographic PIV. 
Bottom: Schematic of the measurement domain. 𝐷 = 40𝑚𝑚 is the injector exit diameter. Reprinted from 
Ceglia 2014, Copyright 2014, with permission from Elsevier. 
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The imaging system consists of a set of four LaVision Imager sCMOS 5.5 

Megapixel cameras (6.5 µm pixel pitch), equipped with 100 mm EX objectives 

set at f#=16. A large f# is necessary to achieve a sufficient depth of field to 

include the entire illuminated volume. The objectives are equipped with 

Scheimpflug adaptors to ensure proper focusing of the particles. Well-focused 

particles are indeed desirable to improve the reconstruction accuracy, even 

though a small blur might be acceptable (Scarano 2013). Setting similar imaging 

conditions for all cameras in the set (same sensor, lensing, forward/backward 

scattering, etc.) is not a fundamental prerequisite, but it is beneficial for 

consistent processing and is common practice. Intensity differences between the 

cameras can be partly compensated by image pre-processing (e.g. by 

equalization procedures) or using an ad hoc Optical Transfer Function (Schanz 

et al. 2012). It is worth noting that, owing to the expansion of the laser beam in 

the depth direction and to the relatively large f# to achieve properly focused 

particles, high intensity light sources are needed, and whenever possible large 

particle sizes. 

The seeding concentration is set to achieve a particle image density of 0.05 

ppp, which is a typical figure of merit for a successful tomographic 

reconstruction (Scarano 2013). Tomographic PIV shares with other 3D 

velocimetry approaches the limit in terms of ambiguity of the reconstruction, 

i.e. the detection of spurious (ghost) particles. Ghost particles tend to move 

coherently with the set of true particles (Elsinga et al. 2011), thus contaminating 

the results and, in particular, the velocity gradients in the reconstructed flow 

field. The selection of the proper particle image density is therefore a 

compromise between the need for dense information and the minimization of 

ghost particles. While for standard dual-frame application (like the one 

described here) the particle image density is usually in the range 0.04-0.06 ppp, 

higher particle image densities are manageable if temporal coherence can be 

exploited. The Motion Tracking Enhancement technique of Novara et al. (2010), 

which is based on the combined use of images from two or more successive 

exposures, has been used with concentrations up to 0.2 ppp (Novara & Scarano 

2012). 

In order to reduce the image background intensity, the images are pre-

processed by removing the ensemble minimum of the intensity from each pixel, 

and then subtracting a sliding minimum over a kernel of 31 x 31 pixels in space 

and 5 realizations in time to remove the residual background. In general, in 

Tomographic PIV it is desirable to remove all background information to reduce 

the dimension of the solution space in the reconstruction problem. Therefore, it 

is good practice to apply the above-mentioned background subtraction 

techniques and others, such as intensity thresholding and eigen-background 

removal (Mendez et al. 2017). An overview on the effects of pre-processing on 

tomographic reconstruction accuracy can be found in Martins et al. (2015). 

An optical calibration between physical and image coordinates is carried out 

using a dual-plane target translated in the measurement domain. Here the 
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calibration process is challenging since the swirler is tested also in a “confined” 
configuration, i.e. enclosed in a methacrylate cylindrical chamber. Due to the 

need of high precision calibration (error below 0.1 pixels, Elsinga et al. 2006), a 

correction is needed for the distortion effect induced by the cylinder. This is 

performed following the volumetric self-calibration (Wieneke 2008). Here the 

residual mapping error is reduced from 3 pixels to 0.07 pixels. 

The illuminated volume of approximately 128 x 128 x 46 mm3 (thus with an 

aspect ratio of 0.35 : 1 between depth and in-plane dimensions) is discretized in 

18 voxel/mm. The reconstructed volume is slightly larger in the depth direction 

(2298 x 2298 x 1004 voxels) to ensure that all the imaged particles are captured. 

This also enables a posteriori evaluation of the reconstruction quality via the 

depth profile of the intensity, i.e. by computing the sum of the intensity of the 

reconstructed particles at different depths (Scarano 2013). An intensity ratio of 

2 between the region inside and outside the volume is typically accepted as a 

minimum quality check. The reconstruction is performed with a variant of the 

SMART algorithm (Mishra et al. 1999), which is an iterative algebraic method. 

The convergence is enhanced calculating the first guess using a Multiplicative 

Line of Sight approach (MLOS, Atkinson & Soria 2009). Other computationally 

efficient solutions are the multi-resolution MART reconstruction (Discetti & 

Astarita 2012a), which refines progressively the voxels resolution during the 

reconstruction process, or the sequential Motion Tracking Enhancement (Lynch 

& Scarano 2015) for time-resolved applications. In algebraic reconstruction 

strategies, it is also common to smooth (e.g., with a Gaussian filter) the 

reconstructed volumes between each iteration to regularize the solution 

(Discetti et al. 2013, Castrillo et al 2016). 

The 3D particle field motion is computed with a computationally efficient 

direct sparse cross-correlation approach (Discetti & Astarita 2012b), based on a 

multi-step volume deformation algorithm (Scarano 2001). The final 

interrogation spot is of 64 x 64 x 64 voxels, corresponding to 3.6 x 3.6 x 3.6 

mm3, with an overlap of 75%. The uncertainty in the velocity spatial derivatives 

is estimated computing the standard deviation of the divergence computed on 

raw data, which results being about 7% of the typical value of the vorticity 

magnitude within the shear layer. 

An example of instantaneous 3D velocity measurement of the swirl injector 

flow is reported in Figure 4. Velocity vectors along a plane containing the jet 

axis are shown along with intense vortical structures (identified by the Q 

criterion of Hunt et al. 1988). The full 3D instantaneous information allows 

visualizing a helical structure related with the precessing vortex core, 

characterized by an azimuthally wavy shape due to peaks of radial vorticity. 

These structures are responsible of the break-up of the helical vortex and its 

dissipation, which is shown to occur earlier for the confined jet configuration. 
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Figure 4 Instantaneous velocity vectors along the symmetry plane of a swirl injector, with vortex cores 
visualized via the Q criterion, investigated in free (top) and confined (bottom) configuration. Color-
coding is based on the normalized radial vorticity. Reprinted from Ceglia 2014, Copyright 2014, with 
permission from Elsevier. 

2.3 Scanning PIV 

Scanning light sheet methods extract quasi-simultaneous 3D velocity fields 

by scanning a volume with a laser sheet (Brücker 1995). In order to obtain a 

“frozen” representation of the whole flow field, the time to sweep the volume 

must be much smaller than the characteristic timescale of interest. This, besides 

requires high-repetition lasers and high-speed cameras, limits the application to 

low-speed flows. For example, Diez et al (2011) used a 1 kHz laser to perform 
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fine-scale flow measurements in the far field of a turbulent water jet with 

centerline velocity of 0.020 m/s, and Kolmogorov timescale estimated as 51 ms. 

This strict requirement can be partly relaxed if the focus is on the large-scale 

motions.  

In its early implementations, scanning PIV included the use of a single 

camera and standard 2D PIV processing to obtain 3D-2C velocity fields 

(Brücker 1995). Adding a second camera in stereoscopic arrangement allows the 

extraction of 3D-3C velocity measurements (e.g., Hori & Sakakibara 2004, 

Watanabe et al. 2015). The main advantage with respect to full volumetric 

imaging is the potentially higher spatial resolution. The seeding concentration 

can indeed be comparable to that of planar PIV, since each recorded image 

contains only a portion of the particles within the volume, with no 3D 

reconstruction required. Imaging conditions, however, are in general worse 

than in planar PIV due to the large 𝑓# required to obtain well-focused particles 

throughout the spanned volume. 

More recently, a multi-camera version of the method, referred to as Scanning 

Tomographic PIV, has received some attention (Ponitz et al. 2012, Casey et al. 

2013). It consists in using a multi-camera system to reconstruct the 3D 

distribution of particles/light intensity within thin illuminated slabs scanning 

through the volume. The advantage with respect to full-volume illumination is 

related to the limited thickness of the slices, which reduces the ambiguity in the 

reconstruction (Eq. 2). Casey et al. (2013), for example, used slightly-overlapped 

17-25 mm thickness sheets to scan a volume with depth of about 100 mm. The 

reconstruction of each illuminated sub-volume is performed with a procedure 

analogous to that of Tomographic PIV. A slightly different implementation is 

documented by David et al. (2012), in which a single camera is used. The 

illuminated slabs are much thinner (0.8 mm), and the corresponding images are 

re-projected in space to reconstruct the 3D distribution of particles, which is 

then discretized in voxels and interrogated by 3D cross-correlation. A detailed 

assessment of the method for one and two cameras is reported by Lawson & 

Dawson (2014) along with a parametric error study. 

The Scanning PIV technique in its tomographic implementation is illustrated 

here via the vortex ring transition study by Sun & Brücker (2017). The 

experimental setup is sketched in Figure 5. A nozzle fed by a piston-cylinder 

system is installed in an octagonal water tank and generates vortex rings, whose 

position with respect to the imaging system is kept stationary by lifting the 

entire tank at a speed of about 50 mm/s. Imaging is performed by three 

Phantom V12.1 high-speed CMOS cameras (1200 × 800 pixels) operated at 1250 

Hz and positioned at an equal angular spacing of 45°. Similar to Tomographic 

PIV, a wide angular aperture is needed to reduce the elongation of the 

reconstructed particles. The objectives are set to f# = 16 to ensure proper 

focusing throughout the volume. The illumination is provided by a continuous 

wave Argon-Ion laser (Coherent Innova 70C, 3 W power), shaped into an 8 mm 

thick sheet. The volume sweeping is achieved using a rotating drum scanner 
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with 10 mirrors installed in helical arrangement. The slices are overlapped by 2 

mm to ensure continuity of the imaged field, thus reaching a final thickness of 

62 mm. A full volume scan is performed at a rate of 125 Hz, which is sufficiently 

fast compared to the characteristic time scales of the flow under investigation. 

The flow is seeded with neutrally buoyant particles 60 μm in diameter. Large 

particles size is needed owing to light intensity limitations when operating with 

high repetition rate or continuous lasers and to the relatively small lens 

aperture. The mean particle displacement between successive scans is around 8 

pixels. 

The result of the reconstruction process is a set of 3D light intensity volumes, 

discretized with 700 x 519 x 500 voxels at 10 voxel/mm. The velocity fields are 

then obtained with 3D cross-correlation using an iterative multi-step volume 

deformation algorithm. A 3D history view of the vortex ring between 10 < 𝑡∗ <60 (where 𝑡∗ = 𝑡Γ0𝑅2 , being Γ0 the circulation and 𝑅 the vortex radius) is reported 

in Figure 6. At 𝑡∗ = 10 the ring has a smooth shape and it is still laminar; at 𝑡∗ =20 − 30 waves develop which generate axial and radial vorticity components. 

Secondary vortical structures can be observed at 𝑡∗ = 40, and eventually the ring 

transitions to turbulence (𝑡∗ > 50). 

 

 

 

Figure 5 Side view and top view of the Scanning PIV setup used by Sun & Brücker (2017). Figure from 
Ponitz et al. (2016). Ponitz 2016 © The Visualization Society of Japan 2015. With permission of Springer. 
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Figure 6 Time history of a vortex ring transition reconstructed by Scanning PIV. The isosurfaces indicate 
vortical flow identified by the Q criterion and are color-coded with the axial velocity magnitude. 
Reproduced from Sun 2017. CC BY 4.0. 

2.4 Holographic PIV 

In holography the amplitude and phase of the light wave scattered by an 

object is recorded and used to reconstruct the original light field in 3D (Gabor 

1948). In velocimetry applications, this is obtained by directing a beam of 

collimated light (typically a laser) through the field of view seeded with tracer 

particles (Katz & Sheng 2010). The scattered light is superimposed to a 

reference beam, generating an interference pattern which is stored on a 

recording medium to form a hologram. The latter is essentially a 2D image 

containing (circular) interference patterns for each illuminated (spherical) 

particle. The particle size is encoded in the low-frequency content of the pattern, 

while the high-frequencies encode the particle position along the direction 

normal to the imaging plane. When the developed hologram is illuminated 

(physically or virtually) with the complex conjugate of the reference beam (i.e., 

propagating in a direction opposite to the latter), the resulting transmitted light 

generates a representation of the 3D image of the particles. Image-based cross-

correlation is not straightforward due to the nature of the interference pattern 

(Meng et al. 2004), therefore the velocity field is typically obtained by 3D PTV 

using the particle coordinates at successive time instances. The data is either 

investigated in a Lagrangian framework (Gopalan et al. 2008, Lu et al. 2008) or 

projected on a Cartesian grid (Sheng et al. 2008, Talapatra & Katz 2012).  

Holographic systems are typically classified based on whether the reference 

beam and the object beam are inclined at a finite angle (off-axis) or parallel (in-

line). In off-axis configurations, the fringe spacing in the interference pattern is 

a fraction of the light wavelength, and decreases with increasing angle between 

the beams. The resolution needed for the recording media is of thousands of 
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lines per mm, which can only be achieved by specialized photographic films 

(Hinsch 2002). However, the sensitivity of these supports is low, and high-

intensity laser light in forward scattering is needed to image small tracer 

particles. In in-line configurations, the angle between reference and object beam 

is constrained to be less than the angle subtended by the plane of imaging, and 

in many applications both beams coincide. In comparison with off-axis 

holography, this involves a much simpler optical system and, due to the small 

angle between the interfering beams, produces relatively large fringe spacing, 

which can be resolved by digital sensor arrays. Recording digital holograms 

allows for a large number of fields at high temporal resolution. Furthermore, 

because of the superior light efficiency of forward scattering, the required laser 

power is greatly reduced. All these factors have contributed to make Digital In-

line Holography (DIH) the most successful implementation of this technique in 

fluid mechanics. Extremely high spatial resolution can be achieved; for example, 

Sheng et al. (2008) investigated a turbulent channel flow and obtained vector 

fields with spacing 51 μm × 136 μm × 17 μm (3 × 8 × 1 wall units) in streamwise, 

wall-normal and spanwise directions, respectively. DIH is also attractive for the 

compact and relatively inexpensive set up: a low-power laser, collimating optics, 

and only one camera. 

Some significant disadvantages, however, have limited the diffusion (and 

commercialization) of holography for volumetric velocimetry. A critical issue, 

which is particularly severe for in-line systems of small numerical aperture, is 

the ‘depth-of-focus’ (DOF), i.e. the longitudinal size of a diffraction-limited 

point-source image. In forward scattering, this is typically ~ 1 mm for 20 µm 

particles (Katz & Sheng 2010), severely affecting the accuracy of the 

reconstructed particle coordinate along the direction normal to the plane of 

imaging. The problem is partly alleviated when using microscopic imaging, but 

this in turn limits the measurement volume (typically < 1 cm3, e.g. Talapatra & 

Katz 2012). The attainable imaged volume and particle concentration are also 

limited by the speckle noise due to pattern self-interference from particles along 

the same optical axis. Finally, the extraction of the 3D particle position 

(segmentation) is computationally expensive, and has often relied on user-

dependent thresholding criteria (Toloui & Hong 2015). 

In an effort to overcome these limitations, Toloui et al. (2017) recently 

demonstrated a novel DIH approach, and we use their test case as a sample 

application. They investigate the flow above a rough wall in a turbulent channel 

facility (cross-section of 50 mm × 50 mm). The fluid (NaI aqueous solution at 

40% by weight) matches the refractive index of the Polydimethylsiloxane 

(PDMS) polymer used to manufacture the rough bottom wall, which features 1.5 

mm tall tapered pillars (Figure 7). Refractive-index-matching is especially 

critical in holography due to the potentially large effect of speckle noise on the 

3D reconstruction process. The channel is operated at a bulk Reynolds number 

≈ 22,770. The imaging setup includes a continuous He-Ne laser, a spatial filter, 

a collimation lens, and a high-speed camera. The latter is operated at about 3 
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kHz, and is equipped with a Nikon lens (105 mm focal length, f/2.8G) to obtain 

a 10 μm/pixel resolution on the streamwise/wall-parallel focusing plane, about 

3 mm from the rough wall. The 1472 × 1448 pixel holograms are used to 

reconstruct a 14.7 mm (streamwise) × 50 mm (wall-normal) × 14.4 mm 

(spanwise) volume. This is much larger, especially in depth, than typical DIH 

applications. Moreover, the channel is entirely seeded with silver-coated 8 – 12 

μm hollow glass spheres, while often tracer-laden fluid would be locally injected 

to reduce speckle noise from cross-interference of particles along the light path 

(Talapatra & Katz 2012). Here the signal-to-noise ratio (SNR) is first enhanced 

through subtraction of a time-averaged hologram followed by gray-scale 

equalization. The detectable particle concentration is then increased by 

iteratively removing particles from the hologram, allowing the identification of 

particles otherwise hidden by objects in the foreground (Toloui & Hong 2015). 

For reconstructing the particle positions, the 3D deconvolution method 

(Latychevskaia et al 2010) is employed, which models the optical field as the 

convolution of the particle field with a point-spread function based on Rayleigh-

Sommerfeld’s diffraction theory. This procedure was shown to reduce the 
particle DOF by ~ 20% - 40% (Toloui & Hong 2015). Other strategies have been 

proposed to minimize the DOF issue, notably imaging the tracer particles with 

multiple cameras from different angles (e.g., Soria & Atkinson 2008). This 

however requires careful alignment and calibration, somewhat hindering the 

simplicity of the DIH setup. Here, in order to reduce human intervention, 3D 

particle segmentation from the background is performed with an automatically 

selected local threshold, obtained by scanning the minimum intensity map with 

a small interrogation window. To minimize particle misidentification, an 

iterative predictor-corrector 3D tracking algorithm is used: the displacements 

are first obtained only from the particles detected as they travel through the 

entire sampling volume, and these set local bounds for the displacement field in 

successive iterations. Here this approach allows tracking particles at a 

concentration of 0.0035 ppp, which is much lower than in Tomographic PIV but 

still significantly higher than in previous DIH applications. About 7500 tracks 

are reconstructed for each pair of holograms, allowing for interpolation on an 

isotropic Cartesian with about 1.1 mm spacing. The velocity component normal 

to the imaging plane (here the wall-normal component) is the least accurate due 

to the DOF effect. An attempt to alleviate the problem is made by using the in-

plane components and calculate the third one by continuity, with a second-

order finite difference scheme for the velocity derivatives. Verification with two 

orthogonal cameras shows errors up to 16% in the absolute and up to 40% in the 

fluctuating velocity in wall-normal direction, highlighting the challenges 

associated with this aspect of DIH. 

Figure 8 shows consecutive flow realizations (separated by 20 ms). The 

streamwise span is extended using Taylor’s hypothesis, and coherent vortical 
structures are visualized by 2D swirling strength (Zhou et al. 1999) in the wall-

normal direction. Typical elongated and inclined structures appear to grow 
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towards the outer layer, and more activity is visible above the bottom rough 

wall. 

 

 

Figure 7 Close-up view and schematic of the PDMS cylindrical elements (a) roughening the bottom wall 
of a channel studied by DIH, with schematic of the imaging setup in (b). Reproduced from Toloui et al 
2017. © IOP Publishing Ltd. All rights reserved. 

 

Figure 8 Sample of consecutive instantaneous fields with contours of streamwise velocity and iso-
surfaces of wall-normal swirling strength for the turbulent channel. The upper wall is smooth and the 
bottom wall is rough. Reproduced from Toloui et al 2017. © IOP Publishing Ltd. All rights reserved. 
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2.5 Defocusing PIV 

The defocusing principle exploits the depth-information encoded in the 

size/shape of the imaged particles. The main advantage of this technique is that 

it can be potentially implemented using a single camera, thus allowing its 

application in facilities with limited optical access. Defocusing Particle Image 

Velocimetry was proposed first by Willert & Gharib (1992). In its original 

implementation, a three-pinhole aperture is used instead of the standard single-

pinhole aperture. With this optical arrangement, the light scattered by each 

particle generates three particle images on the camera sensor. The distance 

between the particle images encodes the depth position, while the orientation of 

the triangle removes the ambiguity on the position of the particle with respect to 

the focusing plane. A theoretical formulation of the technique has been 

proposed first by Pereira et al. (2000) and successively refined by Pereira & 

Gharib (2002). The proposed model was strictly valid for two-dimensional 

imaging; subsequent extension to full-3D formulation has been contributed by 

Kajitani & Dabiri (2005) and then improved by Grothe & Dabiri (2008). The 

image processing step relies on identifying particles triangles on the images via 

pattern matching techniques, determine the triangle size with sub-pixel 

accuracy, and locate the particles in the 3D volume; this operation is repeated 

for each exposure, and then particle tracking is generally used to determine 

velocity vectors (Pereira et al 2006).  

A different approach of the defocusing principle consists in encoding the 

depth information using astigmatic or anamorphic imaging. An astigmatic 

imaging system possesses two distinct focal lines; consequently, point sources 

are imaged as ellipses. A simple implementation of the technique is obtained by 

using a cylindrical lens (Kao & Verkman 1994). This optical arrangement results 

in oblate/prolate particle images, whose aspect ratio and orientation depends 

on the depth location. After locating the particles in the volume, tracking 

techniques can be used to extract the 3D-3C velocity field. Clearly, to avoid 

ambiguity, the particles must be located within the two focal planes. The 

technique has been demonstrated for macroscopic flows by Angarita-Jaimes et 

al. (2006) and assessed for microscopic flows by Chen et al (2009). The 

capability of dealing with limited optical access, and the ease of implementation 

by simply adding a cylindrical lens, lead to developments particularly in 

microfluidics. Further improvements of the technique have been provided by 

the group of UNIBW Munich (Cierpka et al. 2010a, Cierpka et al 2010b), and 

finally established Astigmatism 𝜇PIV as a valid option for 3D-3C microfluidics 

(Cierpka et al. 2012, Cierpka & Kähler 2012). 

As an example of application of Defocusing PIV, the investigation of the 

wake of a hydrokinetic turbine by Chamorro et al (2013) is considered. The 

experimental setup is sketched in Figure 5. A miniature 3-blade axial-flow 

turbine (with rotor diameter 𝑑=0.126 m and hub height of 0.11 m) is placed in a 

recirculating flume facility. The free stream velocity at the hub is 𝑈ℎ𝑢𝑏=0.2 m/s 

and the angular velocity is Ω = 14.7 rad/s, thus yielding a tip speed ratio 𝜆 =
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Ω𝑑/2𝑈ℎ𝑢𝑏= 4.65. The resulting Reynolds number based on the hub velocity and 

rotor diameter is 𝑅𝑒≈2.5⋅104. Spherical ceramic particles (65 μm in diameter, 

density of 0.8 g/cm3) are used to seed the flow; the illumination is provided by a 

dual-cavity Nd:Yag pulsed laser (200 mJ/pulse). The laser edges are cut with a 

cover plate to remove the low intensity tails.  

 

 

Figure 9 Top: photograph of the experimental setup used by Chamorro et al. (2013) to image the wake of 
a hydrokinetic turbine by Defocusing PIV. Bottom: sketch of the measurement volumes. Figure from 
Chamorro et al. (2013). Chamorro 2013 © Springer-Verlag Berlin Heidelberg 2013. With permission of 
Springer. 

Owing to image density issues (each particle results in three particle images) 

and to possible errors in the determination of the triangular patterns, the 

allowed particle concentration is rather limited in Defocusing PIV. Chamorro et 

al. used a 3-sensor arrangement, in which each of the three projections of the 

particles is recorded on a different sensor. Different optical arrangements have 

been proposed to overcome this issue: Lin et al. (2008) developed an annular-

aperture defocusing; Tsien et al (2008) used CCD colour cameras and placed 

different colour filters on each pinhole, with subsequent colour-coding of each 

particle in the triangle. The 3-camera arrangement used here has the advantage 

of reducing issues related to light intensity (typical of pinhole-based 

arrangements). Additionally, it allows an increase in the equivalent distance 

between the pinholes, thus improving the particle depth location accuracy 
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(Pereira & Gharib 2002). The particles are then identified on each sensor, 

located in 3D, and tracked in two subsequent exposures using a two-frame 

particle tracking scheme (Pereira et al. 2006). The final observation region is a 

volume of 120 × 140 × 60 mm3 (Figure 9), with each realization yielding 

approximately 12000 vectors. The randomly spaced vectors are interpolated on 

a structured grid with a Gaussian-weighted interpolation based on the distance 

between the vector locations and the points of the grid. The nodes spacing is set 

to 2 mm, while the mean distance between vectors in each realization is slightly 

larger than 4 mm. The absolute spatial uncertainty was estimated using 

particles glued to a stationary plate located within the measurement volume, i.e. 

under the same optical conditions as the experiment. This leads to estimates of 

4.8 mm/s or 2.5% of the freestream velocity in the wall-normal and streamwise 

directions, and 4 times larger in the spanwise direction. 

The 3D instantaneous distribution of vorticity due to the shedding of tip 

vortices is reported in Figure 10, with both isosurfaces and contours along two 

selected slices of the volume. The visualization allows quantification of the 

spacing between the tip vortices, dictated by the tip speed ratio. The wake 

growth is also clearly highlighted, depicting a complex flow field with changes of 

the local convection velocity, also due to the mean shear and the interaction 

between vortices. 

 

 

Figure 10 Tip vortices in the near-wake of the turbine imaged via Defocusing PIV by Chamorro et al. 
(2013). Vorticity isosurfaces at 𝜔𝑑 𝑈ℎ𝑢𝑏⁄ = 12 are shown in (a), while in (b) vorticity contours and vector 
field are shown along the shaded planes highlighted in (a). Figure from Chamorro et al. (2013). Chamorro 
2013 © Springer-Verlag Berlin Heidelberg 2013. With permission of Springer. 
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2.6 Light-field imaging 

Instead of recording the three-dimensional position of tracer particles, an 

alternative strategy is to reconstruct their light field information. This approach 

is followed by synthetic aperture PIV (SAPIV, Belden et al. 2010), which 

leverages synthetic aperture refocusing: an array of multiple cameras, looking at 

the same scene from slightly different viewpoints, simulates a lens of an 

arbitrary sized aperture (Vaish et al. 2005). This is used to capture the light 

field, i.e. the complete distribution of light in space. The latter can be described 

by the five-dimensional plenoptic function (Adelson & Bergen 1991), where each 

ray is parameterized by its position (three spatial coordinates) and direction of 

propagation (two angles). In a transparent medium the radiance remains 

constant along each light ray, reducing the light field to a 4D function (Levoy 

2006). To reconstruct the particle light field, images from all cameras are 

projected onto a focal surface in the scene, and recombined to yield a synthetic 

image. This process is repeated for an arbitrary number of focal planes, 

simulating a camera system with a narrow depth-of-field scanning through the 

light field. Particles away from the focal plane appear significantly blurred and 

can be removed by thresholding. The refocused images at various depths are 

stacked to build a 3D intensity volume, and standard cross-correlation 

procedures are used to determine the 3D-3C displacements. For sufficient 

separation between the centers of projection of the sensors in the array, some of 

the cameras can see particles which are occluded to others, producing a “see-

through” effect. This can be very beneficial in optically dense environments such 

as bubbly flows (Belden et al. 2012), or to image the flow around objects 

(Langley et al. 2014).  

Instead of using multiple cameras, another route to light field imaging is to 

use a plenoptic camera, i.e. a single sensor capable of measuring both position 

and angle of the light rays (Adelson & Wang 1992). In this device the main 

imaging lens focuses the entire angular distribution of light onto an array of 

microlenses, each covering a small number of pixels on the sensor. The 

microlenses capture the spatial information contained in the light field, while 

the pixels contained under the microlens record the angular distribution. This 

concept has been recently applied to obtain 3D PIV measurements (Fahringer et 

al. 2015, Shi et al. 2017), and enables volumetric imaging in applications with 

limited optical access and using a compact hardware setup. This promising 

approach is still in its infancy. While thus far the technique has been 

demonstrated using plenoptic cameras built in-house, recently commercial 

models have appeared. 

To illustrate important aspects of volumetric velocimetry based on light-field 

imaging, we consider the study by Mendelson & Techet (2015) who use SAPIV 

to investigate the 3D flow around (and the body kinematics of) a freely 

swimming fish. Experiments are conducted in a five-gallon tank filled up to a 

level of 160 mm, with the fish constrained to swim in the center portion of the 

tank. Illumination is provided by a 1000 W, 808 nm laser operated with a pulse 



22 
 

duration of 50 μs. Near-infrared light is an effective solution to image animals 

that respond to visible light (Adhikari & Longmire 2012a). To counteract the 

strong light attenuation in water, a surface mirror is placed at the end of the 

tank to reflect the beam back into the volume. The camera array consists of nine 

1.2 MP CCD cameras (Manta, Allied Vision Technologies) operated at 30 Hz, 

and is positioned to view through the side of the tank (Figure 11). The large 

number of cameras needed to reconstruct the light field is a signature feature of 

SAPIV. The parametric study of Belden et al. (2010) suggested an optimum 

between 10 and 13 cameras, which does increase the setup optomechanical 

complexity. On the other hand, high-quality scientific sensors are not necessary 

because the averaging process in the reconstruction effectively reduces the 

impact of camera noise; therefore lower-cost computer vision cameras can be 

used. Here each camera is equipped with a 35 mm Tamron lens set to f# = 5.6. 

Similar to other 3D optical imaging techniques, relatively high numerical 

aperture is required to keep the entire measurement volume (here 70 × 60 × 40 

mm3) in focus. The achievable seeding density in SAPIV is affected by the depth 

elongation of the volume, similarly to Tomographic PIV, LPT and Defocusing 

PIV. In this case the tank is seeded with 50 μm polyamide tracers to a density of 
230 particles/cm3, resulting in an image density of 0.03 ppp. According to the 

simulations of Belden et al. (2010), SAPIV can handle higher particle densities 

(up to 0.09 ppp for a (50 mm)3 imaged volume), although significantly lower 

concentrations have been demonstrated in experiments. For better 

reconstruction the particle images are artificially enlarged by convolving the raw 

images with a 3 × 3 pixel Gaussian kernel. As in other 3D PIV methods, the 

reconstruction is sensitive to background light and its distribution. Here spatial 

normalization is performed with a local min/max filter (10 × 10 pixel window). 

A sliding minimum is then subtracted to counteract possible background 

amplification caused by the normalization. 

 

 

Figure 11 Experiment setup for SAPIV measurements of a swimming fish. From Mendelson & Techet 
(2015). Mendelson 2015 © Springer-Verlag Berlin Heidelberg 2015. With permission of Springer. 
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The camera array is positioned 635 mm from the tank in a 3 × 3 

arrangement with 230 mm horizontal and 190 mm vertical spacing. The camera 

spacing and the distance from the front of the imaged volume determine the 

resolution in the depth direction, which is a linear function of the depth (Belden 

et al. 2010) and here is about 0.2 mm. 

The synthetic aperture refocusing process formalized by Belden et al. (2010) 

is based on the map-shift-average algorithm, in which the transformation for 

the various focal planes is reduced to a linear coordinate shift. In the present 

case (as in most PIV/PTV experiments), refractive interfaces are present and 

thus refractive SA refocusing is needed (Belden 2013). The camera array is 

mapped using a calibration procedure that compensates for refractive effects, 

which involves traversing and imaging a calibration plate through the 

investigated volume. The reconstruction becomes computationally intensive 

because back-projection through refractive interfaces involves an iterative step 

for each pixel to ensure Snell’s law is satisfied for each ray. Bajpayee & Techet 
(2017) recently proposed an alternative approach based on a highly 

parallelizable fit algorithm, applicable if all refractive interfaces are planar. 

In SAPIV the image recombination in the refocusing process can be additive 

(Belden et al. 2010, Langley et al. 2014) or multiplicative (Belden et al. 2012). 

The latter is essentially analogous to line-of-sight reconstruction techniques 

used in Tomographic PIV (Atkinson & Soria 2009, Maas et al. 2009), and 

enhances the SNR of the refocused images. However, it requires successful 

imaging of the particles by all cameras. Here the fish body hides important 

regions in its vicinity, and the additive method is adopted. The final 

interrogation window size of the 3D cross-correlation is 64 × 64 × 16 pixels in X, 

Y, and Z directions, respectively (see Figure 11). The interrogation volume is 

sized such that the three dimensions are of similar physical size. With a 50% 

overlap the final vector spacing is 1.85 mm in X and Y and 1.60 mm in Z. 

Swimming kinematics are evaluated by tracking reference points on the fish 

body such as eyes, fin-body junction, and tips of the caudal fin. Masking of the 

fish is performed using the visual hull method (Adhikari & Longmire 2012b). 

Compared to Tomographic PIV applications (e.g., Murphy et al. 2013, Adhikari 

et al. 2016), the visual hull reconstruction in SAPIV benefits from the large 

number of views, reducing the overestimation of the body volume. This is 

especially important when imaging slender features such as fins or wings, as 

also shown in the free-flying butterfly measurements of Langley et al. (2014). 

Figure 12 shows velocity and vorticity fields from two perspectives at three 

time steps during and after a turn executed by the fish. The thrust jet and vortex 

ring coming off the caudal fin can be clearly identified, along with the motion of 

the caudal fin indicated by the trajectory of its two tips. 
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Figure 12 Wake during and after a 75° turn executed by a freely swimming fish imaged by SAPIV. Both 
rows show different viewpoints. Slices extracted from the imaged volume through the caudal fin and 
below the fish body (cyan hull) show vorticity contours and in-plane velocity vectors. The solid orange 
traces are the path of the two caudal fin tips. From Mendelson & Techet (2015). Mendelson 2015 © 
Springer-Verlag Berlin Heidelberg 2015. With permission of Springer. 

2.7 Magnetic Resonance Velocimetry 

Magnetic Resonance Velocimetry (MRV) is an application of Magnetic 

Resonance Imaging (MRI). MRI allows the spatial reconstruction of an object 

by manipulating nuclear “spins” exhibited by atoms with an odd number of 
protons or neutrons. A constant magnetic field causes the spins to align with it 

while precessing at a frequency proportional to the field strength. The spins are 

then perturbed away from the alignment direction by the application of radio 

frequency (RF) pulses. After each RF excitation, the spins return to equilibrium 

emitting a complex electromagnetic signal which is the Fourier transform of 

their density distribution, and is acquired by a coil surrounding the object under 

investigation. Spatial localization is obtained applying linear magnetic field 

gradients along the three spatial directions, with spins at different locations 

contributing different frequencies to the signal. The gradients are applied 

sequentially and the excitation/acquisition cycle is repeated. A row of the 3D 

data matrix in Fourier space is generated at each repetition, and a Fourier anti-

transformation returns the volumetric image in physical space. 

When imaging fluid flows, quantitative assessment of local velocity can be 

obtained from the phase shift in the MR signal created by the spin motion along 

a magnetic field gradient. However, since MRI reconstruction is carried out in 

Fourier space, the acquired velocity field is usually not a “snapshot”. Based on 
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the desired resolution, a potentially large number of sequence repetitions are 

needed to fill the data matrix in Fourier space. Moreover, one velocity 

component is measured per sequence execution. The acquisition time is 

ultimately proportional to the number of voxels, and for 3D-3C velocimetry it 

may amount to several tens of minutes. Therefore, the measured velocity field is 

either the temporal average of a steady flow or a phase-locked average of a 

periodic flow. Even though instantaneous measurements are not achievable, 

Reynolds stresses can be estimated leveraging turbulent de-phasing, i.e. the 

signal attenuation due to random motions in turbulent flows (Elkins et al. 

2009). In most fluid mechanics applications the working fluid is water, often 

doped with contrast agents which increase the rate at which the magnetization 

returns to equilibrium, increasing the signal intensity. The method described 

above, often referred to as phase-contrast MRI, is the most commonly used in 

fluid mechanics applications. Other methods include spin-tagging, which 

involves tracking a material volume of fluid to estimate its velocity via a time-of-

flight approach. For details on MRI-based velocimetry, the reader is referred to 

reviews from Pelc et al. (1994), Fukushima (1999), Elkins & Alley (2007) and 

Markl et al. (2012). 

MRV allows the measurement of volumetric, three-component velocity fields 

without the need for optical access, and is therefore well suited to investigate 

internal flows in complex geometries in biomedical settings. As an example, we 

consider the study of the pulsatile flow in a model of giant cerebral aneurysm 

recently carried out by Amili et al. (2017). The aneurysm geometry (Figure 13) 

was first investigated by Cebral et al. (2011) and later used in the ASME 2012 

CFD challenge (Steinman et al. 2013). The inlet vessel diameter is 

approximately 5.6 mm, and the maximum dimension in the aneurysm sac is 

approximately 26 mm. To increase the relative spatial resolution, the original 

geometry is scaled up by a factor of 2.0. The model is manufactured by 3D 

printing with a wall thickness of 3 mm. High resolution stereo-lithography with 

25 µm layers of WaterShed (a resin often used in additive manufacturing) 

guarantees hydro-dynamically smooth walls. The physiological Reynolds 

number (Re) and Womersley number (Wo) are matched by adjusting the flow 

velocity, fluid viscosity, and waveform period. Beside spatial resolution, the 

increase in physical dimension has the additional advantage of extending (for a 

given Wo) the duration of the waveform period, which for this in vitro 

experiment is 7.9 s (compared to the in vivo period of 1 s). This significantly 

relaxes the constraint on the temporal resolution of the cycle. The patient-

specific waveform is imposed by a computer-controlled cardiac pump, and a 

combination of flow resistors and capacitance module in the flow loop mimics 

the impedance of the arterial bed through the standard windkessel boundary 

conditions (Westerhof et al. 2009). The working fluid is a mixture of water with 

25% of glycerine by weight, doped with 0.06 mol/L of copper sulfate to increase 

contrast. The low copper sulfate concentration does not to appreciably alter the 

properties of the mixture, see Benson (2011). Other contrast agents such as 
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Gadolinium can be used (Elkins et al. 2009), but are more expensive. The 

addition of glycerine has the purpose of enhancing the fluid viscosity (about 2 

cSt in the present experiment) and so increase the flow rate at a given Re, 

resulting in velocities well above the noise floor (about 5 mm/s for standard 

MRV parameters). However, glycerine reduces the signal intensity and therefore 

concentrations above 50% are to be avoided. To avoid interference with the 

strong magnetic field, all parts of the test section and the flow loop in the 

vicinity of the magnet are non-ferromagnetic. The plastic tubes through which 

the fluid circulates run through waveguides communicating with an adjacent 

control room, where the pump, flowmeter and other ferromagnetic components 

are housed. 

 

Figure 13 Geometry of the giant aneurysm (left), and 3D-printed scaled-up model filled with water-
glycerol mixture infused with copper sulfate (right). The arrows indicate the flow direction. From Amili et 
al. (2017). Reproduced with permission from Amili. 

The measurements are performed using a 3 Tesla Siemens MRI scanner with 

a head/neck receiver coil normally used to image the human head. Here the 

spatial resolution is 0.6×0.6×0.6 mm3 over a field of view 230×71×76 mm3. The 

signal increases linearly with the volume of the voxels, and therefore this is a 

trade-off to obtain sufficiently high resolution without excessively penalizing the 

accuracy. 3 T scanners are the present standard in MRV studies, due to the 

balance between high signal (that increases with magnetic field strength) and 

field homogeneity. 7 T scanners can provide higher resolution (e.g., Cherry et al. 

2008 obtained 0.4 mm in all directions), but distortions might arise that need 

to be corrected for. Phase-locked volumetric flow fields are acquired for 16 

segments of the cardiac cycle using the sequence from Markl et al. (2012). To 

reconstruct the temporal evolution of the flow field, different parts of the 

Fourier-space data matrix are sampled in different acquisitions corresponding 

to each phase, and are afterward recomposed in physical space-time, as 

described in Markl et al. (2003). In order to synchronize the measurements with 

the waveform phases, the signal from the cardiac pump is used to gate the MRI 

acquisition. This approach allows reconstructing also flows for which the period 

is not known a priori, although this requires advanced triggering strategies 

(Wassermann et al. 2013). In principle, the total measurement time increases 
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linearly with the number of acquired phases, but this can be reduced using 

parallel acquisition techniques such as the Generalized Autocalibrated Partially 

Parallel Acquisition (GRAPPA, Griswold et al. 2002). This is used in the 

considered experiment, and the total scan time is approximately 2.5 hours 

corresponding to 560 cardiac cycles. 

The uncertainty is estimated according to Pelc et al. (1994) and is 

approximately 7% of the cycle-averaged bulk velocity at the inlet, 𝑈𝑖𝑛. The main 

factor in this estimate is the SNR, defined as the ratio of the mean MR signal 

inside the flow region to the standard deviation of the MR signal outside of it. 

The SNR increases by a factor √N when averaging N scans (Haacke et al. 1991). 

In this case two scans are averaged leading to a final SNR of approximately 80. 

Other methods to estimate the uncertainty have recently been proposed by 

Bruschewski et al. (2016) and their value needs to be appreciated in the future. 

Also, the accuracy typically decreases adjacent to the wall due to the possibility 

that a voxel intersects the solid boundary (partial volume effect). This is 

especially problematic in studies that aim to evaluate, even qualitatively, the 

wall shear stress distribution, which is a key factor for example in 

cardiovascular biomechanics. An important step is to carefully mask the flow 

volume. Here the wall position is determined using an SNR threshold of 8.5, in 

line with the common choice of using a value one order of magnitude lower than 

in the fluid region (e.g., Coletti et al. 2014). The reconstructed wall surface is 

dilated and eroded by one voxel to remove potential artefacts at the boundaries.  

In order to eliminate systematic spatial variations in the velocity field due to 

an imperfect coil response, flow-off scans (with the fluid at rest) are performed 

with identical acquisition parameters as in the flow-on scans. A polynomial 

regression is used to fit each velocity component measured during flow-off, and 

is subtracted from the flow-on velocity field at each phase (Jalal et al. 2016). For 

these measurements, the flow-off velocity is everywhere less than 1% of 𝑈𝑖𝑛. An 

outlier detection method inspired by Westerweel & Scarano (2005) is applied to 

the velocity field at each phase. This version of the method is based on the local 

median of the velocity and uses a varying threshold which is function of the local 

MR signal. Rejected vectors are then replaced with the median of the 

neighbouring vectors. In addition, a standard 3×3×3 median filter is applied, 

followed by a solenoidal filter to ensure local continuity (Schiavazzi et al. 2014). 

Altogether, these filtering techniques produce changes smaller than 10% of the 

unfiltered data at all points in the flow volume. This post-treatment steps are 

especially useful to evaluate derived quantities, and in particular: the pressure 

field, which in this case is obtained by integrating the Poisson equation 

(Schiavazzi et al. 2017); and the wall shear stress, which is obtained from the dot 

product of the vorticity vector adjacent to the wall and the local wall-normal 

vector. For considerations on the accuracy of these quantities for the present 

data set, see Amili et al. (2017). 

Figure 14 illustrates the evolution of the flow pattern in the aneurysm sac, 

depicting the isosurface of velocity magnitude at a threshold level of 1.5·𝑈𝑖𝑛, 
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along with the corresponding streamlines for five cardiac phases. The 

streamlines show an helicoidal flow at the inlet due to the curvature of the 

parent artery. The stenosis before the aneurysm neck accelerates the flow before 

entering the aneurysm sac. The resulting jet reaches the apex of the aneurysm 

dome, impinges on the distal wall and rolls up. A large vortical structure is 

present in the sac during the entire duration of the cardiac cycle, and appears 

more intense at the diastolic and systolic peaks. 

 

Figure 14 Pulsatile flow field measured by MRV in a giant intracranial aneurysm. Isosurfaces of high 
velocity magnitude (left) and streamlines colored by velocity magnitude (middle) for different phases of 
the cardiac cycle (indicated on the right). Adapted by Amili et al. (2017). Reproduced with permission 
from Amili.  
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3. Discussion 

3.1 Classification of optical 3D techniques: reconstruction and 

motion analysis 

As evident from the previous section, the majority of the 3D techniques used 

by the fluid mechanics community are based on optical imaging of tracer 

particles. For such methods, the velocimetry follows two distinct steps: (i) the 

reconstruction of the scene, and (ii) its motion analysis. Based on the first step 

and considering only full-volume illumination, we can distinguish between: 

 

 Particles-based reconstruction: the extraction of the 3D information is 

feature-oriented, i.e. it involves the detection and localization (and 

sometime sizing) of individual tracer particles. Lagrangian Particle 

Tracking and Defocusing PIV fit in this category. 

 

 Light-field-based reconstruction: the light field distribution is 

reconstructed using the light propagation direction (Light-field PIV), 

phase information (Holographic PIV), or intensity back-projection 

(Tomographic PIV). 

 

The distinction between the different approaches for the velocity extraction 

is much blurrier. In several cases, the same reconstructed 3D field can be used 

either to extract Eulerian velocities over a grid (e.g. by cross-correlation), or to 

follow Lagrangian trajectories. For example, Soria & Atkinson (2008) proposed 

to measure reconstructed fields from Holographic PIV recordings, but 

interrogating them via 3D cross-correlation as in Tomographic PIV. Similarly, 

the Tomographic PTV approach by Novara & Scarano (2013) included a 

reconstruction based on back-projection as in Tomographic PIV, but evaluated 

the velocity by tracking particle locations as in LPT. Hybridization is an 

increasingly diffused trend in volumetric velocimetry, motivated by the need of 

maximizing accuracy and resolution in different situations, and by the wish of 

combining advantages from different approaches. 

The accurate reconstruction is, of course, a prerequisite for the successful 

motion analysis. In particle-based methods, there is a limit to the maximum 

concentration of tracers that can be imaged and reconstructed without 

ambiguity. In turn, this poses a limit to the achievable spatial resolution in the 

motion analysis – a constraint which is much stronger in volumetric than in 

planar velocimetry. The prevalence of 2D PIV over 2D PTV in the last decades is 

rooted in the robustness of the cross-correlation operator applied to relatively 

dense particle fields, as compared to pairing of individual particle images in 

sparse fields. In 3D imaging, on the other hand, a Lagrangian approach can take 

full advantage of the temporal information, since most tracers remain in the 

reconstructed volume through successive time steps, thus enabling predictor-

corrector schemes. Indeed, the latest developments indicate that the highest 
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performance is obtained by 3D tracking applied to tomographic recordings 

(Schanz et al. 2016, Schneiders & Scarano 2016). We elaborate on the 

techniques’ performance in the next subsection. In general, it seems plausible 
that in the future the distinction among techniques will remain clear only in 

terms of reconstruction approach; the motion analysis seems increasingly 

oriented towards Lagrangian frameworks, at least for particle-based techniques 

that admit time-resolved implementation. 

3.2 Dynamic Spatial Range 

The Dynamic Spatial Range (DSR) defines the achievable spatial resolution 

for a given measurement domain and, along with the accuracy, is the prime 

metric of velocimetry performance. In PIV/PTV, the DSR is classically defined 

as the ratio between the linear dimension of the field of view and the maximum 

allowable particle displacement (Adrian 1997, Westerweel et al. 2013). Here we 

follow Kähler et al. (2012a) and use an essentially analogous definition (also 

suggested by Raffel et al. 2007): 

 

 𝐷𝑆𝑅 = 𝐷𝑑  (3) 

 

where 𝐷 is the largest measurable scale (of the order of the largest side of the 

measurement volume), and 𝑑 is the smallest resolved scale. This allows us to 

extend the definition to all considered techniques: d will be the interrogation 

spot size in cross-correlation algorithms, a function of the average inter-particle 

distance in tracking algorithms, or the spacing of the 3D data matrix in MRI. 

Still, the following considerations are primary applicable to particle-based 

approaches that provide instantaneous realizations (although extensions to 

ensemble-averaged measurements are later discussed). We note that Eq. (3) 

represents a best-case scenario, as it assumes measurement noise mostly 

limited to scales smaller than the resolved ones (e.g., the interrogation window 

for PIV); in practice, the cut-off length scale is typically larger (Foucaut et al. 

2004, Atkinson et al. 2014). 

When designing a volumetric measurement, the experimentalist can choose 

the values of a relatively small set of parameters, each impacting significantly 

the final resolution: the measurement volume size Δ𝑥0 × Δ𝑦0 × Δ𝑧0 (z indicating 

the depth coordinate); the imaging resolution (expressed in pixels per unit 

length, through the magnification 𝑀0 and pixel pitch 𝑑𝑝); the particle 

concentration 𝐶 = 𝑁𝑝 (Δ𝑥0Δ𝑦0Δ𝑧0)⁄ , 𝑁𝑝 being the total number of particles 

imaged in the volume; and the size of the imaging sensor 𝐿𝑋 × 𝐿𝑌 (of course 

dictated by the available technology). Observing that some of these parameters 

are not independent (e.g., 𝐿𝑌/𝐿𝑋 depends on Δ𝑥0/Δ𝑦0 through the sensor 

resolution), on dimensional grounds we define three main parameters groups: 

the number of particles 𝑁𝐼 contained in a cube of side 𝑑; the aspect ratio of the 

imaging volume 𝐴𝑅 = Δ𝑥0 Δ𝑧0⁄  (assuming, without loss of generality, that Δ𝑥0 
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and Δ𝑧0 are the largest and smallest dimensions, respectively); and DSR = 𝐷/𝑑. 

Let us now derive an operative expression for DSR as a function of 𝑁𝐼 and 𝐴𝑅. 

Assuming a volume discretization with unit ratio between the size of the 

pixel projection and the voxel element, the volume size in voxels is [Δ𝑥0 × Δ𝑦0 ×Δ𝑧0] ⋅ (𝑀0𝑑𝑝)3 = [Δ𝑋0 × Δ𝑌0 × Δ𝑍0]. Suppose for simplicity the volume has a square 

cross-section, i.e. Δ𝑋0 = Δ𝑌0 = 𝐿, which is also the linear dimension of the 

camera sensor (also supposed square, 𝐿𝑋 = 𝐿𝑌 = 𝐿) expressed in pixels. The 

particles concentration can be related to the image density through: 

 

 𝐶 = 𝑁𝑝Δ𝑥0Δ𝑦0Δ𝑧0 = 𝑁𝑝Δ𝑋0Δ𝑌0Δ𝑧0 𝑀02𝑑𝑝2 = 𝑁𝑝𝑝𝑝 𝑀02Δ𝑧0𝑑𝑝2 (4) 

 𝑁𝑝𝑝𝑝 being the particle image density in particles per pixel. Taking 𝑑 as the 

interrogation spot size (for cross-correlation approaches), we can write: 

 

 𝑑 = √𝑁𝐼 𝐶3
 (5) 

 

Considering that the maximum linear extension of the measurement volume is 𝐷 = 𝑙/𝑀0 (with 𝑙 = 𝑑𝑝𝐿 being the physical size of the sensor), by substituting Eq. 

(4) and Eq. (5) in Eq. (3) we have: 

 

 𝐷𝑆𝑅 = 𝑑𝑝𝐿𝑀0  √𝑁𝑝𝑝𝑝𝑀02𝑁𝐼Δ𝑧0𝑑𝑝23 = √𝑁𝑝𝑝𝑝𝑑𝑝𝐿3𝑁𝐼Δ𝑧0𝑀03 = √𝑁𝑝𝑝𝑝𝐿2𝐴𝑅𝑁𝐼3
 (6) 

 𝑁𝑝𝑝𝑝𝐿2 is simply the total number of particles detected by the sensor. This is 

related to the number of reconstructed particles, but a univocal correspondence 

is prevented by both undetected and ghost particles. These can be a significant 

fraction of the total depending on the technique and experimental conditions 

(although latest developments indicate dramatic improvements, see Kähler et 

al. 2016, Schanz et al. 2016). Therefore, we have left 𝑁𝑝𝑝𝑝 and 𝑁𝐼 as independent 

parameters. 𝑁𝐼 plays the role of a parameter related to the desired robustness of 

the 3D cross-correlation, although the expression is applicable also to particle-

tracking: for example, taking 𝑑 as twice the mean inter-particle distance is 

equivalent to setting 𝑁𝐼 =  8 (close to the lower limit for reliable 3D cross-

correlation). Equation (6) underlines, for optical techniques, the decrease in 

effective resolution as the volume aspect ratio approaches unity. A low AR (i.e., 

a comparable extension of the volume in all directions) is an important factor to 

capture truly three-dimensional flows, although thin volumes may be sufficient 

to describe flows with at least one statistically homogeneous direction. In Figure 

15 the DSR of several volumetric velocimetry studies (listed in Table 1) is 
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compared with Eq. (6). The latter is shown to capture the trend, and may be 

used as a practical estimate in the experiment design phase. 

 

Figure 15 Dynamic Spatial Range and inverse volume aspect ratio for the applications reported in Table 
1. The DSR estimated via Eq. (6) is shown (lines), assuming 𝑁𝐼 = 10 and 𝐿 = 103 pixels, and for 
different values of 𝑁𝑝𝑝𝑝. 

Techniques based on particle imaging are capable of capturing instantaneous 

snapshots of the 3D flow. In MRV, on the other hand, the measurement is the 

result of either ensemble or phase-locked average (for periodic flows). Allowing 

for long acquisition times leads to increase in SNR (Elkins & Alley 2007), which 

for a desired level of accuracy determines the spatial resolution, leading to high 

DSR on the mean flow. MRV spatial resolution typically ranges from 0.4 mm to 

1 mm, over volumes often exceeding 20 cm of maximum extension (Cherry et al. 

2008, Grundmann et al. 2012, Coletti et al. 2013a, Freudenhammer et al. 2014, 

Ryan et al. 2016). 

Even optical techniques can be applied in a similar fashion, i.e. focusing only 

on ensemble-averaged statistics from the entire time series, with consequent 

improvement in resolution. In 2D imaging, this strategy has been implemented 

for both PIV (Westerweel et al. 2004) and PTV (Cowen and Monismith 1997, 

Kähler et al. 2012b), with resolutions theoretically limited by the particle image 

size and particle location accuracy, respectively. The latter approach has been 

recently extended to volumetric measurements by Agüera et al. (2016) who 

reached DSR = 42 using interrogation windows of (24 pixel)3 on a dataset of 

49000 snapshots. This resolution was chosen to obtain accurate Reynolds 

stresses; (8 pixel)3 would be sufficient for reliable mean velocity, yielding DSR = 

126. 
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Table 1 List of the applications included in Figure 15. CC indicates reconstruction based on cross-
correlation, and LSM on least-square method. PT stands for particle tracking,  

 Technique Application Fluid 
Volume 𝚫𝒙 × 𝚫𝒚 × 𝚫𝒛 [𝒎𝒎] 

(full size in 𝒄𝒎𝟑) 

Brücker (1995) 
Scanning PIV + 2D 

CC 
Cylinder wake Water 

66 × 44 × 45 (130.7) 

Hori & Sakakibara 
(2004) 

Scanning Stereo-PIV 
+ 2D CC 

Laminar jet Water 
100 × 100 × 100 (1000.0) 

David et al (2012) 
Scanning Tomo-PIV + 

3D CC 
Flapping wing Water 

185 × 140 × 83 (2149.7) 

Brücker et al (2013) 
Scanning PIV + 3D 

LSM 
Ring vortex Water 

75 × 75 × 50 (281.2) 

Casey et al (2013) 
Scanning Tomo-PIV + 

3D CC 
Turbulent jet Water 

100 × 100 × 100 (1000.0) 

Lawson & Dawson 
(2014) 

Scanning Tomo-PIV + 
3D CC 

Von Karman flow Water 
125.5 × 123.4 × 23.5 (363.9) 

Sun & Brücker (2017) 
Scanning Tomo-PIV + 

3D CC 
Ring vortex Water 

70 × 52 × 50 (182.0) 

     

Elsinga et al (2006) Tomo-PIV Cylinder wake Water 40 × 40 × 10 (16.0) 
Hain et al (2008) Tomo-PIV Finite cylinder Water 70 × 51.2 × 12 (43.0) 

Atkinson et al (2011) Tomo-PIV 
Turbulent 

boundary layer 
Air 

60 × 60 × 9 (32.4) 

Buchmann et al (2011) Tomo-PIV 
Carotid arthery 

bifurcation 
Glycerin 
+ water 

22 × 24 × 13 (6.9) 

Ghaemi & Scarano 
(2011) 

Tomo-PIV Trailing edge Air 
47 × 47 × 8 (17.7) 

Kühn et al (2011) Tomo-PIV Convection cell Air 750 × 450 × 165 (55687.5) 
Buchner et al (2012) Tomo-PIV Pitching plate Water 85 × 120 × 12 (122.4) 

Violato & Scarano 
(2013) 

Tomo-PIV Transitional jet Water 
33 × 100 × 33 (108.9) 

Ceglia et al (2014) Tomo-PIV 
Turbulent swirling 

jet 
Water 

128 × 128 × 46 (735.7) 

Cafiero et al (2015) Tomo-PIV 
Jet with fractal 

grids 
Air 

30 × 30 × 9 (8.1) 

Caridi et al (2016) Tomo-PIV 
Vertical axis wind 

turbine 
Air 

400 × 200 × 150 (12000.0) 

Jodai & Elsinga (2016) Tomo-PIV 
Turbulent 

boundary layer 
Water 

60 × 55 × 14.5 (47.9) 

     
Troolin & Longmire 

(2010) 
DDPIV + PT Vortex rings Water 

140 × 140 × 120 (2352) 

Chamorro et al (2013) DDPIV + PT 
Axial-flow 

hydrokinetic 
turbine 

Water 
120 × 140 × 60 (1008) 

Kim et al (2013) DDPIV + PT Clapping plates Water 160 × 160 × 160 (4096) 
Bartol et al (2016) DDPIV + PT Swimming squid Water 140 × 140 × 100 (1960) 

Boushaki et al (2017) DDPIV + PT 
Turbulent swirling 

jet 
Air 

50 × 50 × 22 (55) 

     

Lüthi et al (2005) Triangulation + LPT 
Homogeneous 

isotropic 
turbulence 

Water 
20 × 15 × 15 (4.5) 

Ouellette et al (2006) Triangulation + LPT Von Karman flow Water 50 × 50 × 50 (125) 

Holzner et al (2008) 
Scanning 

triangulation + LPT 
Turbulent/non-

turbulent interface 
Water 

20 × 20 × 15 (6) 

Schröder et al (2015) Shake-the-box Periodic hill Water 90 × 94 × 20 (169.2) 
Neeteson et al (2016) Shake-the-box Free-falling sphere Water 80 × 68 × 80 (435.2) 

     

Belden et al (2010) 
Synthetic aperture 

PIV + 3D CC 
Vortex ring Water 

40 × 65 × 32 (83.2) 

Langley et al (2014) 
Synthetic aperture 

PIV + 3D CC 
Flapping wing Water 

248 × 48 × 28 (333.3) 

Mendelson & Techet 
(2015) 

Synthetic aperture 
PIV + 3D CC 

Swimming fish Water 
70 × 60 × 40 (168) 

Fahringer et al (2015) 
Plenoptic PIV + 3D 

CC 
Cylinder wake Water 

40 × 26.7 × 20 (21.4) 

     

Meng et al (2004) Digital Holo-PIV + PT Cylinder wake Water 6.86 × 6.86 × 25.4 (1.2) 

Sheng et al (2008) Digital Holo-PIV + PT 
Smooth channel 

flow 
Water 

1.5 × 1.5 × 2.5 (5.6 ⋅ 10−3) 

Talapatra & Katz (2012) Digital Holo-PIV + PT 
Rough channel 

flow 
NaI + 
water 

3.1 × 2.1 × 1.8 (11.7 ⋅ 10−3) 

Toloui et al (2017) Digital Holo-PIV + PT 
Rough channel 

flow 
NaI + 
water 

14.7 × 14.4 × 50 (10.6) 
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In the above we have not explicitly addressed the Dynamic Velocity Range 

(DVR), i.e. the ratio of the maximum measurable velocity to the expected error. 

The question of the uncertainty is a subject of great scrutiny in the planar 

velocimetry community (Kähler et al. 2012b, Charonko & Vlachos 2013, 

Sciacchitano et al. 2015, Wieneke 2015). There have been studies focused on 

accuracy of volumetric velocimetry in specific cases, e.g. turbulent boundary 

layer measurements by Tomographic PIV (Atkinson et al. 2011) and 

Tomographic PTV (Schneiders et al. 2017), and comparisons between MRI and 

2D PIV for specific configurations (Elkins et al. 2009, Coletti et al. 2013a, Töger 

et al. 2016). However, the systematic assessment of uncertainty of volumetric 

techniques is still in its infancy and will likely be a topic of high significance as 

the tools gain widespread use. 

3.3 Evolution and technological trends 

Ultimately, Eq. (6) underscores how, for a given set of experimental 

parameters, the resolution of particle-based volumetric velocimetry is strictly 

dependent on sensor size and particle image density. The available camera size 

has increased steadily but slowly in the last decades, although 29 Megapixel 

cameras are now available (a significant improvement from the 14 Megapixels 

mentioned by Westerweel et al. 2013). As for particle image density, the latest 

achievements in Tomographic PIV and LPT have shown successful 

reconstructions above 0.1 ppp. Since particles need be distinguishable to 

achieve sub-pixel location accuracy, much higher densities seem unlikely with 

the present sensor designs. However, such values already enable resolving fine-

scale quantities such as dissipation and vorticity in laboratory flows at relatively 

high Reynolds numbers (Schröder et al. 2015, Schneiders et al. 2017). Assuming 

an appropriate uncertainty assessment establishes the validity of these new 

approaches in a wide variety of configurations, such a transformative capability 

may open previously unthinkable scenarios, and benefit the experimental and 

computational communities alike. In fact, as of today, the advancements in our 

understanding of fundamental fluid mechanics brought by volumetric 

velocimetry have not been proportioned to the enabled capabilities. As these 

become more widely available and robustly verified, much greater progresses 

are expected. We barely started reaping the fruits, and the present day 

resembles the explosion of high-speed imaging that allowed LPT to break 

grounds in fundamental turbulence since the early 2000s (Voth et al. 2002). 

The apparent benefits of time-resolved recordings in 3D particle velocimetry 

brings forward a possibly more stringent constraint than the sensor size: data 

rate. Presently kHz acquisitions are limited to 4-Megapixel cameras, and 

significant technological advancements are needed to push the envelope further. 

Efficient data storage also becomes necessary, and compression strategies (e.g., 

saving only particle locations and features instead of full images, as proposed by 

Chan et al. 2007) are likely to become routinely adopted to increase the 

recording duration. 
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These considerations go along with the increasing capability of probing 

spatio-temporal fields enabled by high-speed volumetric velocimetry. Figure 16 

illustrates, for a number of techniques (see applications list in Table 2), the 

recent trend in terms of measured velocity vectors per physical unit time (e.g.: a 

field of 100 vectors sampled at 1 kHz amounts to 105 vector/s). We assume no 

window overlap and do not include measurements obtained in pulse-burst 

mode. After a steady growth, the vector data rate of time-resolved 2D PIV has 

reached a plateau, surpassed by the latest implementation of Tomographic PIV, 

LPT, and Holographic PIV. This progress has been (and will continue to be) 

sustained not only by improved measurement techniques, but also by advances 

in data capturing, transferring, and storing. 

With the increase of data sizes, efficient algorithms for reconstruction and 

motion analysis are increasingly important, and have long been recognized as a 

priority, e.g. in Tomographic PIV (Atkinson & Soria 2009, Discetti & Astarita 

2012b, Lynch & Scarano 2015) and even more in MRI, where the compressed 

sensing paradigm is regularly used even in the acquisition step (Lustig et al. 

2007, Gamper et al. 2008). Still, the number of operations required to process 

large data sets is unavoidably large. Therefore, GPU implementations may 

become the standard, and have already been adopted by several groups 

(Champagnat et al. 2014, Toloui et al. 2017, Bajpayee & Techet 2017). 

Historically, parallel computing has been minimally exploited by the 

experimental fluid mechanics community compared to its numerical 

counterpart. This might change if the recent and future advances are to be fully 

exploited. We remark that the increase in spatio-temporal resolution, and 

consequently of the amount of data, is evident both in optical and medical 

imaging. For example, in MRI the goal of reaching sufficient resolution to study 

in vivo hemodynamics and functional brain activity drives a continuous push 

for higher magnetic field strength (now exceeding 10 T in full-body scanners, 

Ertürk et al. 2017). 

 

Figure 16 Historical trend of measured velocity vectors per physical unit time. Selected applications listed 
in Table 2.  
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Table 2 Panel of applications included in Figure 16. TR stands for Time-Resolved. 

 Technique Application Fluid 
Sung & Yoo (2001) TR-PIV Cylinder wake Water 

Van Doorne et al (2003) TR-PIV Pipe flow Water 
Druault et al (2005) TR-PIV IC engine Air 

Fore et al (2005) TR-PIV Wall-Mounted cube Water 
Troolin et al (2006) TR-PIV Gurney flap Air 

Ganapathisubramani et al (2007) TR-PIV Turbulent jet Air 
Wernet (2007) TR-PIV Jet flow Air 

Hain et al (2008) TR-PIV Finite cylinder Water 
Falchi & Romano (2009) TR-PIV Turbulent jet Water 
Scarano & Moore (2012) TR-PIV Trailing edge flow Air 

Oxlade et al (2012) TR-PIV Grid turbulence Air 
Coletti et al (2013b) TR-PIV Ribbed channel Air 
Immer et al (2016) TR-PIV Cavity flow Air 

Lian et al (2017) TR-PIV Homogeneous turbulence Air 
    

Schröder et al (2011) TR Tomo-PIV Turbulent boundary layer Water 
Probsting et al (2013) TR Tomo-PIV Turbulent boundary layer Air 

Ghaemi & Scarano (2013) TR Tomo-PIV Turbulent boundary layer Air 
Violato & Scarano (2013) TR Tomo-PIV Jet flow Water 

Probsting et al (2015) TR Tomo-PIV Trailing edge Air 
Zhang et al (2015) TR Tomo-PIV Channel flow Water 

Jodai & Elsinga (2016) TR Tomo-PIV Turbulent boundary layer Water 
    

Lüthi et al (2005) LPT Homogeneous turbulence Air 
Holzner et al (2008) LPT Turbulent/non-turbulent interface Air 
Schröder et al (2015) Shake-the-box Periodic hill Water 
Schanz et al (2016) Shake-the-box Transitional jet Water 

Schröder et al (2016) Shake-the-box Turbulent boundary layer Air 
Neeteson et al (2016) Shake-the-box Free falling sphere Water 

Schneiders et al (2016) Tomo-PTV Finite cylinder Air 
    

Toloui et al (2017) Digital Holo-PIV + PT Rough channel flow NaI+Water 

 

3.4 Combination with flow-governing equations  

An inherent advantage of measuring the complete flow field (i.e. time-

resolved 3D-3C velocity distributions that ideally captures all relevant scales) is 

the possibility of leveraging the flow-governing equations, e.g. momentum and 

mass conservation. In particular, in incompressible flows, continuity can be 

used to eliminate the spurious velocity divergence. This is often referred to as 

solenoidal filtering, and several strategies have recently been proposed and 

demonstrated in both aerodynamic and biomedical settings (de Silva et al. 2013, 

Busch et al. 2013, Schiavazzi et al. 2014, Azijli & Dwight 2015, Wang et al. 2017). 

Techniques have also been proposed to fill spatial gaps left by non-valid (or 

non-reliable) measurements using an incompressible finite volume Navier–
Stokes solver (Sciacchitano et al. 2012). Moreover, the effective spatio-temporal 

resolution can be effectively enhanced by using the measurements as initial 

condition to the vorticity transport equation (Schneiders et al. 2014, Schneiders 

& Scarano 2016). 

Additionally, the forces experienced by an object immersed in a fluid (such 

as lift and drag) can be determined from its reaction on the flow via a control 

volume approach. This strategy has long been applied in planar PIV, for 

example for the flow around 2D airfoils and cylinders (van Oudheusden et al. 

2007), and the availability of volumetric data enables its application to 3D 

configurations (Terra et al. 2017). Recently, high-resolution LPT has enabled the 

measurement of the drag on a falling sphere by direct integration of the 



37 
 

pressure (obtained from the fluid velocity via a fully Lagrangian approach) 

along the body surface (Neeteson et al. 2016). 

One of the most appealing possibilities offered by the measurement of the 

complete flow field is the evaluation of the pressure distribution itself, which in 

incompressible flows is the only remaining unknown of the Navier-Stokes 

equations. Several approaches are possible, both for the calculation of the 

material derivative (in a Lagrangian or Eulerian frame of reference) and for the 

computation of the pressure field (by spatial integration of the pressure gradient 

or solution of the associated Poisson equation); see the detailed review by van 

Oudheusden (2013). These methods can be extended to compressible flows, 

eliminating the density by combining the momentum and energy equations (van 

Oudheusden et al. 2007). The recent improvements in performance of high-

speed Tomographic PIV and LPT have led to a surge in refined methodologies to 

obtain the unsteady pressure field, recently assessed against synthetic data by 

van Gent et al. (2017). One of the most attractive avenues is the evaluation of 

acoustic noise, which has great technological relevance in aviation. Although the 

determination of the full acoustic source map is challenging (also owing to the 

difficulty of imposing correct boundary conditions), coupling volumetric 

measurements with appropriate acoustic analogies appears to be a powerful 

strategy (Violato & Scarano 2013). 

Pressure is of the uttermost relevance also in biomedical settings, especially 

in cardiovascular studies. Since probe measurements in vivo are potentially 

dangerous, non-invasive methods to evaluate blood pressure using velocity 

fields from MRI (Tyszka et al. 2000, Ebbers et al. 2002) and ultrasound 

imaging (Bermejo et al. 2001, Londono-Hoyos et al. 2017) are in high demand. 

Similar approaches as in aerodynamic applications can be used, but with 

important differences: the flows of interest are “internal”, and therefore the 
solid walls (and relative boundary conditions for integration) have a prominent 

impact on the entire domain; the viscous term in the momentum equation can 

rarely be neglected, and depending on the regime it can even be the dominant 

one (Schiavazzi et al. 2017); and the inflow is usually oscillatory, making the 

relative importance of the various terms possibly time-dependent. In general, 

due to the multiple steps in deducing pressure from velocity, the analysis of 

uncertainty and its propagation is of paramount importance in both 

aerodynamic (Azijli et al. 2016) and biomedical (Schiavazzi et al. 2017) 

applications, and will likely remain a major line of research in the future. 

3.5 Medical imaging 

MRI is not the only imaging technique developed and/or refined by the 

medical physics community that is capable of measuring volumetric velocity 

fields. Ultrasound imaging velocimetry (or ‘echo-PIV’, Kim et al. 2004, Poelma 
2017) was developed as a 2D-2C technique combining ultrasound echo and 

image cross-correlation, often using microbubbles as tracers. It was then 

extended to 2D-3C (Poelma et al. 2011) and recently to fully volumetric 
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acquisition using matrix transducers (i.e. grids of sensor elements, 

Falahatpisheh & Kheradvar 2014). Moreover, using Doppler methods instead of 

correlation-based methods, fast plane-wave imaging combined with 

tomographic techniques have recently allowed in vivo 4D measurements at sub-

mm and ms resolution (Errico et al. 2015). 

X-ray imaging has also been used for fluid flow velocimetry, in particular by 

phase-contrast imaging, i.e. cross-correlating successive images of the Fresnel 

diffraction patterns generated by an incident X-ray beam on tracer particles 

(Lee & Kim 2003, Kastengren & Powell 2014). This has been extended by 

Dubsky et al. (2010, 2012) to acquire full 3D velocity fields using tomographic 

reconstruction based on multiple projections from a relatively small number of 

viewing angles. Imaging of moving tracers requires a short exposure time and so 

high-flux synchrotron radiation is preferred, which has limited the diffusion of 

the method to the groups that can access such sources. Laboratory-scale X-ray 

sources may be used for velocimetry, but because of their lower brilliance they 

are rather suitable to invesigate multiphase flows where large density variations 

exist, such as fluidized beds and bubbly flows (Heindel 2011). Direct velocity 

measurements are possible with tracking techniques (XPTV, Kertzscher et al. 

2004), although reaching high spatio-temporal resolution remains a challenge 

due to detector capabilities and size of the radiation-absorbing particles. 

In general, the diffusion of medical imaging technology to fluid mechanic 

applications has been hindered by the need of hardware components outside the 

familiar palette of tools. This may lead to the misconception that non-optical 

imaging is more “expensive” than optical imaging. As for MRV, it is uncommon 
that dedicated scanners are commissioned and built for fluid mechanics 

applications (although examples exist, Silva et al. 2016), and what is usually 

needed is access to MRI facilities where phase-contrast sequences are 

implemented for clinical purposes. Likewise, ultrasound image velocimetry is 

performed with standard medical devices. The necessary access to structures 

and facilities can be a limit for the engineering scientist, but also an opportunity 

for multi-disciplinary collaborations. In general, the unique capabilities of these 

techniques (especially in vivo and in opaque fluids), indicate how optical and 

non-optical approaches are to be considered complementary, rather than 

alternative tools for 3D velocimetry. 

 

4. Conclusions 

We have surveyed several of the techniques that have imposed themselves as 

prime options to measure 3D-3C flow fields. To bound the focus of the review, 

we have limited our attention to applications at Re >> 1, therefore not including 

microfluidics, which require specific considerations (Cierpka & Kähler 2012, 

Winer et al. 2014). The emerging picture is exciting, with a wide portfolio of 

approaches each having distinctive strengths and significant potential for 

further improvement. The extremely diverse array of recent applications 



39 
 

indicate that volumetric velocimetry can now be applied to most flow 

configurations that can be characterized by single-point or planar techniques. 

While performance metrics can be defined and are indeed useful, the final 

choice of the technique to adopt shall be guided by the specific goals of the 

measurement. The rise of hybrid techniques has led to sizeable advances in 

optical methods, with a trend towards Lagrangian approaches for the motion 

analysis. LPT has now reached unprecedented levels of resolution and accuracy, 

giving access to quantities traditionally difficult to measure, such as pressure 

fields and turbulent dissipation. The results of the 4th International PIV 

Challenge (Kähler et al. 2016) indicated that LPT approaches with intense cross-

talking between reconstruction and velocity evaluation seem to have the 

potential to supersede cross-correlation based methods in 3D. In this rapidly 

evolving scenario, coordinated efforts towards a standardized uncertainty 

quantification of volumetric velocimetry are needed. Medical imaging is gaining 

favour among fluid dynamicists, although mostly within collaborative 

frameworks with biomedicine. This should be seen as an opportunity rather 

than an obstacle, because the rapid progress of medical physics, steadily 

fostered by well-funded healthcare initiatives worldwide, is destined to 

continue. Finally, we anticipate that the rapid speedup in data processing, 

storage, and transfer associated to volumetric velocimetry will require a 

paradigm shift in experimental fluid mechanics; high-performance computing 

may play a major role in it. 
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