
Truthful Mechanism Design

for

Cooperative Cost Sharing and Congestion Games

vorgelegt von

Dipl.-Math. Janina Alexandra Brenner

Hamburg

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation.

Vorsitzender: Prof. Dr. Michael Scheutzow

Gutachter: Prof. Dr. Guido Schäfer

Prof. Dr. Rolf H. Möhring

Prof. Dr. Burkhard Monien

Zusätzlicher Gutachter: Prof. Dr. Tim Roughgarden

Tag der wissenschaftlichen Aussprache: 17. Mai 2010

Berlin 2010

D 83

CONTENTS

1 Introduction 1

2 Preliminaries 7

2.1 Notation . 7

2.2 Mechanism Design . 8

2.2.1 General Setting . 8

2.2.2 Equilibria and the Revelation Principle 10

2.2.3 Implementable Social Choice Functions 12

2.2.4 Maximizing Social Welfare – VCG Mechanisms 13

2.2.5 Single Parameter Domains 15

2.2.6 Cooperative Games . 17

2.3 Cost Sharing Games . 18

2.3.1 Binary Demand Model . 18

2.3.2 Strategic Behavior . 20

2.3.3 Social Welfare vs. Social Cost 21

2.3.4 General Demand Model . 22

2.3.5 Classes of Cost Functions 23

2.4 Design Techniques and Classes of Cost Sharing Mechanisms 24

2.4.1 Cost Sharing Methods . 25

2.4.2 Moulin Mechanisms . 25

2.4.3 Characterizing Group-Strategyproof Mechanisms 28

2.4.4 Acyclic Mechanisms . 28

2.4.5 Sequential Mechanisms . 30

2.5 Combinatorial Optimization Problems 31

2.5.1 Parallel Machine Scheduling 31

2.5.2 Network Design . 34

2.6 Congestion Games . 35

iii

iv CONTENTS

3 Group-Strategyproof Cost Sharing 39

3.1 Introduction . 40

3.2 A Lower Bound for Social Cost Approximation 42

3.3 Optimal Cost Sharing Method for Makespan Scheduling 44

3.3.1 Cross-Monotonic Cost Shares 44

3.3.2 Approximate Cost Shares 46

3.4 A General Lower Bound on Budget Balance 48

3.4.1 Weighted Completion Time Scheduling 50

3.4.2 Average Completion Time Scheduling 51

3.5 Conclusion . 53

4 Weakly Group-Strategyproof Cost Sharing 55

4.1 Introduction . 56

4.2 Generalized Incremental Mechanisms 59

4.2.1 Construction and Basic Properties 59

4.2.2 No Positive Transfer . 62

4.2.3 Consistency . 64

4.3 Applications . 67

4.3.1 Network Design Applications 67

4.3.2 Scheduling Applications . 69

4.4 Bounding Social Cost . 71

4.5 Completion Time Scheduling . 74

4.5.1 Weighted Completion Time 74

4.5.2 Completion Time with Release Dates and Preemption . . . 76

4.6 Connections to Other Frameworks 81

4.6.1 Acyclic Mechanisms . 81

4.6.2 Scheduling with Rejection 82

4.7 Makespan Scheduling with Unit Processing Times 83

4.8 Conclusion . 85

5 Online Cost Sharing 87

5.1 Introduction . 88

5.2 Online General Demand Cost Sharing 90

5.3 Incentive Compatibility . 91

5.3.1 Strategyproofness . 92

5.3.2 Weak Group-Strategyproofness 93

5.3.3 Group-Strategyproofness 94

5.4 Incremental Online Mechanisms . 95

5.4.1 Binary Demand Examples 96

5.4.2 General Demand Examples 98

5.5 Conclusion . 99

CONTENTS v

6 Mechanism Design with Congestion 101
6.1 Introduction . 102
6.2 Model . 104
6.3 Conditions for Truthfulness . 106
6.4 Approximation via Disjoint Strategies 110

6.4.1 Reduction . 111
6.4.2 Optimal Mechanism for Singleton Congestion Games 113

6.5 Implications and Applications . 115
6.5.1 Network Congestion Games 115
6.5.2 Hypergraph Models . 115

6.6 Hardness Results . 117
6.6.1 Symmetric Bottleneck Congestion Games 117
6.6.2 Matroid Bottleneck Congestion Games 118

6.7 Conclusion . 119

1

INTRODUCTION

The joint usage of infrastructures in today’s world imposes a new line of math-
ematical challenges. On the one hand, one seeks efficient ways to install and
use common infrastructures such that desirable global properties are met. On
the other hand, one has to cope with the diverse interests of their users. Often,
numerous participants contribute to the installation by providing money or rele-
vant personal data. To reach their individual goals, they attempt to influence the
outcome as much as they can.

One of the simplest examples for such a setting is a single item auction: A
number of bidders are interested in a single indivisible good. At the end of the
day, this good is allocated to at most one of the bidders. Say our global goal is
to give the item to the bidder who values it the most. How do we find out who
this is? If we endow the item to the bidder who declares the highest valuation
for the item, all bidders clearly have incentives to exaggerate their valuations. If
we additionally charge the winner an amount equal to her declared value, rational
bidders will stop submitting arbitrarily high valuations. But can we be sure that
the highest bidder submits the highest valuation? As a matter of fact, in this case
the winner is better off understating her valuation as long as she still wins.

A solution to this problem is the second price auction: Allocate the item to
the bidder who declares the highest value, and charge her the value of the second
highest bid. It can be verified by a simple case analysis that in this auction, no
bidder can improve by exaggerating or understating her true valuation. Thus,
assuming that bidders behave rationally, we gather the necessary information to
achieve our global goal of maximizing the value obtained by a player.

1

2 Introduction

The single item auction has an extremely simple structure: The possible out-
comes of the global decision process are allocations of the good to at most one
user. In general, there is a wide range of problems with much richer structures.
For instance, in network design problems, users wish to be connected to a network
or a specific point of interest. In routing problems, agents want their goods or in-
formation to be transferred from one point to another. In the scheduling context,
we can imagine both machines or jobs to be owned by agents who follow their
own selfish interests. Similarly, almost every combinatorial optimization problem
yields an interesting application when equipped with the additional complexity
of dealing with selfish interests. Many of these problems are hard to solve even
without a game-theoretic component.

Further, in the single item auction, each bidder distinguishes only two types
of outcomes – those in which she loses and those in which she wins. In general,
players may submit complex information about their requests and have compli-
cated valuation functions. The various ways to model the private contributions of
participants determine the extent to which they can manipulate a global process.
This thesis studies models in which users contribute money, and the only private
data they control is their valuation for the different outcomes. Intrinsically, a
valuation indicates how happy a user is with a given outcome. This may play a
significant role in measuring the aspired global objective. At the same time, in
our model, a valuation designates the maximum monetary contribution a player
is willing to make.

The challenges described above are addressed in the realm of algorithmic mech-
anism design. The groundlaying paradigm in this area is the revelation principle,
a famous result in economics from the seventies. It states that every realistic out-
come of a global decision process – more formally one that is in Nash equilibrium –
can be implemented by a truthful direct revelation mechanism. A direct revelation
mechanism works in a very simple way: It collects all relevant data and chooses a
global outcome and a payment for every player. A mechanism is called truthful if
no player can benefit from misreporting her data.

This thesis is devoted to the design of direct revelation mechanisms and the
investigation of the limitations that truthfulness and computational efficiency im-
pose on them. We are interested in mechanisms that meet the following objectives:

1. Computational efficiency : The mechanism runs in polynomial time.

2. Truthfulness: The selection and payment scheme implemented by the mech-
anism guarantee that it is a dominant strategy for every player to reveal
her private valuation. This objective is studied with different assumptions
concerning the cooperative behavior of players.

3. Global Objectives: Assuming that all players report their data truthfully, the
selected outcome optimizes a globally desirable objective.

3

There are various reasonable global objectives that arise in reality and are
therefore worth investigating. In this thesis, we study mechanisms for the following
two settings:

I. The first and larger part of the thesis, containing Chapters 3, 4 and 5,
is on cooperative cost sharing mechanisms. In this framework, the global
goal is to find socially attractive allocations where the sum of the payments
reflects the cost of the shared infrastructure. We study this question in
cooperative settings, where the mechanism is required to be truthful even
against manipulation of groups of players.

II. The second part, presented in Chapter 6, introduces a new model to in-
corporate the disutility of sharing resources. This is an issue which is not
respected in the standard mechanism design approach used in Part I. We as-
sume that a player’s valuation depends on the number of other players with
whom she shares resources. Our work thus belongs to the area of mechanism
design with externalities.

In the following, we introduce both topics and give an overview of our contributions
in the two areas.

Cooperative Cost Sharing.

In a cost sharing problem, we are given a set of players who are interested in
receiving a common service, e.g. connectivity to a network. The provision of the
service incurs some cost that is specified by a given cost function. The task is to
design truthful mechanisms which run in polynomial time. The global goal that
one seeks to optimize is twofold:

3a. Budget balance: The sum of all payments charged to the players equals or
approximates the cost to establish the service.

3b. Social cost : Assuming that players bid truthfully, the servicing cost of the
selected players plus the sum of the valuations of the excluded players is
minimal.

In the cost sharing setting, it is assumed that players act strategically to max-
imize their own quasi-linear utility functions, defined as their valuation for the
service minus the payment they have to make. We consider cooperative cost shar-
ing games, i.e. players can form coalitions in order to coordinate their bids and
collectively attempt to manipulate the outcome of the mechanism.

In the late nineties, Moulin [73] proposed a framework to derive truthful mech-
anisms for cooperative cost sharing games. The resulting Moulin mechanisms

4 Introduction

realize the strong notion of group-strategyproofness, which ensures that no coordi-
nated bidding of a coalition of players can ever strictly increase the utility of some
player without strictly decreasing the utility of another player in the coalition.
In the years following his work, a lot of research has gone into designing mech-
anisms using Moulin’s framework for the cost sharing variants of many classical
optimization problems (see e.g. [10, 16, 25, 45, 46, 54, 60, 64, 80, 88, 89]).

In Chapter 3, we investigate cost sharing mechanisms for combinatorial op-
timization problems within this framework, with a particular focus on scheduling
problems. Our contribution is threefold: First, for a large class of optimization
problems that satisfy a certain cost-stability property, we prove that no budget
balanced Moulin mechanism can approximate social cost better than Ω(log n),
where n denotes the number of players. Second, we present a group-strategyproof
cost sharing mechanism for the minimum makespan scheduling problem with tight
approximation guarantees with respect to budget balance and social cost. Finally,
we derive a general lower bound on the budget balance factor of Moulin mecha-
nisms, which can be used to prove a lower bound of Ω(n) on the budget balance
factor for all completion and flow time scheduling objectives. Even in the single-
machine case and if all jobs have unit processing times, no Moulin mechanism can
achieve a budget balance approximation factor of less than (n + 1)/2, although
one can easily compute an optimal schedule for this problem in polynomial time.

In addition to our results mentioned above, recent negative results showed
that for many fundamental cost sharing games, Moulin mechanisms inevitably
suffer from poor approximation factors with respect to budget balance [10, 16,
52, 60, 88] or social cost [16, 25, 88, 89]. Driven by the limitations of Moulin
mechanisms, Mehta, Roughgarden, and Sundararajan [69] recently introduced
a general framework to derive cost sharing mechanisms, termed acyclic mecha-
nisms. These mechanisms implement a weaker notion of truthfulness, called weak
group-strategyproofness [28, 69], but therefore open new ground for improving the
approximation guarantees with respect to budget balance and social cost. Weak
group-strategyproofness ensures that no coordinated bidding of a coalition of play-
ers can ever strictly increase the utility of every player in the coalition.

In Chapter 4, we present an approach to derive weakly group-strategyproof
cost sharing mechanisms from approximation algorithms. Given a ρ-approximation
algorithm for the underlying optimization problem of a cost sharing game, we de-
fine a generalized incremental mechanism that is ρ-budget balanced and weakly
group-strategyproof. We also provide a method for proving social cost approxi-
mation guarantees of our generalized incremental mechanisms. Our techniques
are particularly effective in the scheduling context. We demonstrate the ap-
plicability of our framework by developing weakly group-strategyproof mecha-
nisms for completion time (and flow time) scheduling problems with and with-
out release dates and preemption. Specifically, using the three-field notation

5

scheme by Graham et al. (see Section 2.5.1), we achieve 1-budget balance and 2-
approximate social cost for P | |∑Ci, 1.21-budget balance and 2.42-approximate
social cost for P | |∑wiCi, and 1.25-budget balance and 5-approximate social cost
for P |ri, pmtn|∑Ci. Very notably, our new mechanisms outperform the strong
lower bounds of (n + 1)/2 on the budget balance factor of Moulin mechanisms
for all completion time related objectives that we proved in Chapter 3. We em-
phasize that these are the first cost sharing mechanisms that are weakly group-
strategyproof and achieve constant approximation guarantees with respect to both
budget balance and social cost.

To the best of our knowledge, cooperative cost sharing games have so far only
been studied in offline settings, where the entire instance is known in advance.
Hence, the mechanism can take into account all input data associated with every
player for determining the allocation and payment scheme. However, many nat-
ural cost sharing games inherently bear an online characteristic in the sense that
players arrive over time and reveal their input data only at their arrival. In such
settings, a mechanism must instantaneously make irreversible decisions without
any knowledge about players that arrive in the future. The standard measure for
assessing the quality of an online algorithm is its competitive ratio, i.e. the worst
case ratio of the cost of the solution produced by the online algorithm compared
to the cost of an optimal offline algorithm that knows the entire input data in
advance.

In Chapter 5, we consider cooperative cost sharing games in an online set-
ting. First, we devise an online model for general demand cost sharing games, in
which each player can request not only one but several levels of service. We then
give a complete characterization of both weakly group-strategyproof and group-
strategyproof online cost sharing mechanisms in this model. Moreover, we present
a simple method to derive online cost sharing mechanisms from competitive online
algorithms which preserves the competitive ratio of the online algorithm. Based
on our general results, we develop truthful online mechanisms for several binary
demand and general demand cost sharing games derived from network design and
scheduling problems.

Mechanism Design with Congestion.

In the standard mechanism design model, it is assumed that each player assigns a
private valuation to every possible outcome. A particularly well-tractable special
case is when each player distinguishes only between outcomes in which she loses
and outcomes in which she wins. A very natural generalization of this special case
with various applications is to include negative externalities that arise between
winners of an outcome. One approach to model such externalities is via congestion
games. In a congestion game, we are given a set of resources and a set of players.

6 Introduction

Each player has a set of strategies, each of which corresponds to a subset of the
resources, e.g. a route between a source and a destination in a given network. A
congestion game is called symmetric if all players have the same strategy set. In
the classical congestion games literature, it is assumed that each player chooses
a strategy to minimize her individual cost, e.g. the total delay of her route. The
cost is usually related to the congestion of a resource, i.e. the number of players
to using that resource.

In Chapter 6, we take a mechanism design approach to resource allocation
problems inspired by congestion games. We assume that players assign a private
valuation if they are allocated one of their desired strategies. The resources can be
shared among players; however, there is a loss for resource congestion, which we
model by a decrement in the player’s valuation for that resource. We assume that
players experience the loss of their most congested resource (also called bottleneck).
Our goal is to design truthful mechanisms that maximize social welfare. Hence,
the global goal in this chapter is

3. Social welfare: Assuming that players bid truthfully, the sum of the valua-
tions over all players is maximum.

We design a generic truthful mechanism for symmetric bottleneck congestion
games. Our approach is to reduce the strategy set to a set of pairwise disjoint
strategies for which we find an optimal allocation using dynamic programming.
Our mechanism applies to various settings and approximates social welfare by
different factors which can be proven using duality in hypergraphs. As an ex-
ample, our mechanism selects an outcome with optimal social welfare for single-
commodity network congestion games. We also provide sufficient conditions for
truthfulness of mechanisms for congestion games which we use to prove that our
generic mechanism is truthful. We complement our results by identifying several
special cases of the problem that are hard to approximate.

How to read this thesis. We assume that the reader is familiar with basic
concepts in combinatorial optimization and game theory. In Chapter 2, we in-
troduce the more specific models from both areas on which this thesis is based.
Chapters 3 to 6 contain the contributions of this thesis as described above. Each
of these four chapters is self-contained but relies on the concepts introduced in the
preliminaries chapter.

2

PRELIMINARIES

In this chapter, we review the basic concepts and related work from algorith-
mic game theory and combinatorial optimization upon which this thesis is built.
Section 2.1 introduces some notations that we use throughout the thesis. In Sec-
tion 2.2, we give a brief overview over the relevant parts of mechanism design.
Section 2.3 introduces the cost sharing settings that we study. In Section 2.4,
we sketch existing techniques to design cost sharing mechanisms and review the
related work in the area. In Section 2.5, we define several combinatorial optimiza-
tion problems on which our game-theoretic problems are based. We provide a
short introduction to congestion games in Section 2.6.

2.1 Notation

For convenience, the following notations are frequently used throughout this thesis.

We use [n] to denote the set {1, . . . , n}. Many variables will be defined for all
players i ∈ [n]. For sets, as e.g. the players’ type sets Ti, we denote by the bold
variable name T the cartesian product of all players’ sets, i.e. T := T1 × . . . × Tn.
For functions or numbers like vi, we use the bold variable name v to denote the
vector of all vi, i.e. v := (v1, . . . , vn). For any vector x or cartesian product X, x−i

or Xi denotes the same object without its ith entry. Along these lines, we define
(yi, x−i) := (x1, . . . , xi−1, yi, xi+1, . . . , xn) for vectors, and (Yi,X−i) := (X1 × . . .×
Xi−1 × Yi × Xi+1 × . . . × Xn) for cartesian products.

7

8 Preliminaries

We denote by Hn the nth harmonic number, i.e. Hn :=
∑n

i=1 1/i. As n goes to
infinity, Hn approaches log n + γ, where γ ≈ 0.577 denotes the Euler-Mascheroni
constant. Hence, Hn = Θ(log n) and we use both values interchangeably.

2.2 Mechanism Design

Mechanism design is a research field at the boundary of computer science and eco-
nomics. It aims at implementing a social choice in an environment with strategic
players. In this thesis, we study mechanisms in the presence of money. That is, we
assume that the players’ preferences for different social choices can be expressed
in monetary values. By allowing to request payments from the players, this as-
sumption opens the ground for many positive results, the most remarkable being
the revelation principle. Moreover, the set of implementable social choice func-
tions can be characterized quite precisely in some cases. We summarize the most
important notions and results in the following. For a more comprehensive survey
on mechanism design see for instance Chapter 23 in [65] or Chapter 9 in [78].

2.2.1 General Setting

In this thesis, we study several special cases of the following general mechanism
design setting: There is a set Θ of outcomes which affect a universe U of n players.
Each player has a private type ti which is only known to the player herself. The
set of possible types of each player i is restricted to a publicly known set Ti. The
preference of a player i ∈ U is given by her valuation function wi : ti × Θ → R,
where wi(ti, θ) is the (monetary) valuation that i assigns to outcome θ ∈ Θ if she
has type ti ∈ Ti. The valuation functions, as well as all other information besides
the private types ti of the players, are public information.

Definition 2.1 (Mechanism Design Problem). A mechanism design problem is
defined by a set Θ of outcomes and a set U of n players, each of whom has a set
of possible types Ti, and a valuation function wi : Ti × Θ → R.

An important subclass of mechanism design problems are binary demand prob-
lems, in which each player only distinguishes “winning” and “losing” outcomes.
Both Chapters 3 and 4 study this strongly restricted but still very rich subclass.
We briefly describe the binary demand setting to illustrate what types and valu-
ation functions can be.

Example 2.2 (Binary Demand Problem). In a binary demand (or single parame-

2.2 Mechanism Design 9

ter) problem, each player distinguishes only two types of outcomes: those in which
she wins and those in which she loses. In this setting, it is usually assumed that a
player has zero valuation for the outcomes in which she loses, and her type ti is a
real number specifying her valuation for any of the winning outcomes. A player’s
valuation function is thus of the form

wi(ti, θ) :=

{

ti if θ ∈ Θi,

0 otherwise,

where Θi ⊆ Θ denotes the (publicly known) subset of outcomes in which player i
wins.

A social choice function is a function f : T1 × . . . × Tn → Θ. Given the
types t1, . . . , tn of all players, it selects a deterministic outcome f(t) ∈ Θ. The
most important concept of this thesis is that of a direct revelation mechanism. In
addition to making a social choice, it charges each player a payment.

Definition 2.3 (Direct Revelation Mechanism). A (direct revelation) mechanism
M = (f, p1, . . . , pn) is a function M : T1 × . . . × Tn → Θ × R

n. Given the types ti
of all players i ∈ U , it selects an outcome f(t) ∈ Θ and a payment pi(t) to be
made by every player i ∈ U .

We assume that each player’s selfish goal is to maximize her own utility. In this
thesis, we only consider the important case of quasilinear utilities. The quasilinear
utility of a player is defined as her valuation for the outcome minus the price she
has to pay.

Definition 2.4 (Quasilinear Utility). If player i ∈ U of type ti is charged an
amount of money pi, her quasilinear utility for outcome θ is defined as

ui(ti, θ) := wi(ti, θ) − pi.

A direct revelation mechanism is said to be strategyproof, incentive compatible
or truthful (in the non-cooperative sense) if no player can gain utility by misre-
porting her type.

Definition 2.5 (Strategyproof). A direct revelation mechanism M = (f, p1, . . . , pn)
is strategyproof if for every player i ∈ U , every type profile t1, . . . , tn and every
alternative type t′i, we have

wi(ti, f(t)) − pi(t) ≥ wi(ti, f(t′i, t−i)) − pi(t
′
i, t−i).

10 Preliminaries

As we will motivate in the following section, the concept of truthful direct
revelation mechanisms is well suited to study the central questions of mechanism
design.

2.2.2 Equilibria and the Revelation Principle

Perhaps the central question in mechanism design is the following: How can a
social choice function f be “implemented” without knowing the players’ types?
For instance, assume that we want to maximize the utilitarian social welfare,
i.e. choose an outcome that maximizes the sum of valuations over all players. The
mechanism needs to somehow gather information from the players.

In the following, we describe a more general model to address this question
and discuss outcomes that one may expect to be generated in this model. This
discussion will enable us to describe the revelation principle and narrow down our
further studies to direct revelation mechanisms. The revelation principle has been
proven for various settings including so-called Bayesian settings which assume a
distribution over player’s types. Our presentation is largely along the lines of [78].

The most general type of game that we discuss in this thesis is the following
setting:

Definition 2.6 (Private Information Game). A private information game (X ,T ,u)
is defined by a set of n players each of whom has (i) a set of actions Xi, (ii) a set
of types Ti, and (iii) a utility function ui : Ti × X1 × . . . × Xn → R.

Again, the type of a player models the private information that is only known
to the player herself. Besides the actions that all players make, her own type is
the crucial piece of information that captures a player’s utility for an outcome of
the game. The intuition behind this definition is that the utility functions of all
players are common knowledge, but the key to determining a player’s strategic
behavior is her type, which is not known to anybody but the player herself.

Since a player i has no information about other players’ types or actions, the
action she chooses solely depends on her own type. We define a strategy of player i
as a function si : Ti → Xi. That is, a strategy si determines which action a player
will choose depending on which type she receives.

We can now define two important equilibrium concepts. The first one, the
ex-post Nash equilibrium, captures strategy profiles in which no player has an
incentive to switch to a different action, given that all other players stick to their
strategy functions, no matter what the actual type profile is.

We call a private information game in which each player’s type set is restricted
to exactly one type a full information game.

2.2 Mechanism Design 11

Definition 2.7 (Ex-post Nash). A strategy profile s = (s1, . . . , sn) is an ex-post
Nash equilibrium if s(t) = (s1(t1), . . . , sn(tn)) is a Nash equilibrium for every full
information game defined by a fixed vector t1, . . . , tn. That is, if for every player i,
every type profile t and every alternative action xi ∈ Xi, we have

ui(ti, s(t)) ≥ ui(ti, (xi, s−i(t))).

The second concept we are interested in is that of dominant strategy equilibria.
It characterizes a more restricted set of strategy profiles: Here, given his own type,
no player has an incentive to switch to an action different from the one determined
by her strategy, no matter what the other players do.

Definition 2.8 (Dominant Strategy Equilibrium). A strategy profile s1, . . . , sn

is a dominant strategy equilibrium if for every type profile t1, . . . , tn and every
player i, si(ti) is a dominant strategy in the full information game defined by
t1, . . . , tn. That is, if for every player i, every type ti ∈ Ti and every action profile
x ∈ X, we have

ui(ti, (si(ti), x−i)) ≥ ui(ti,x).

Hence, the crucial difference is that in the dominant strategy equilibrium, we
also pay attention to actions that are not played in any strategy profile. The
following fact is an easy observation:

Fact 2.9 ([78]). Let s be an ex-post Nash equilibrium in the private information
game (X,T ,u). Then, s is a dominant strategy equilibrium in the modified private
information game (X′,T ,u), where each player’s action set is restricted to the
image of her strategy function, i.e. X ′

i := {si(ti) | ti ∈ Ti}.

In order to reconnect with our original setting, we identify an outcome a(x) and
a payment vector p(x) with every possible action profile x ∈ X. Intuitively, we
“observe” the outcomes and payments realized in equilibria. The utility ui(ti,x)
that player i of type ti has when x is the set of actions played is naturally identified
with the utility ui(ti, a(x)) of this player when a(x) is the outcome and pi is the
payment requested from her.

Due to the inherent properties of ex-post Nash equilibria and, even stronger,
dominant strategy equilibria, outcomes in both these states are likely to occur and
remain stable. With the above correspondence, we therefore define implementable
social choice functions as social choice functions that are realized in equilibrium by
a private information game. We intentionally leave open the equilibrium concept
meant in the following definition to fit both concepts defined above.

Definition 2.10 (Implementable social choice). A social choice function f is im-

12 Preliminaries

plementable by a private information game if there exists an equilibrium s of the
game such that for every type profile t, we have a(s(t)) = f(t).

The following influential theorem known as the “revelation principle” states
that if a social choice function is implementable in dominant strategies, it is also
directly implementable by a truthful direct revelation mechanism. The intuitive
idea is to introduce the direct revelation mechanism as a mediator who asks each
agent for her type and then implicitly plays her dominant strategy for her.

Theorem 2.11 (Revelation Principle [39, 65]). Given a private information game
and a social choice function f , if there exists an arbitrary mechanism that imple-
ments f in dominant strategies, then there exists a strategyproof direct revelation
mechanism that implements f . Further, the equilibrium payments for all players
are equal in both mechanisms.

Proof. Let s be a dominant strategy equilibrium of the private information game
such that a(s(t)) = f(t) for all t ∈ T . We define the direct revelation mechanism
M = (f, p1, . . . , pn) by f and the equilibrium prices pi(t) := pi(s(t)).

We need to prove that M is strategyproof, i.e. for every player i and type
profile t, we have wi(ti, f(t)) − pi(t) ≥ wi(ti, f(t′i, t−i)) − pi(t

′
i, t−i) for every al-

ternative type t′i. Assume that player i misreports her type as t′i. Then by def-
inition, the mechanism selects output a(s(t′i, t−i)) and prices p(s(t′i, t−i)). Since
si is a dominant strategy for player i in the private information game, we have
ui(ti, (si(ti), x−i)) ≥ ui(ti,x) for every action profile x ∈ X. This is in partic-
ular true for x := s(t′i, t−i), which yields ui(ti, s(t)) ≥ ui(ti, s(t′i, t−i)), hence in
the mechanism design notation, wi(ti, a(s(t))) − pi(s(t)) ≥ wi(ti, a(s(t′i, t−i))) −
pi(s(t′i, t−i)).

Thanks to the revelation principle, one can avoid simulating the strategic be-
havior of individuals and instead restrict to designing truthful direct revelation
mechanisms where it can be assumed that all data is reported truthfully. We will
therefore restrict our attention to direct revelation mechanisms throughout the
remainder of this thesis, as is common in mechanism design theory.

2.2.3 Implementable Social Choice Functions

We have motivated in the previous section that to characterize which social choice
functions are realizable, or more technically speaking implementable, reduces to
studying which social choice functions can be turned into strategyproof direct
revelation mechanisms. It turns out that the domains of players’ types play a
major role in characterization truthful mechanisms.

2.2 Mechanism Design 13

The following property of weak monotonicity is a necessary condition for im-
plementability of a social choice function. It states that if the unilateral deviation
of one player causes a different outcome to be chosen, then it must be because this
player benefits more from switching to this outcome under her new type than she
did under the one she started with. The formal definition is as follows:

Definition 2.12 (Weak Monotonicity [9]). A social choice function f is weakly
monotone if for every player i ∈ U , every type profile t1, . . . , tn and every alter-
native type t′i such that f(t) = θ 6= θ′ = f(t′i, t−i) we have

wi(ti, θ) − wi(ti, θ
′) ≥ wi(t

′
i, θ) − wi(t

′
i, θ

′).

In fact, if the type domains are convex, weak monotonicity of a social choice
function is also sufficient for its implementability. Theorem 2.13 states that in this
case, given a weakly monotone social choice function, we can always find payments
such that the induced mechanism is strategyproof. Proving this theorem is quite
involved and we refer the reader to the original proofs in [9, 91].

Theorem 2.13 ([9, 91]). If a mechanism M = (f, p1, . . . , pn) is strategyproof,
then f satisfies weak monotonicity. If all type sets Ti are convex, then for every
social choice function f satisfying weak monotonicity there exist payment functions
p1, . . . , pn such that the corresponding mechanism is strategyproof.

The following theorem tells us even more: Once we found an implementable
social choice function (i.e. one satisfying weak monotonicity), the payment of every
player is unique for every fixed vector of types t−i of other players.

Theorem 2.14 (Uniqueness of Prices [75]). Let M = (f, p1, . . . , pn) be a strate-
gyproof mechanism. Then, the mechanism M ′ = (f, p′1, . . . , p

′
n) with modified pay-

ments is strategyproof if and only if p′i(t) = pi(t) + hi(t−i) for some functions hi

depending only on the types of players other than i.

As a consequence, the payment functions of a strategyproof mechanism are
fully determined by its social choice function if we find a way of normalizing the
functions hi defined in Theorem 2.14. As we will see in Section 2.2.5, this is
straightforward for single-parameter domains.

2.2.4 Maximizing Social Welfare – VCG Mechanisms

One of the most well-studied social choice functions is that of maximizing the
social welfare. The social welfare of an outcome θ ∈ Θ is defined as the sum

14 Preliminaries

of valuations for this outcome over all players, i.e. W (θ) :=
∑n

i=1 wi(ti, θ). This
social choice function is implemented by the famous Vickrey-Clarke-Groves (VCG)
mechanisms due to Vickrey [99], Clarke [26], and Groves [43]. The central idea
of VCG mechanisms is to let every player pay the difference in the social welfare
obtained by other players when she is present versus when she is not present. It
turns out that VCG mechanisms are basically the only truthful mechanisms that
maximize social welfare.

As an easy example, we revisit the single item auction described in the intro-
duction:

Example 2.15 (Single Item Auction). A number of bidders are interested in a
single item that is auctioned off by an auctioneer. Every bidder has a private
valuation vi ≥ 0 for getting the item, and has zero valuation for not getting it.
The social choice function maximizing social welfare is to allocate the item to the
bidder with highest valuation, say v1. In this allocation, the social welfare gained by
the rest of the population is zero. However, if the winning player was not present
in the auction, the second highest valuation, say v2, would win, yielding a social
welfare of v2. Hence, according to the VCG payment rule, the winner should pay
an amount of v2 − 0 for getting the item.

The VCG mechanism for this auction is also called the Second Price Auction: The
item is allocated to the bidder with highest valuation at the price of the second
highest valuation. If we require an auction that is normalized such that a bidder
pays nothing when not getting an item, this is in fact the only truthful mechanism
that optimizes social welfare.

More generally, a VCG mechanism is defined as follows:

Definition 2.16 (Vickrey-Clarke-Groves Mechanism [99, 26, 43]). A mechanism is
a Vickrey-Clarke-Groves (VCG) mechanism if its social choice function maximizes
the social welfare W (θ) =

∑n
i=1 wi(ti, θ) and there are functions hi : T−i → R such

that for every player i,

pi(t) = hi(t−i) −
∑

j 6=i

wi(tj, f(t)).

The second term in the definition of the players’ payments aligns the players’
incentives with that of maximizing social welfare – each player is implicitly paid an
amount equal to the sum of valuations of the other players. In the non-cooperative
setting, the first term has no strategic meaning for a player since it only depends on
other players’ types, on which she has no influence. Together, this is the intuitive
reason why every VCG mechanism is strategyproof. We leave the formal proof to
the reader.

2.2 Mechanism Design 15

A sensible way of defining the prices is by the Clarke pivot rule which fixes
each hi to the maximum social welfare obtainable by players other than player i.
This ensures that no player has a negative payment or negative utility.

The class of VCG mechanisms is very powerful and has been widely applied
for various settings. However, VCG mechanisms have several drawbacks that we
are concerned about in this thesis. On the one hand, it is not always possible
to calculate its payments or even the socially optimal outcome in polynomial
time. On the other hand, VCG payments in general do not reflect any desirable
properties of the game – they neither maximize the revenue of the seller nor
approximate any cost function that may be associated with the game. Both of
these issues will be approached in the framework of cost sharing games that we
introduce in Section 2.3.

2.2.5 Single Parameter Domains

Many of the results contained in this thesis concern single parameter games. In
single parameter games, the valuation functions of the players are fully determined
by a single private real-valued variable. This is a strong confinement of the orig-
inal setting, but still allows for a lot of interesting questions to be studied, some
of which simply cannot be solved for the general model. In fact, Roberts’ the-
orem [86] states that if the type domains are unrestricted and the social choice
is between more than two outcomes, only affine maximizers of the social welfare
are implementable. However, in the single parameter setting, our first question
of characterizing incentive compatible mechanisms has a nice and easy to state
answer which allows for a lot more social choice functions to be implemented.

We first provide a formal definition of the most natural way to define single
parameter games. The basic idea is that the player’s preferences are binary in that
they are only interested in winning or losing. In other words, every player has a
(publicly known) set of outcomes which they consider as winning outcomes and
value highly with some constant. On the other hand, players have zero valuation
for all outcomes in which they lose. Hence, the valuation function of each player
is modeled by a publicly known“winning” set Θi ⊆ Θ and a private value vi ∈ R

+

that they assign if one of the outcomes in Θi are chosen. This value corresponds
to the previously defined type ti of a player.

Definition 2.17 (Single-Parameter Game). In a single parameter game, there
exists publicly known sets Θi ⊆ Θ for all i ∈ U such that the valuation function of
every player i ∈ U is of the form

wi(vi, θ) =

{

vi if θ ∈ Θi,

0 otherwise.

16 Preliminaries

One example of a single parameter game is the single item auction discussed
in Section 2.2.4. Clearly, the set of winning outcomes of every player is publicly
known – it is the unique outcome in which the player obtains the item.

The property of weak monotonicity that we identified in Section 2.2.3 reduces
to a much more comprehensive condition in the single parameter case. It simply
states that given the input of all other players, the higher her value vi the more
likely a player is to win. It is easy to verify that a mechanism cannot be truthful
if this condition is not satisfied.

Definition 2.18 (Monotone Social Choice). A social choice function f for a single
parameter game is called monotone if for every player i ∈ U and every valuation
vector v, if f(v) ∈ Θi then for every v′i ≥ vi, f(v′i, v−i) ∈ Θi.

Figure 2.2.5 depicts the output function as seen by a single-parameter player
depending on her value vi: It is zero if the chosen outcome is not among her
winning outcomes Θi, and vi if the outcome is in Θi.

1

value vi

τi

Figure 2.1: Output function as seen by player i given a fixed vector v−i

Since our mechanisms are deterministic, the monotonicity requirement limits the
number of “jumps” of this function to one. Hence, there exists a threshold value
τi(v−i) for every player i and valuation profile of players other than i, such that
player i wins if her value lies above this threshold and loses if her value lies below
it. As we will see in Section 2.3, it can play an important role for cooperative
games whether or not a player wins if her valuation equals this threshold value.

As we have seen in Section 2.2.3, every monotone social choice function permits
a payment function combined with which it yields a strategyproof mechanism.
Further, the payment function for every player is unique up to an additive term
we called hi(v−i). This term only depends on the valuations of the other players.
In single-parameter games, there is a very straightforward way to define these
terms and thus “normalize” the payment functions of a mechanism. We call a
mechanism normalized if every losing player pays zero. With this quite intuitive
standardization, it is not very hard to prove the following theorem which nicely

2.2 Mechanism Design 17

characterizes the set of strategyproof mechanisms for single-parameter domains.

Theorem 2.19. A normalized mechanism M = (f, p1, . . . , pn) for a single-para-
meter game is strategyproof if and only if f is monotone and every winning player
pays her threshold value τi.

2.2.6 Cooperative Games

As we have seen in the previous sections, we can characterize strategyproof mecha-
nisms depending on the type spaces of players. Especially in the single-parameter
case, this characterization is very comprehensive. However, the property of strat-
egyproofness implicitly makes one major assumption: It assumes that players act
selfishly in a very restricted way, namely by forming their strategies to maximize
their own utility without making any arrangements with other players. This as-
sumption is dropped in cooperative games.

The area of cooperative game theory studies scenarios in which players can make
contracts among each other in some form and thus “cooperate”. Two classical
models are cooperative games with nontransferable utilities (NTU games) and
cooperative games with transferable utilities (TU games). For an overview over
both models see e.g. [79]. We remark that both models do not correspond to
mechanism design problems as described above.

In this thesis, we consider the model in which subsets of players can cooperate
by agreeing on choosing a concerted set of strategies. We assume that players
cannot exchange money as in other models sometimes referred to by the term“with
transferable utility”. However, some properties of the cost sharing mechanisms we
develop are related to the core concept of classical cooperative games. Therefore,
the model with transferable utilities (TU) is of interest for this thesis.

In a cooperative game with transferable utilities [78, 79], we are given a set of
players U and a player-set dependent function C : 2U → R which models the cost
(or utility) generated by each subset of players if this set would form a coalition.
The intuition is that if a coalition S forms, the players in U \S do not participate
in the game. An outcome of a TU game is defined by a vector (ξi)i∈U which
specifies for every player i ∈ U the share of the cost (or utility) that she obtains.
The central fairness concept for these games is the core. Roughly speaking, the
core of a cooperative game seeks to characterize outcomes in which no coalition
of players can benefit from breaking away from the grand coalition U . Here, it is
implicitly assumed that players in a coalition can redistribute the cost generated
by forming this coalition. The formal definition is as follows.

Definition 2.20 (Core). An outcome (ξi)i∈U is in the core of a cooperative game
if
∑

i∈U ξi = C(U), and for every subset of players S ⊆ U ,
∑

i∈S ξi ≤ C(S).

18 Preliminaries

In many settings, the cost C(S) of a coalition is defined as the optimal objective
value of a combinatorial optimization problem and can thus not even be efficiently
calculated. In these settings, it makes sense to relax the core condition to the
following approximate version.

Definition 2.21 (β-Core). An outcome (ξi)i∈U is in the β-core of a cooperative
game if

1

β
· C(U) ≤

∑

i∈U

ξi ≤ C(U),

and for every subset of players S ⊆ U ,
∑

i∈S ξi ≤ C(S).

The core and the β-core of TU games have been studied extensively and char-
acterized for various cost functions; we refer the reader to [79] and the references
therein.

2.3 Cost Sharing Games

The major part of this thesis is on mechanisms for cooperative cost sharing games.
In cost sharing, the foremost concern lies on the payments specified by a mecha-
nism. The goal is to share the cost of an outcome among the players that have
positive valuation for it. Intuitively, one often takes a reverse approach to mech-
anism design here: First, we determine payments that reflect the given costs for
the possible outcomes. Then, we check whether these payments can be accompa-
nied by a social choice function to obtain a truthful mechanism. In many cases,
it is hard to additionally fulfill a socially oriented global objective. However, our
results show that this is sometimes remarkably well possible. In the following, we
define the different cost sharing models that are studied in Chapters 3, 4 and 5 of
this thesis.

2.3.1 Binary Demand Model

A binary demand cost sharing game is defined as follows. We are given a universe U
of n players (also called agents or users) that are interested in a certain service.
The servicing cost is given by a cost function C : 2U → R

+. For every subset of
players S ⊆ U , C(S) denotes the cost to establish the service for player set S. We
require that C(∅) = 0. We will often assume that C is given implicitly by the cost
of an optimal solution to an underlying cost-minimization problem P. Examples
for such optimization problems are given in Section 2.5 of this thesis.

2.3 Cost Sharing Games 19

Every player i ∈ U has a private value vi ≥ 0 for receiving the service, i.e. vi is
known to i only. Additionally, each player i announces a non-negative bid bi which
represents the maximum price player i is willing to pay for the service. In this
setting vi thus represents the true type of a player while bi denotes her reported
type.

A (direct revelation) cost sharing mechanism M solicits the bids of all play-
ers and based on these bids determines a player set which receives the service a
payment for each served player. The formal definition is as follows.

Definition 2.22 (Binary Demand Cost Sharing Mechanism). Given a bid vec-
tor b ∈ R

n
+, a cost sharing mechanism for a binary demand cost sharing game

determines a binary allocation vector x ∈ {0, 1}n and a payment vector p ∈ R
n.

Let SM be the subset of players associated with the allocation vector x, i.e. i ∈ SM

iff xi = 1. We say that SM is the player set that receives service.

We require that a cost sharing mechanism complies with the following three
standard assumptions:

1. Individual rationality: A player is charged only if she receives service and
her payment is at most her bid, i.e. pi = 0 if i /∈ SM and pi ≤ bi if i ∈ SM .

2. No positive transfer : A player is not paid for receiving service, i.e. pi ≥ 0
for all i ∈ SM .

3. Consumer sovereignty: A player is guaranteed to receive service if she is
willing to bid high enough, i.e. there exists a threshold value b∗i for every
player i ∈ U such that i ∈ SM for all bi ≥ b∗i .

In addition, the mechanism has to compute a (possibly suboptimal) feasible
solution to the underlying optimization problem P on the player set SM . We
denote the cost of the computed solution by C̄(SM). A cost sharing mechanism
is called β-budget balanced if it the sum of payments collected by the mechanism
does not deviate from the servicing cost by more than a factor β.

Definition 2.23 (β-Budget Balance). A mechanism M is β-budget balanced for
some β ≥ 1 if

C̄(SM) ≤
∑

i∈SM

pi ≤ β · C(SM).

We say that the cost shares satisfy cost recovery if the first inequality holds; they
are β-competitive if the latter inequality is fulfilled. If β = 1, we simply call the
cost sharing mechanism budget balanced.

20 Preliminaries

In Chapter 3, we use an alternative definition for budget balance that is also
often used in the literature:

1

β
· C̄(SM) ≤

∑

i∈SM

pi ≤ C(SM). (2.1)

It is easy to see that given a fixed value of β, both definitions are equivalent since
one can simply multiply or divide all cost shares by β.

2.3.2 Strategic Behavior

We assume that players act strategically and every player’s goal is to maximize
her own utility. The utility of player i is defined as

ui(x,p) := vixi − pi.

That is, player i’s utility is vi − pi if she receives service and zero otherwise. This
definition is in line with the single parameter games described in Section 2.2.5.
Remark that the valuation function we defined for mechanism design problems in
Section 2.2 is thus wi(x) := vixi. However, due to its particularly simple structure,
it is common to refer to the private value vi as a player’s valuation. We adopt this
slight abuse of language in this thesis.

Since the outcome computed by a cost sharing mechanism solely depends on
the bids b of the players (and not on their true valuations), a player may have
an incentive to declare a bid bi that differs from her valuation vi. As defined
in Section 2.2.1, a mechanism is called strategyproof if bidding truthfully is a
dominant strategy for every player. That is, for every player i ∈ U and every two
bid vectors b, b′ with bi = vi and bj = b′j for all j 6= i, we have

ui(x,p) ≥ ui(x
′,p′),

where (x,p) and (x′,p′) are the solutions output by the mechanism for bid vec-
tors b and b′, respectively.

In this thesis, we consider cooperative cost sharing games, i.e. we assume that
players can form coalitions in order to coordinate their bids. A mechanism is
called group-strategyproof if no coordinated bidding of a coalition T ⊆ U can ever
strictly increase the utility of some player in S without strictly decreasing the
utility of another player in S. The formal definition is as follows.

Definition 2.24 (Group-Strategyproof). A cost sharing mechanism is group-
strategyproof if for every subset S ⊆ U of players and every two bid vectors b, b′

with bi = vi for every i ∈ S and bi = b′i for every i /∈ S,

ui(x
′,p′) ≥ ui(x,p) ∀ i ∈ S =⇒ ui(x

′,p′) = ui(x,p) ∀ i ∈ S.

2.3 Cost Sharing Games 21

A mechanism is weakly group-strategyproof [28, 68] if no coordinated bidding
can ever strictly increase the utility of every player in the coalition.

Definition 2.25 (Weakly Group-Strategyproof). A cost sharing mechanism is
weakly group-strategyproof if for every subset S ⊆ U of players and every two bid
vectors b, b′ with bi = vi for every i ∈ S and bi = b′i for every i /∈ S,

∃ i ∈ S : ui(x
′,p′) ≤ ui(x,p).

Intuitively, weak group-strategyproofness suffices if we assume that players
adopt a slightly more conservative attitude with respect to their willingness of
joining a coalition: Group-strategyproofness is needed if a player will participate
in a coalition even if her utility is not affected, while weak group-strategyproofness
suffices if she only joins when she is strictly better off doing so.

2.3.3 Social Welfare vs. Social Cost

An important measure for the performance of a cost sharing mechanism that has
recently gained more attention is its efficiency with respect to a social objective.
Traditionally, a mechanism is said to be efficient if it selects a set of players that
maximizes the social welfare (assuming truthful bidding). For a set S ⊆ U , define
v(S) :=

∑

i∈S vi as the sum of valuations of all players in S.

Definition 2.26 (Social Welfare). The social welfare of a player set S ⊆ U is
defined as the sum of valuations of all served players minus the servicing cost, i.e.

v(S) − C(S).

Note that at first sight, this definition differs slightly from the one given in Sec-
tion 2.2. However, both notions coincide if one considers the service provider as an
additional player whose (negative) valuation is the cost of providing the service.

Classical results in economics [42, 86] state that no truthful mechanism can
achieve budget balance and maximum social welfare at the same time; even for
simple cost functions and if only strategyproofness is required. Moreover, Feigen-
baum et al. [33] showed that for the multicast cost sharing game these two objec-
tives cannot even be approximated simultaneously, even if only strategyproofness
is required.

Motivated by these shortcomings, Roughgarden and Sundararajan [88] recently
introduced an alternative measure of efficiency that circumvents the intractability
results in [34, 42, 86] at least partially. They define the social cost of a player set
as the cost for serving this player set plus the sum of valuations over all players
that are not served.

22 Preliminaries

Definition 2.27 (Social Cost [88]). The social cost of a set S ⊆ U is defined as

Π(S) := C̄(S) +
∑

i/∈S

vi.

Observe that for every set S ⊆ U , Π(S) = v(U)− (v(S)−C(S)), i.e. the social
cost of a set S equals the total valuation v(U) of all players minus the social
welfare of the set S. Since v(U) is a constant parameter of the game, a player set
minimizes social cost if and only if it maximizes social welfare. As a consequence,
the optimal allocations coincide for both efficiency objectives; however, the two
objectives differ with respect to their approximability.

A mechanism is said to be α-approximate if it computes a final set of social
cost at most α times the optimal social cost Π∗, where

Π∗ := min
S⊆U

(

C(S) +
∑

i/∈S

vi

)

.

Definition 2.28 (α-Approximate). Let SM denote the served set of players com-
puted by a mechanism M . Then, M is α-approximate for some α ≥ 1 if (assuming
that all players i ∈ U bid their true values bi = vi)

Π(SM) ≤ α · Π∗.

Dobzinski et al. [30] very recently showed that for cost functions comprising the
public excludable good problem, a logarithmic gap between the budget balance and
social cost approximation guarantees is inevitable even if only strategyproofness
is required.

2.3.4 General Demand Model

We now review general demand cost sharing games, a generalization of the well-
studied binary demand case. Here, in contrast to binary demand cost sharing
games, players request several levels of service. This model has been introduced
by Moulin in [73] and was recently studied by [14, 29, 69].

In a general demand cost sharing game, every player i ∈ U has valuation
for a finite number of service levels. The maximum service level is bounded by a
constant L ∈ N. The private type of a player i ∈ U is her valuation vector vi ∈ R

L
+.

Here, vi,l denotes the additional valuation that player assigns for receiving l levels
of service over receiving l−1 levels of service. Accordingly, each player i announces
a bid vector bi ∈ R

L
+. bi,l represents the maximum price player i is willing to pay

for receiving service level l (in addition to service levels 1 to l − 1).

2.3 Cost Sharing Games 23

An allocation of goods or service to the set of players U is denoted by a vec-
tor x ∈ N

U
0 , where xi ∈ N0 indicates the level of service that player i obtains;

xi = 0 means that player i does not receive service. Note that as a characteristic
of this model, only subsequent service levels can be allocated to a player, i.e. if a
player obtains service level l, then she also obtains service levels 1, . . . , l − 1.

The cost of an allocation x ∈ N
U
0 is given by a cost function C : N

U
0 → R+. We

assume that C is non-decreasing in every component, and C(0) = 0 for the all-
zero allocation 0. In the examples we study in Chapter 5, the common service is
represented by a combinatorial optimization problem like e.g. Steiner tree, machine
scheduling, etc. (see Section 2.5 for definitions). In these cases, we define C(x) as
the cost of an offline optimal solution to the underlying optimization problem.

Definition 2.29 (General Demand Cost Sharing Mechanism). A general demand
cost sharing mechanism solicits the bid vectors bi from all players i ∈ U , and
computes a service allocation x ∈ N

U
0 and a payment φi,l ∈ R for every player i ∈ U

and service level l ≤ L.

In the general demand setting, the standard assumptions generalize as follows:

1. Individual rationality: A player is charged only for service levels that she
receives, and for any service level, her payment is at most her bid, i.e. for
all i, l: φi,l = 0 if xi < l and φi,l ≤ bi,l if xi ≥ l.

2. No positive transfer : A player is not paid for receiving service, i.e. φi,l ≥ 0
for all i, l.

3. Consumer sovereignty: A player is guaranteed to receive an additional ser-
vice level if she bids high enough, i.e. there exists a threshold value b∗i,l for
each player i and service level l such that xi ≥ l if bi,l ≥ b∗i,l and xi ≥ l − 1.

For notational convenience, we define vi,0 = φi,0 = 0 for all players i ∈ U .

Let C̄(x) denote the cost of the actually computed solution for allocation x.
Along the lines of Definition 2.23, a general demand cost sharing mechanism is
β-budget balanced if

C̄(x) ≤
∑

i∈U

L∑

l=1

φi,l ≤ β · C(x).

2.3.5 Classes of Cost Functions

Often, restricting the class of cost functions for a cost sharing game can be ex-
ploited to derive cost sharing mechanisms with more desirable properties. We
define four classes of cost functions that are frequently referred to in this thesis.

24 Preliminaries

Subadditive costs. The cost of the union of two sets is less or equal to the sum
of the individual costs of both sets, i.e. C(S ∪ T) ≤ C(S) + C(T) for all
S, T ⊆ U .

Superadditive costs. The cost of the union of two disjoint sets is greater or
equal to the sum of the individual costs of both sets, i.e. C(S ∪T) ≥ C(S)+
C(T) for all S, T ⊆ U with T ∩ S = ∅.

Submodular costs. The incremental cost of adding a player to a set S is non-
increasing in the size of S, i.e. C(T ∪ {i}) − C(T) ≤ C(S ∪ {i}) − C(S) for
all S ⊆ T ⊆ U and i ∈ S. This is equivalent to requiring that C(S ∪ T) +
C(S ∩ T) ≤ C(S) + C(T) for all S, T ⊆ U .

Supermodular costs. The incremental cost of adding a player to a set S is non-
decreasing in the size of S, i.e. C(T ∪ {i}) − C(T) ≥ C(S ∪ {i}) − C(S) for
all S ⊆ T ⊆ U and i ∈ S. This is equivalent to requiring that C(S ∪ T) +
C(S ∩ T) ≥ C(S) + C(T) for all S, T ⊆ U .

2.4 Design Techniques and Classes of Cost

Sharing Mechanisms

The development of truthful mechanisms for binary demand cooperative cost shar-
ing games has attracted a lot of attention in the theoretical computer science lit-
erature in recent years. Most notably, Moulin [73] proposed a class of cost sharing
mechanisms widely known as Moulin mechanisms that realize the strong notion of
group-strategyproofness. For a long time, most cost sharing mechanisms that were
developed for binary demand cost sharing games were Moulin mechanisms. More
recently, Mehta, Roughgarden, and Sundararajan [69] introduced a new class of
cost sharing mechanisms called acyclic mechanisms. These mechanisms generalize
Moulin mechanisms and thereby leave room for better approximation guarantees
with respect to budget balance and social cost. However, they achieve the slightly
weaker notion of truthfulness called weak group-strategyproofness. Another class
of cost sharing mechanisms that we adopt in this thesis are sequential mechanisms
that were introduced by Moulin in [73] and later rediscovered by Juarez [56]. In
the following, we review these three classes of cost sharing mechanisms and discuss
the related work on cost sharing mechanisms.

2.4 Design Techniques and Classes of Cost Sharing Mechanisms 25

2.4.1 Cost Sharing Methods

An important ingredient to both classes of Moulin and acyclic mechanisms are
cost sharing methods. For every player set S ⊆ U , a cost sharing method defines
the cost share each player would have to pay if S was the served player set.

Definition 2.30 (Cost Sharing Method). A cost sharing method is a function
ξ : U × 2U → R

+ that assigns to each user i ∈ U and subset S ⊆ U a non-negative
cost share ξ(i, S). We define ξ(i, S) := 0 for all i ∈ U \ S and S ⊆ U .

Similar to Definition 2.23 for cost sharing mechanisms, a cost sharing method ξ
is called β-budget balanced if for every possible subset of players, the sum of the
cost shares with respect to this set does not deviate by more than a factor of β
from the cost of serving this set, i.e.

∀S ⊆ U :
1

β
· C̄(S) ≤

∑

i∈S

ξ(i, S) ≤ C(S).

We say that ξ satisfies β-cost recovery if the first inequality holds; it is competitive
if the latter inequality is fulfilled.

2.4.2 Moulin Mechanisms

The most well-known class of cost sharing mechanisms are the so-called Moulin
mechanisms based on a framework by Moulin and Shenker [74]. Moulin mecha-
nisms are the only general class of mechanisms that satisfy the strong notion of
group-strategyproofness. A Moulin mechanism can roughly be viewed as an iter-
ative ascending auction: In each iteration, the mechanism proposes a cost share
to every player. If all players accept their cost shares, the mechanism halts and
returns the respective player set and their cost shares. Otherwise, the mechanism
removes all players who reject their cost shares from the game and continues with
the next iteration.

The crucial input to a Moulin mechanism are cost shares that are cross-mono-
tonic. Intuitively, a cost sharing method is cross-monotonic if the cost share of
a player does not decrease when some of the other players are removed from the
game.

Definition 2.31 (Cross-Monotonic). A cost sharing method ξ is cross-monotonic
if for all S′ ⊆ S ⊆ U and for every i ∈ S′, it holds that

ξ(i, S′) ≥ ξ(i, S).

26 Preliminaries

The Moulin mechanism M(ξ) induced by a cross-monotonic cost sharing method ξ
is formally defined as specified in Algorithm 1.

Algorithm 1: Moulin mechanism M(ξ) induced by ξ.

Input: Set of players U and bid vector b = (bi)i∈U

Output: Allocation vector x = (xi)i∈U and payment vector p = (pi)i∈U

Initialize S := U .1

if ξ(i, S) ≤ bi for every player i ∈ S then halt and output the2

characteristic vector x of S and payments p := (ξ(i, S))i∈U .
Remove an arbitrary player with ξ(i, S) > bi from S and return to Step 2.3

Moulin and Shenker [74] showed that, given a budget balanced and cross-
monotonic cost sharing method ξ, the Moulin mechanism M(ξ) satisfies budget
balance and group-strategyproofness. Jain and Vazirani [54] observed that this
result also carries over to approximately budget balanced and cross-monotonic
cost sharing methods:

Theorem 2.32 ([74, 54]). Let ξ be a β-budget balanced and cross-monotonic cost
sharing method. Then, the induced Moulin mechanism M(ξ) is group-strategyproof
and β-budget balanced.

Proof. The inheritance of β-budget balance follows directly from the definition of
a Moulin mechanism. To prove group-strategyproofness, consider a cost sharing
game and let ξ be a cross-monotonic cost sharing method. Assume for contradic-
tion that there is a coalition S ⊆ U whose members can all increase or maintain
their utilities by bidding according to a bid vector b′ instead of a bid vector b with
bi = vi for all i ∈ S (where bi = b′i for all i /∈ S). Let Q and Q′ denote the final
served player sets output by M(ξ) for b and b′, respectively.

We first prove that Q′ ⊆ Q. Assume for contradiction that there is a player who
is served in the run on b′ but not in the run on b. Among all such players, let i be
the one who is dropped first in the run on b. Let T ⊆ U be the remaining player set
at the beginning of this iteration. By choice of i, all players that have previously
been dropped in the run on b are also dropped in the run of b′, i.e. T ⊇ Q′. Thus,
by cross-monotonicity and by the decisions of the mechanism in both runs, we can
conclude that bi < ξ(i, T) ≤ ξ(i,Q′) ≤ b′i. Since only members of the coalition
can submit two different bids b′i 6= bi, we thus have i ∈ S. However, this means
that vi = bi < ξ(i, T) ≤ ξ(i,Q′) and hence player i has negative utility in the run
on b′. On the other hand, player i has zero utility in the run on b and therefore
ui(b

′) < ui(b), contradicting the first assumption. We conclude that Q′ ⊆ Q.
Now, by cross-monotonicity, ξ(i,Q′) ≥ ξ(i,Q) for all i ∈ Q′, and hence no

member of the coalition can strictly improve her utility by misreporting.

2.4 Design Techniques and Classes of Cost Sharing Mechanisms 27

As we mentioned in Section 2.2.6, a standard fairness concept in classical co-
operative game theory is the β-core. A cost sharing method is said to be in the
β-core if for each player set S ⊆ U , the vector (ξ(i, S))i∈S is in the β-core of the
cooperative game with transferable utilities on the set of players S. Formally, this
results in the following definition.

Definition 2.33 (β-Core). A cost sharing method ξ is in the β-core iff it is β-
budget balanced and

∑

i∈S′

ξ(i, S) ≤ C(S′)

for all S′ ⊆ S ⊆ U .

It is not hard to see that every cross-monotonic and β-budget balanced cost
sharing method is in the β-core: We simply use cross-monotonicity to deduce
that

∑

i∈S′ ξ(i, S) ≤ ∑

i∈S′ ξ(i, S′) = C(S′). As a consequence, the cost shares
computed by any β-budget balanced Moulin mechanism fulfill the fairness property
of being in the β-core.

Following the publication of Theorem 2.32, a lot of research in recent years
has gone into designing cross-monotonic and approximately budget balanced cost
sharing methods cross-monotonic for the cost sharing variants of many classical
optimization problems such as fixed tree multicast [3, 33, 34], submodular cost
sharing [74], minimum spanning tree [54, 59], Steiner tree [54, 59], price-collecting
Steiner tree [45], Steiner forest [60], facility location [80], connected facility loca-
tion [46, 64, 80], single-source rent-or-buy problems [80, 64, 46] parallel machine
scheduling [10, 12], and vertex and set cover [52].

Very recently, Roughgarden and Sundararajan [88] introduced the social cost as
a new benchmark for evaluating the efficiency of cost sharing mechanisms. In the
same work, the authors revealed a relation between the social cost approximation
factor of a Moulin mechanism M(ξ) and a property of the input cost sharing
method ξ. Assume we are given an arbitrary order σ on a subset S ⊆ U of
players, i.e. S = {i1, . . . , i|S|}, where ij ≺σ ik if 1 ≤ j < k ≤ |S|. We define Sj ⊆ S
as the set of the first j players of S according to the order σ.

Definition 2.34 (α-Summable). A cost sharing method ξ is α-summable if for
every subset S ⊆ U and every order σ on S,

|S|
∑

j=1

ξ(ij , Sj) ≤ α · C(S).

Roughgarden and Sundararajan [88] proved that the Moulin mechanism M(ξ)
is (α + β)-approximate and β-budget balanced if the underlying cost sharing

28 Preliminaries

method ξ is α-summable and β-budget balanced. Moreover, they showed that
max{α, β} is a lower bound on the approximability of M(ξ).

Following the work of Roughgarden and Sundararajan, researchers started to
investigate cost sharing mechanisms in light of their social cost approximation
guarantees. Results were found for Steiner tree and forest, facility location, single-
source rent-or-buy network design and machine scheduling [16, 25, 45, 88, 89].
However, negative results showed that for several fundamental cost sharing games,
Moulin mechanisms inevitably suffer from poor approximation factors with respect
to budget balance [10, 16, 52, 60, 88] or social cost [16, 25, 88, 89]. Among these
results are our lower bounds presented in Chapter 3.

2.4.3 Characterizing Group-Strategyproof Mechanisms

It has been a long-standing open question to characterize the full range of group-
strategyproof mechanisms. Until today, there are only very few group-strategy-
proof mechanisms that do not belong the class of Moulin mechanisms. These
mechanisms are typically defined for very constrained cases, like e.g. the 2-price
mechanisms by Bleischwitz et al. [13]. Moulin [73] proved that for submodular
cost functions, Moulin mechanisms are the only cost sharing mechanisms that are
budget balanced and group-strategyproof. Moreover, Immorlica et al. [52] showed
that group-strategyproof cost sharing mechanisms that satisfy some additional
conditions correspond to Moulin mechanisms.

Only very recently, the question of characterizing group-strategyproof mecha-
nisms has been completely settled [56, 84]. An important point in this context is
whether a player that is indifferent, i.e. whose valuation is equal to the requested
payment, is accepted or rejected from receiving service (see [56] or [84] for a de-
tailed discussion). Juarez [56] very recently characterized group-strategyproof cost
sharing mechanisms that either always accept or always reject indifferent players.
Two months ago, Pountourakis and Vidali gave a complete characterization of
group-strategyproof mechanisms [84]. Throughout this thesis, we assume that
cost sharing mechanisms always accept indifferent players.

2.4.4 Acyclic Mechanisms

Motivated by the shortcomings inherent to Moulin mechanisms, Mehta, Roughgar-
den, and Sundararajan [69] recently introduced acyclic mechanisms which realize
the slightly weaker notion of weak group-strategyproofness. Acyclic mechanisms
are also driven by cost sharing methods that have to obey certain properties.
However, these properties are less restrictive than the cross-monotonicity require-
ment for Moulin mechanisms and therefore leave more flexibility for improving the
approximation guarantees with respect to budget balance and social cost.

2.4 Design Techniques and Classes of Cost Sharing Mechanisms 29

An acyclic mechanism is defined in terms of a cost sharing method ξ and an
offer function τ .

Definition 2.35 (Offer Function). An offer function τ : U × 2U → R
+ defines for

every subset S ⊆ U and every player i ∈ S a non-negative offer time τ(i, S).

The acyclic mechanism A(ξ, τ) induced by ξ and τ receives the bid vector b as
input and proceeds as described in Algorithm 2.

Algorithm 2: Acyclic mechanism A(ξ, τ) induced by ξ and τ .

Input: Set of players U and bid vector b = (bi)i∈U

Output: Allocation vector x = (xi)i∈U and payment vector p = (pi)i∈U

Initialize S := U .1

if ξi(S) ≤ bi for every player i ∈ S then halt and output the2

characteristic vector x of S and payments p := (ξ(i, S))i∈U .
Among all players in S with ξ(i, S) > bi, let i∗ be one with minimum3

τ(i, S) (breaking ties arbitrarily).
Set S := S \ {i∗} and return to Step 2.4

Intuitively, acyclic mechanisms generalize Moulin mechanisms by allowing to
constrain the order in which players can be rejected through the offer function τ .
For a given subset S ⊆ U and a player i ∈ S, we partition the player set S into
three sets with respect to the offer time of i: let L(i, S), E(i, S) and G(i, S) be
the sets of players with offer times τ(·, S) strictly less than, equal to, or strictly
greater than τ(i, S), respectively. The following definition is crucial to achieve
weak group-strategyproofness.

Definition 2.36 (Valid Offer Function). Let ξ and τ be a cost sharing method
and an offer function on U . The offer function τ is valid for ξ if the following
two properties hold for every subset S ⊆ U and player i ∈ S:

(P1) ξ(i, S \ T) = ξ(i, S) for every subset T ⊆ G(i, S);

(P2) ξ(i, S \ T) ≥ ξ(i, S) for every subset T ⊆ G(i, S) ∪ (E(i, S) \ {i}).

Thus intuitively, Definition 2.36 requires cross-monotonicity only with respect
to players with greater or equal offer times. We summarize the main result of
Mehta, Roughgarden, and Sundararajan [69] in the following theorem:

Theorem 2.37 ([69]). Let ξ be a β-budget balanced cost sharing method and let τ
be an offer function that is valid for ξ. Then, the induced acyclic mechanism
A(ξ, τ) is β-budget balanced and weakly group-strategyproof.

30 Preliminaries

Mehta, Roughgarden, and Sundararajan [69] showed that primal-dual approxi-
mation algorithms for several combinatorial optimization problems naturally give
rise to acyclic mechanisms with attractive approximation guarantees both with
respect to budget balance and social cost. Bleischwitz et al. [12] recently defined
egalitarian mechanisms, which belong to the class of acyclic mechanisms. Egali-
tarian mechanisms iteratively add a most cost efficient player set and charge each
player in the set an equal amount. The authors show how to construct egalitarian
mechanisms from approximation algorithms that fulfill a (rather strong) mono-
tonicity property, requiring that the approximate solution cost does not increase
when any player’s size (e.g. its processing time) is reduced. They apply their
results primarily to makespan scheduling and bin packing problems. Bleischwitz
et al. [12] also proved that all acyclic mechanisms are weakly group-strategyproof
against collectors, a notion that strengthens weak group-strategyproofness to the
setting where indifferent players are assumed to strictly prefer receiving service at
their valuation price over not receiving service.

2.4.5 Sequential Mechanisms

Another class of cost sharing mechanisms that has been introduced by Moulin [73]
are incremental mechanisms. An incremental mechanism considers players sequen-
tially according to an arbitrary but fixed order. The cost share offered to a player
is equal to her incremental cost, i.e. the increase in cost caused by adding this
player to the set of previously selected players. The player is granted service if
she accepts her cost share. Moulin claimed that for supermodular cost functions,
incremental mechanisms are basically the only cost sharing mechanisms that are
group-strategyproof and budget balanced. However, the original characterization
given in [73] is flawed (as indicated in [56]) and the positive part of the statement
holds only under the assumption that players are never indifferent. Moulin also
extended the class of incremental mechanisms by allowing that the order on the
set of players that have not been considered so far may change during the course of
the mechanism. He calls these mechanisms generalized incremental mechanisms.

In his original work [73], Moulin gives several equivalent definitions for incre-
mental and generalized incremental mechanisms. The most intuitive definition is
by means of a binary decision tree. A binary decision tree is a routed directed
tree in which each vertex is labeled with a player and has two successors. Start-
ing from the root, the mechanism proposes in each iteration an incremental cost
share to the player associated with the current vertex. Depending on whether the
player accepts her cost share or not, it moves on to the right or left successor of
the current vertex. The mechanism stops when it has reached a sink vertex. In
the binary decision tree corresponding to an incremental mechanism, all vertices
that have the same distance to the root are labeled with the same player. In the

2.5 Combinatorial Optimization Problems 31

generalized setting, it is only required that every path contains the name of each
player exactly once (for binary demand cost sharing games) or up to L times (for
general demand cost sharing games).

Juarez [56] very recently showed that group-strategyproof cost sharing mecha-
nisms correspond to sequential mechanisms if indifferent players are rejected from
obtaining service. Sequential mechanisms correspond to generalized incremental
mechanisms in which the vertices of the binary decision tree can be labeled with
arbitrary cost shares (see [56] for precise definitions).

Incremental and generalized incremental mechanisms are much less prevailing
in literature than Moulin mechanisms (at least in the context of deriving cost
sharing mechanisms for optimization problems). However, our results in Chap-
ter 4 reveal that generalized incremental mechanisms naturally arise as weakly
group-strategyproof mechanisms with attractive budget balance and social cost
approximation guarantees for several fundamental cost sharing games for which
Moulin mechanisms inevitably fail.

2.5 Combinatorial Optimization Problems

Many of the problems considered in this thesis are based on combinatorial opti-
mization problems in which one seeks to identify a combinatorial structure with
minimum cost. The problems we are interested in can broadly be divided into
two domains: The first domain is scheduling, where the major challenge is to
find good sequences or temporary plans for a given set of tasks. In this thesis,
we consider the fundamental class of parallel machine scheduling problems, which
we introduce in Section 2.5.1. The second domain can be subsumed by the term
network design. It includes various problems in which one seeks a minimum cost
structure that establishes certain connectivity requirements. These problems are
often defined on graphs. In Section 2.5.2 we give an introduction to the central
problems of this domain.

2.5.1 Parallel Machine Scheduling

In general, a parallel machine scheduling problem can be described as follows: We
are given a set U of n jobs that are to be executed on m parallel machines. Every
machine can execute at most one job at a time. The goal is to assign all jobs to
the machines such that a certain objective function, such as the completion time
of the last job or the sum of all completion times, is minimized.

Depending on the scheduling applications, there are various meaningful objec-
tive functions and input characteristics for machine scheduling problems. In order

32 Preliminaries

to differentiate between the various settings, we use the standard notation scheme
by Graham et al. [40]. In this notation scheme, a scheduling problem is classified
by a three-field expression of the form α|β|γ. In the following, we review the
instantiations used in this thesis.

First field (α). The first field describes the machine environment. In this thesis,
we only consider identical parallel machines which are denoted by P. If
there is only a single machine, i.e. m = 1, the parameter α is to set to 1.

Second field (β). The second field describes the job types and execution options.
In the identical machine problems that we study, each job i ∈ U has a
positive processing time pi and a non-negative weight wi. The processing
time describes the time needed to execute i on one of the machines (thus,
intuitively, all machines have the same speed). In case all jobs have the same
length, we speak of unit processing times and add the term pi = 1 to the
second field.

Additionally, a job may have a non-negative release date ri. We describe this
by adding the term ri to the second field. The release date specifies the time
when job i becomes available for execution. When jobs have release dates, it
is often allowed to interrupt the execution of a job at any point of time and
resume is later, possibly on a different machine. This setting is called the
preemptive setting and is indicated by the term pmtn. In contrast, in the
(standard) non-preemptive setting, a job that has started must be completed
on the same machine without interruption.

Third field (γ). The third field indicates the objective function (or cost function)
that is sought to be minimized. We consider the makespan, completion time
and flow time objectives and their respective weighted counterparts. Let Ci

denote the completion time of job i ∈ U in a given schedule, i.e. the point of
time when job i has been fully processed.

The makespan of a given schedule is denoted by Cmax and refers to the point
of time when all jobs have been completed. Job weights are generally not
considered in this setting.

The (weighted) completion time objective is referred to by setting the param-
eter γ to

∑

i
wiCi. Here, the cost of a schedule is the sum of the (weighted)

completion times over all jobs. The average (weighted) completion time ob-
jective is denoted by

∑

i
wiCi/n. In the standard setting, i.e. when all jobs

have to be executed, this objective is equivalent to the (weighted) comple-
tion time objective. However, in the mechanism design settings studied in
this thesis, we usually have to choose a subset of jobs to execute. In this
case, the parameter n varies with the executed set of jobs and we need to
differentiate between the two objective functions.

2.5 Combinatorial Optimization Problems 33

The flow time Fi of a job i ∈ U is defined as the difference between its
completion time and its release date, i.e. Fi := Ci − ri. We set the third
parameter to

∑

i
wiFi if the objective is to minimize the weighted flow time.

In all the three min-sum scheduling cases, we omit the weights wi in the case
of unweighted or unit weight jobs.

The problem of scheduling independent jobs on parallel machines is well-studied
for various settings described by the above parameters. We refer the reader to
Brucker [21] for an excellent overview. The most relevant results for our work are
the following:

The minimum makespan problem P | |Cmax is NP-complete, as shown by Garey
and Johnson [36]. Hochbaum and Shmoys [50] gave a polynomial-time approxima-
tion scheme (PTAS) for this problem. Graham’s largest processing time (lpt) algo-
rithm [41] is a 4/3-approximation. The versions with unit processing times or equal
weights are are optimally solved by the lpt algorithm [94, 67]. Lenstra proves
that the minimum weighted completion time scheduling problem P | |∑i wiCi is
NP-complete (see [21]). This result also implies NP-completeness of the aver-
age weighted completion time problem P | |∑i wiCi/n. A PTAS for both prob-
lems has been given in [2]. Smith’s rule [96] schedules jobs by non-increasing
weight per processing time ratios and approximates both problems by a factor of
1
2 · (1 +

√
2) ≈ 1.21. For unit processing times or equal weights, Smith’s rule de-

livers optimal solutions. With release dates and preemption, minimizing the sum
of (unweighted) completion times P |ri, pmtn|∑i Ci becomes NP-hard [82]. Only
the single machine case is solved optimally by the shortest remaining processing
time (srpt) algorithm [93]. Sitters [95] very recently showed that srpt achieves
an approximation guarantee of 1.25 for the parallel machines case.

In the mechanism design variant of scheduling problems, each job is identified
with a player who wants her job to be processed on one of the m machines.

Scheduling with Rejection.

In scheduling problems with rejection, the algorithm may choose to schedule only a
subset of the jobs and pay a certain penalty for each job that is omitted. Consider
an arbitrary scheduling problem with job set U and objective function C. In the
respective problem with rejection, every job i ∈ U has a non-negative penalty zi.
For every job i ∈ U , we can either schedule i, which incurs a respective contribution
to the cost of the schedule, or reject i and pay its penalty zi. Summing up, the
problem is to compute a solution for a subset S ⊆ U of jobs such that the overall
cost C(S) +

∑

i/∈S zi is minimized.

This setting has been introduced by Bartal et al. [7] for an online minimum
makespan scheduling problem. Since then, there has been some follow-up work
on makespan scheduling with rejection. Engels et al. [32] study the offline version

34 Preliminaries

for completion time related problems. They give randomized algorithms for min-
imizing the weighted sum of completion times on related machines which achieve
expected approximation guarantees of 2 with and 3/2 without release dates, re-
spectively. For the single machine case, they were able to design optimal algo-
rithms; however, their running-time is only pseudopolynomial unless either weights
or processing times are all equal. Bunde [22] gives an optimal algorithm for the
single machine case with release dates and unit processing times. He also proves
that the completion time scheduling problem with rejection is NP-complete even
on a single machine if there are release dates. Bansal et al. [6] study the online
preemptive single machine case where flow time or job idle time is concerned.

In scheduling problems with due dates, problems in which a subset of jobs can
be rejected are sometimes called scheduling with penalties. Similar variants for
network design problems are usually referred to as price-collecting variants. It is
easily verified that a cost sharing mechanism that approximates social cost by a
factor of α defines an α-approximate algorithm for the underlying optimization
problem with rejection. Our mechanisms presented in Chapter 4 therefore yield
several constant approximation algorithms for scheduling problems with rejection.

2.5.2 Network Design

We briefly review network design and related problems. A comprehensive survey
on these problems can be found in [61].

A network design problem, we are given an undirected graph G = (V,E) with
edge weights we ≥ 0 for all edges e ∈ E. Further, we are given a connectivity
requirement duv ∈ N0 for every unordered pair of vertices u, v ∈ V . The task is to
find a minimum weight subgraph H of G such that for all u, v ∈ V , there are duv

edge-disjoint paths in H.

One of the easiest examples is the minimum spanning tree (MST) problem.
Here, the connectivity requirement is duv = 1 for all u, v ∈ V , i.e. we are ask-
ing for a spanning tree of G with minimum weight. There are several well-know
polynomial algorithms that solve the MST problem optimally [61]. In the corres-
ponding cost sharing game, we assume that we are given a designated root vertex
r ∈ V . Every player i ∈ U is associated with a unique vertex in V and the goal of
player i is to connect her vertex to the root r.

Another example is the Steiner tree problem. Here, we ask for a minimum
weight tree that spans a subset of prespecified terminal vertices T ⊆ V and may
contain non-terminal vertices. The connectivity requirement is thus duv = 1 if
both u, v ∈ T and duv = 0 otherwise. The Steiner tree problem is NP-hard even
for unit weights [37], but there are several approximation algorithms with small
constant approximation guarantees, the currently best ones being around 1.55
(compare e.g. [61]).

2.6 Congestion Games 35

In the Steiner forest problem, we are given a set of terminal pairs si, ti ∈ V .
The goal is to select a minimum cost set of edges such that each terminal pair is
connected by a path. Hence, the connectivity requirement is dsiti = 1 for every
terminal pair, and duv = 0 otherwise. The Steiner forest problem contains both
the MST and the Steiner tree problem as special cases.

A problem that is very related to network design problems is the traveling
salesman (TSP) problem. Here, we are given a graph with edge weights, and the
goal is to determine a minimum weight tour which contains each vertex exactly
once. Like the Steiner tree problem, TSP is NP-hard [37] but can be approximated
well. For instance, a 2-approximate solution can be constructed from a minimum
spanning tree (see [61]).

2.6 Congestion Games

Congestion games were originally introduced by Rosenthal [87] as a class of games
which possess pure Nash equilibria. Generally speaking, a congestion game is a
strategic game [79] in which the utility of a player depends on the number of players
who use the same or overlapping strategies. Since Rosenthal’s original work, there
has been an immense amount of research on congestion games, most of which
study different types of equilibria and their respective inefficiency compared to
optimal allocations. We briefly review congestion games in this section.

Definition 2.38 (Congestion Game). A congestion game Γ = (U,R, (Si)i∈U) con-
tains a set of players U and a set R of resources. Every player i ∈ U has a
strategy set Si ⊆ P(R), where P(R) := {S|S ⊆ R} denotes the power set of R.
A congestion game is called symmetric if the strategy sets of all players coincide,
i.e. Si = S for all i ∈ U .

Each player chooses to use one of the strategies in her strategy set. Let Si ∈ Si

denote the strategy chosen by player i ∈ U . The congestion xr of a resource r ∈ R
is defined as the number of players using it, i.e.

xr := |{i ∈ U : r ∈ Si}|.

Depending on its congestion, each resource has a payoff that is specified by a
function g : N → R+. There are several ways to define the payoff πi of a player
(compare e.g. [27]). We review the following two standard definitions:

• Total Payoff. In the standard congestion games model, the payoff of a

36 Preliminaries

player is defined as her total payoff over all resources that she uses, i.e.

πi =
∑

r∈Si

g(xr).

In this model, g(xr) is usually interpreted as the delay of a resource, and
each player aims at minimizing πi, which corresponds to her total delay.

• Bottleneck Payoff. A different way of defining players’ payoff is by means
of their minimum payoff

πi = min
r∈Si

g(xr).

This definition especially makes sense when g(xr) models the throughput of
a resource. πi then corresponds to the throughput of the most congested
or bottleneck resource used by player i. For this reason, we call congestion
games with these payoff functions bottleneck congestion games.

There is a significant amount of work in the field of congestion games, most
of which study several variations of the price of anarchy or stability. Besides,
several generalizations of the above setting have been defined. For instance, Mon-
derer and Shapley [72] introduced congestion games with resource-dependent pay-
off functions gr. Milchtaich [71] studied the case with player-dependent payoff
functions gi. Cole et al. [27] study the price of anarchy for different types of play-
ers’ payoff functions in a model in which an optimal allocation is not required to
include all players.

In Chapter 6, we adopt the bottleneck payoff definition in which g represents
the troughput of a resource and is therefore assumed to be non-decreasing. In
the following, we describe three important classes of congestion games that we
consider.

Singleton Congestion Games.

In a singleton congestion game, every strategy contains exactly one resource. We
denote a symmetric singleton congestion game on a resources by Γa = (U, [a], [a]).
Here, each player’s strategy set is identified with the set of resources, i.e. S = [a].

Among many others, Koutsoupias and Papadimitriou [62] and Gairing and
Schoppmann [35] study the price of anarchy of singleton congestion games in
different settings.

Network Congestion Games.

In a network congestion game, we are given a graph G = (V,E). The resources
of the game are the edges of G. Each player i ∈ U has a source vertex si ∈ V
and a sink vertex ti ∈ V . Player i’s strategy set is defined as the set of paths

2.6 Congestion Games 37

from si to ti. In a symmetric or single-commodity network congestion game, the
source and sink vertices of all players coincide, respectively. In network congestion
games, the congestion of an edge is often called the flow on this edge.

There are many works on network congestion games (see e.g. [62, 90]). Banner
and Orda [5] and Busch and Magdon-Ismail [23] study the efficiency of Nash
equilibria for bottleneck network congestion games with the global objective of
optimizing the (overall) worst payoff of a resource. Mazalov et al. [66] study the
performance of bottleneck network congestion games compared to the minimum
weighted sum of the bottleneck latencies of all used paths.

Matroid Congestion Games.

In a matroid congestion game [1], the strategy set of each player corresponds to
the bases of a matroid.

Definition 2.39 (Matroid [61]). A matroid is a tuple (R,I), where R is a finite
set of resources, and I is a non-empty family of subsets of R such that

(i) If I ∈ I and J ⊆ I, then J ∈ I, and

(ii) If I, J ∈ I and |J | ≤ |I|, then there exists r ∈ I \ J such that J ∪ {r} ∈ I.

A set I ∈ I is called an independent set of R. An maximal independent set B
is called a basis of the matroid. It can be proven that all maximal independent
sets have the same size, which is also referred to as the rank of the matroid (see
e.g. [61]). In a cycle matroid, R corresponds to the set of edges of a given graph G,
and an independent set of the matroid defined as a forest in G. A basis of a cycle
matroid is thus a spanning tree in G.

Ackermann et al. [1] study matroid congestion games with respect to the total
payoff function defined above. Voice et al. [100] study Nash equilibria of matroid
congestion games with general “congestion-averse” payoff functions.

3

GROUP-STRATEGYPROOF COST

SHARING

Classical results in economics show that no truthful mechanism can achieve budget
balance and efficiency simultaneously. Roughgarden and Sundararajan recently
proposed an alternative efficiency measure, which was subsequently used to exhibit
that many previously known cost sharing mechanisms approximate both budget
balance and efficiency. In this chapter, we investigate cost sharing mechanisms for
combinatorial optimization problems using this novel efficiency measure, with a
particular focus on scheduling problems. Our contribution is threefold: First, for
a large class of optimization problems that satisfy a certain cost-stability property,
we prove that no budget balanced Moulin mechanism can approximate efficiency
better than Ω(log n), where n denotes the number of players. Second, we present a
group-strategyproof cost sharing mechanism for the minimum makespan schedul-
ing problem that is tight with respect to budget balance and efficiency. Finally, we
show a general lower bound on the budget balance factor of cost sharing methods,
which can be used to prove a lower bound of Ω(n) on the budget balance factor
for completion and flow time scheduling objectives.

Publication Note. The results contained in this chapter have been presented
at the 24th International Symposium on Theoretical Aspects of Computer Science
(STACS 07) [16] and were published in Theoretical Computer Science [17].

39

40 Group-Strategyproof Cost Sharing

3.1 Introduction

In this chapter, we study group-strategyproof cost sharing mechanisms for binary
demand cost sharing games. A particular focus is laid on cost sharing games that
are derived from parallel machine scheduling problems. The general setting is as
described in Section 2.3.1: We are given a set of n players that are interested in
a certain service. Every player has a private valuation vi for receiving this service
and announces a bid bi which designates the maximum price she is willing to pay.
Associated with the underlying optimization problem, we are given a cost function
describing the minimum cost of serving each subset of players. In this chapter, we
use the alternative definition for β-budget balance given in Equation 2.1.

A large class of group-strategyproof cost sharing mechanisms are so-called
Moulin mechanisms, based on a framework due to Moulin and Shenker [74]. This
framework provides a means to obtain group-strategyproof cost sharing mecha-
nisms from cross-monotonic cost sharing methods. Roughgarden and Sundarara-
jan [88] revealed a relation between the efficiency of a Moulin mechanism with
respect to social cost and a property of the underlying cost sharing method, which
they termed α-summability. There is a fair amount of related work that is based
on these findings. Details are given in Section 2.4.2.

One focus of this chapter is on cost sharing mechanisms for parallel machine
scheduling problems, which we introduced in Section 2.5.1. In the classical setting,
we are given a set of jobs that have to be executed on m parallel machines. The
goal is to assign all jobs to the machines such that a certain objective function,
such as the makespan or the sum of all completion times, is minimized. In the
cost sharing context, we assume that every job is owned by a player who acts
strategically in order to get her job processed at a low cost. The cost that is
to be distributed among the players depends on the objective function of the
scheduling problem. It is very natural to suppose that the cost incurred by the
service provider is the amount of time that she needs until all jobs are completed,
leading to the minimum makespan cost function. However, one can also imagine
that the service provider aims at minimizing the total time that jobs spend in the
system or other completion time related objective functions.

Very notably, although network design problems have been studied exten-
sively in a cost sharing context, very little attention has been given to schedul-
ing problems; in particular if jobs are assumed to act strategically, and group-
strategyproofness is a desirable objective. In most of the previous works, au-
thors have either concentrated on scheduling problems where machines act self-
ishly [77, 4, 63], or strategyproofness (but not group-strategyproofness) is an is-
sue [83, 48].

3.1 Introduction 41

Contributions. In this chapter, we study cost sharing mechanisms for opti-
mization problems in light of the social cost efficiency measure introduced by
Roughgarden and Sundararajan [88]. Our contribution is threefold:

1. Lower Bound on Approximability of Cost Sharing Mechanisms.

We present a general inapproximability result for cost sharing methods for
combinatorial optimization problems. In particular, we prove that there is
no cost sharing method that is α-summable and satisfies β-cost recovery for
any α < Hn/β, where n denotes the number of players. Our proof holds
if the underlying cost function satisfies a certain cost-stability property. As
a consequence, our result implies a lower bound of Ω(log n) on the approx-
imability of Moulin mechanisms for various optimization problems, such as,
for instance, facility location, minimum spanning tree (and thus also mini-
mum Steiner tree and forest), single-source rent-or-buy, minimum makespan
scheduling, etc. Despite its generality, our lower bound is tight for some spe-
cific problems such as facility location and minimum makespan scheduling.

2. Optimal Cost Sharing Method for Makespan Scheduling.

We study the minimum makespan scheduling problem, one of the most fun-
damental problems in scheduling theory, in a cost sharing context. In this
problem, we are given a set of jobs N , each of which is owned by a self-
ish player. The objective is to assign the chosen set of jobs to m paral-
lel machines such that the maximum completion time is minimized. We
develop a cross-monotonic cost sharing method for this problem which is
(2 − 2/(m + 1))-budget balanced and (Hn + 1)-approximate; this is tight
with respect to both budget balance and approximability.

Related to this result is the recent work of Bleischwitz and Monien [11].
The authors present a cross-monotonic (2−2/(m+1))-budget balanced cost
sharing method for the minimum makespan scheduling problem. However,
we show that their cost sharing mechanism does not approximate social cost.

3. Lower Bound on Budget Balance of Cost Sharing Mechanisms.

We present a generic lower bound showing that no cross-monotonic and β-
budget balanced cost sharing method exists for any β < f(n), where f is
a function that measures the maximum rate of increase of the underlying
cost function C. For example, for every fixed player set, f is at least the
ratio between the cost of the whole set and the sum of the costs of all its
singleton subsets. We prove that this lower bound even holds for cost sharing
methods in the β-core. We use this general approach to prove negative
results for several fundamental scheduling problems in a cost sharing context.
Namely, we show a lower bound of Ω(n) on the budget balance factor of

42 Group-Strategyproof Cost Sharing

cross-monotonic cost sharing methods for all scheduling problems in which
we aim at minimizing the total (weighted) completion (or flow) time. We
prove that the same bound also applies to average (weighted) completion (or
flow) time objectives.

Organization of Chapter. The general lower bound on the approximability of
cost sharing mechanisms is presented in Section 3.2. Our tight cost sharing mech-
anism for the minimum makespan scheduling is given in Section 3.3. The nega-
tive results with respect to approximating the budget balance factor for certain
cost functions together with its applications to completion time related scheduling
problems is stated in Section 3.4. Finally, we offer some conclusions in Section 3.5.

3.2 A Lower Bound for Social Cost Approximation

In this section, we prove a lower bound of Ω(log n) on the summability of cost
sharing methods. Our lower bound holds for every optimization problem which
contains a so-called cost stable instance. Intuitively, we call an instance cost
stable if it contains a significantly large player set whose cost does not deviate
too much from the cost of any of its subsets. This property is fulfilled by a
variety of combinatorial optimization problems such as facility location, Steiner
tree, minimum makespan scheduling, etc. In particular, it includes the public
excludable good problem, in which the cost C(S) is equal for every player set
S ⊆ U . Together with the recent result of Roughgarden and Sundararajan [88], our
result shows that for all these problems, the approximability of Moulin mechanisms
cannot be better than Ω(log n).

Theorem 3.1. Consider an instance of a combinatorial optimization problem on
a player set U inducing a cost function C. Suppose that there is a set S ⊆ U of
size |S| ≥ |U |/γ for some constant γ ≥ 1 such that

C(S′) ≥ 1

δ
· C(S)

for all S′ ⊆ S and some constant δ ≥ 1. Let ξ be a cost sharing method for this
problem that satisfies the β-cost recovery condition. Then, ξ is not α-summable
for any α < H⌈n/γ⌉/(β · δ).

Proof. It is sufficient to prove that there exists an order σ on U such that

|S|
∑

j=1

ξ(ij , Sj) ≥
H⌈n/γ⌉
β · δ · C(S),

3.2 A Lower Bound for Social Cost Approximation 43

where Sj is the set of the first j players in S and ij is the jth player of S (ordered
according to σ).

We construct σ by determining the sets Sj and players ij inductively as follows.
Initially, set j = |S| and assign Sj = S. Now, suppose we have determined sets
S|S|, . . . , Sj. By an average argument, there must exist a player i ∈ Sj such that

ξ(i, Sj) ≥
C(Sj)

β · |Sj|
=

C(Sj)

β · j ≥ C(S)

βδ · j ,

since ξ satisfies the β-cost recovery condition. The last inequality holds because
Sj ⊆ S. Assign ij := i and Sj−1 := Sj \ {ij}.

Let S = {i1, . . . , i|S|} be the set of players in S ordered according to the order σ
constructed above. We have

|S|
∑

j=1

ξ(ij , Sj) ≥
(

1 +
1

2
+ · · · + 1

|S|

)

· C(S)

βδ
≥ H⌈n/γ⌉

βδ
· C(S),

where we exploit that |S| ≥ n/γ and |S| ∈ N.

This lower bound applies to many problems, as e.g. to the following ones:

Example 3.1 (Fixed-tree Multicast Problem). Players are located at vertices of
an undirected graph and wish to receive a broadcasting service which is produced
in a root vertex. The cost of serving a set of players S is the cost of a minimum
spanning tree containing S and the root. An instance fulfilling the conditions of
the above theorem is the one in which all players are located on the same vertex
which is connected to the root by an edge of length 1. The lower bound for this
problem has been shown in [88].

Example 3.2 (Facility Location Problem). Players are located at vertices and
wish to be connected to an open facility. Facilities can be opened at a given subset
of vertices. Here, a sample instance is the one in which there is only one vertex v
at which a facility may be opened, and all players are located directly on v. Then,
the cost of a solution is independent of the number of players and equal to the
opening cost of the facility. This lower bound is tight, as has been shown in [89].

Another example for which Theorem 3.1 applies is the makespan scheduling
problem that we consider in Section 3.3. We show there that the bound on summa-
bility is tight for this problem. We remark that there exist stronger lower bounds
for e.g. the Steiner tree and Steiner forest problems [89].

44 Group-Strategyproof Cost Sharing

3.3 Optimal Cost Sharing Method for Makespan

Scheduling

We consider the classical minimum makespan scheduling problem P | |Cmax. We
are given a set of n jobs N that have to be scheduled on m identical machines.
Each job i ∈ N has a non-negative processing time pi, which is the time needed to
execute i on one of the machines. We denote the completion time of job i by Ci.
Every machine can execute at most one job at a time; preemption of jobs is not
allowed. The objective is to schedule all jobs in N on the m machines such that
the makespan maxi∈N Ci is minimized.

In the cost sharing variant of this machine scheduling problem, each job is
associated with a player who wants her job to be processed on one of the m ma-
chines. We therefore identify the universe of players U with the set of jobs N .
The cost C(S) incurred to schedule all jobs in S is the minimum makespan. We
are interested in designing a cost sharing mechanism for the minimum makespan
scheduling problem that is β-budget balanced and α-approximate for every possi-
ble instance.

For a given set of jobs S ⊆ U , let pmax(S) denote the maximum processing
time over all jobs in S. Define µ(S) as the average machine load, i.e. µ(S) :=
∑

i∈S pi/m.

3.3.1 Cross-Monotonic Cost Shares

Bleischwitz and Monien [10] describe a cross-monotonic cost sharing method ξbm

for the above machine scheduling problem. We briefly review their cost sharing
method.1

We call a job i large with respect to S if pi = pmax(S) and small otherwise.
Let ℓ(S) be the number of large jobs in S. Given a subset S ⊆ U of the jobs, we
define the cost share of i ∈ S as:

ξbm(i, S) :=

pi

m
+

pi − µ(S)

ℓ(S)
if pi = pmax(S) and pi > µ(S),

pi

m
otherwise.

(3.1)

The intuition is as follows: Every job gets a cost share of pi/m. If the average
machine load µ(S) is less than the maximum processing time pmax(S), every large
job additionally obtains an equal share of the cost pmax(S)−µ(S). We summarize
one of the main results of Bleischwitz and Monien [10] in the following theorem.

1At first sight, the cost shares that we state here differ from the ones defined by Bleischwitz
and Monien in [10]. However, it can easily be verified that both definitions are in fact equivalent;
we feel that the definition we present here is more intuitive.

3.3 Optimal Cost Sharing Method for Makespan Scheduling 45

Theorem 3.2 ([10]). ξbm is a (2−2/(m+1))-budget balanced cross-monotonic cost
sharing method for the minimum makespan scheduling problem. Moreover, there
is no β-budget balanced cross-monotonic cost sharing method ξ for this problem,
for any β < 2 − 2/(m + 1).

Albeit Theorem 3.2 proves that the Moulin mechanism M(ξbm), driven by the
cost sharing method ξbm by Bleischwitz and Monien, is optimal with respect to
budget balance, we show below that it is far from being optimal with respect to
social cost. In fact, the social cost of the final set SM output by M(ξbm) can be
as large as n/2 times the optimal social cost.

Lemma 3.3. For every n ∈ N, there exists an instance of the minimum makespan
scheduling problem such that the cost sharing method ξbm is not α-summable for
any α < n/2.

Proof. It is sufficient to define an instance of the minimum makespan scheduling
problem on n jobs and a permutation σ for which the cost share sum in Defini-
tion 2.34 with respect to ξbm is at least n/2 times the minimum makespan.

Let U := {i1, . . . , im} be an (ordered) set of m jobs, where m = n is the number
of machines. Define the processing time of job ij to be pij := 1 + (j − 1)ǫ for all
j ∈ [m] and some small ǫ > 0. Since the number of jobs equals the number of
machines, the makespan of an optimal assignment for U is C(U) = 1 + (m − 1)ǫ.

Observe that the processing time of job ij, j ∈ [m], is maximum among all jobs
in the set Sj = {i1, . . . , ij}, i.e. ij is large. Furthermore, ij is the only large job
in Sj and thus ℓ(Sj) = 1. The average machine workload of Sj is

µ(Sj) =
1

m

j
∑

l=1

pil =
1

m

(

j +
j(j − 1)ǫ

2

)

≤ 1 + (j − 1)ǫ = pmax(Sj).

Hence, the cost share that job ij obtains with respect to Sj is

ξbm(ij , Sj) =
pij

m
+ pij − µ(Sj) = pij − µ(Sj−1),

where we define S0 := ∅. We obtain

ξbm(ij , Sj) = (1 + (j − 1)ǫ) − 1

m

(

(j − 1) +
(j − 1)(j − 2)ǫ

2

)

≥ 1 − j − 1

m
.

Therefore,

m∑

j=1

ξbm(ij , Sj) ≥ m − m(m − 1)

2m
=

m

2
+

1

2
≥ m

2
(1 + (m − 1)ǫ) =

m

2
· C(U),

where the last inequality holds if we choose ǫ sufficiently small.

46 Group-Strategyproof Cost Sharing

Intuitively, this high summability gives voice to the fact that processing times
exceeding the average workload µ(S) are punished in an unfair manner: Instead of
sharing the additional cost of pmax(S)−µ(S) among all jobs for which pi > µ(S),
only those jobs attaining the maximum processing time come up for it. We tackle
this problem in the next section.

3.3.2 Approximate Cost Shares

We continue by proposing new cost shares ξbs for the minimum makespan schedul-
ing problem that are still (2 − 2/(m + 1))-budget balanced and cross-monotonic,
but concurrently (Hn+1)-summable. This is tight in terms of both budget balance
and summability.

We use a different definition of small and large jobs here: A job i is large with
respect to S iff pi > µ(S) and small otherwise. The cost share of a job i ∈ S with
respect to S is defined as

ξbs(i, S) :=

pi

m
+

pi∫

µ(S)

1

|{j ∈ S : pj ≥ t}| dt if pi > µ(S),

pi

m
otherwise.

(3.2)

Intuitively, every job receives a cost share of pi/m. A large job i obtains some
additional cost share: for every time instant t ∈ [µ(S), pi], i shares the cost of 1dt
evenly with all other jobs in S whose processing time is at least t.

We show that ξbs is a cost sharing method that satisfies cross-monotonicity,
approximate budget balance and summability.

Theorem 3.3. ξbs is a cross-monotonic, (2 − 2/(m + 1))-budget balanced and
(Hn + 1)-summable cost sharing method for the minimum makespan scheduling
problem.

Our cost sharing method is essentially tight: Bleischwitz and Monien [10]
proved that no cross-monotonic cost sharing method for this problem achieves
a budget balance factor better than 2 − 2/(m + 1). Moreover, using Theorem 3.1
we show (see Corollary 3.7 below) that no cost sharing method that satisfies the
β-cost recovery condition can be α-summable for any α < Hn/β.

The proof of Theorem 3.3 follows from Lemmas 3.4, 3.5 and 3.6 that are given
below.

Lemma 3.4. ξbs is cross-monotonic.

3.3 Optimal Cost Sharing Method for Makespan Scheduling 47

Proof. Consider some set S ⊆ U and a job i ∈ S. We prove that if a new job
j /∈ S is added to S, the cost share of i does not increase.

If i was small in S, then it remains small, and hence i’s cost share stays pi/m.
If i was large in S and becomes small in S ∪ {j}, then i’s cost share decreases to
pi/m. It remains to show that the cost share of i does not increase if i stays large.
Note that by adding job j, the number of jobs whose processing time is at least t
for some t ≥ 0 does not decrease. Moreover, we have

pi∫

µ(S)

1

|{j ∈ S : pj ≥ t}| dt ≥
pi∫

µ(S∪{j})

1

|{j ∈ S ∪ {j} : pj ≥ t}| dt,

since µ(S) ≤ µ(S ∪ {j}). This concludes the proof.

We show next that the budget balance condition is satisfied.

Lemma 3.5. ξbs is (2 − 2/(m + 1))-budget balanced.

Proof. With the cost share definition in (3.2) we have

∑

i∈S

ξ(i, S) =
∑

i∈S

pi

m
+

∑

i∈S: pi>µ(S)

pi∫

µ(S)

1

|{j ∈ S : pj ≥ t}| dt

= µ(S) +

pmax(S)∫

µ(S)

1 dt = max{µ(S), pmax(S)}.

It is a well-known fact (see e.g. [49]) that C(S) ≥ max{µ(S), pmax(S)}, which
proves competitiveness. To show that the cost shares satisfy (2− 2/(m + 1))-cost
recovery, we refer to the proof of Theorem 3.1 in [11]. Since

∑

i∈S ξbm(i, S) =
max{µ(S), pmax(S)} holds for Bleischwitz and Monien’s cost shares as well, their
budget balance analysis directly applies here.

Finally, we prove that the cost shares fulfill (Hn + 1)-summability.

Lemma 3.6. ξbs is (Hn + 1)-summable.

Proof. Let σ be an arbitrary order on the jobs in U , and let S := {i1, . . . , i|S|}⊆ U

48 Group-Strategyproof Cost Sharing

be a subset of U ordered according to σ. First, observe that

|S|
∑

j=1

ξbs(ij , Sj) =

|S|
∑

j=1

pij

m
+

pij∫

µ(S)

1

|{k ∈ Sj : pk ≥ t}| dt

≤
|S|
∑

j=1

pij

m
+

pij∫

0

1

|{k ∈ Sj : pk ≥ t}| dt

≤ µ(S) +

|S|
∑

j=1

pij∫

0

1

|{k ∈ Sj : pk ≥ t}| dt.

Fix a point in time t ∈ [0, pmax(S)]. Define r(t) as the number of jobs in S
whose processing time is at least t. Using this definition, we obtain

|S|
∑

j=1

pij∫

0

1

|{k ∈ Sj : pk ≥ t}| dt =

pmax(S)∫

0

r(t)
∑

r=1

1

r
dt =

pmax(S)∫

0

Hr(t) dt ≤ pmax(S) · H|S|.

Thus,
|S|
∑

j=1

ξbs(ij , Sj) ≤ µ(S) + pmax(S) · H|S| ≤ (Hn + 1) · C(S).

Using Theorem 3.1, we can prove that Lemma 3.6 is essentially tight.

Corollary 3.7. Let ξ be a cost sharing method for the minimum makespan schedul-
ing problem P |pi = 1|Cmax that satisfies the β-cost recovery condition. Then the
summability of ξ is no better than Hn/β.

Proof. Consider an instance that consists of n jobs with unit processing times and
m := n machines. Clearly, C(S) = 1 = C(U) for all S ⊆ U . Theorem 3.1 now
gives a lower bound of Hn/β.

3.4 A General Lower Bound on Budget Balance

While we have given cross-monotonic (2−2/(m+1))-budget balanced and (Hn+1)-
summable cost shares for the minimum makespan scheduling problem, we identify

3.4 A General Lower Bound on Budget Balance 49

a class of problems to which no constantly budget balanced and cross-monotonic
cost sharing method exists in this section. We show that both weighted completion
time scheduling and average completion time scheduling belong to this class, as
well as all of their generalizations.

Consider a cost sharing game on a universe U of n players whose cost function
C : 2U → R is non-decreasing, i.e. C(S′) ≤ C(S) for all S′ ⊆ S ⊆ U . If there
is an instance to the cost sharing game for which C(U) exceeds

∑

i∈U C({i}) by
a factor of f(n), then the β-core of this game is empty for all β < f(n). This is
due to the fact that players can never be charged more than the cost they incur
when being served alone, and therefore the players in a set S cannot pay more
than

∑

i∈S C({i}).
In the case of general (not necessarily non-decreasing) cost functions, using

sets Ti containing i instead of the singletons {i} itself can yield even better lower
bounds. Intuitively, we choose the subset Ti ⊆ S for which the amount that player
i ∈ S is allowed to pay is smallest.

Theorem 3.4. Consider a cost sharing game on a universe U of n players and
its cost function C. Let f : N → R be a non-decreasing function. Suppose there
is a set S of size |S| ≥ |U |/γ for some constant γ ≥ 1, and arbitrary sets Ti ⊆ S
with i ∈ Ti such that

C(S) ≥ f(|S|) ·
∑

i∈S

C(Ti).

Then, there is no cost sharing method ξ in the β-core for any β < f(n
γ) for this

game.

Proof. Assume that ξ is a cost sharing method in the β-core for this problem.
First, the core property implies that the cost share of player i in the set S ⊇ Ti

is at most the cost induced by the set Ti, i.e. ξ(i, S) ≤ ∑j∈Ti
ξ(j, S) ≤ C(Ti) for

all i ∈ S. Second, we assume C(S) ≥ f(|S|) ·∑i∈S C(Ti). The condition of β-cost
recovery now implies that for every S ⊆ U :

β ≥ C(S)
∑

i∈S ξ(i, S)
≥ f(|S|) ·∑i∈S C(Ti)

∑

i∈S C(Ti)
≥ f

(n

γ

)
.

Since every cross-monotonic β-budget balanced cost sharing method is in the
β-core, this theorem implies the same lower bound on the budget balance factor of
a cross-monotonic cost sharing method for the respective problem. In the following
two sections, we apply Theorem 3.4 to the parallel machine scheduling problems
with completion time and average completion time objectives.

50 Group-Strategyproof Cost Sharing

3.4.1 Weighted Completion Time Scheduling

In the minimum weighted completion time scheduling problem, we are given a set
of n jobs N and m identical machines. Each job i ∈ N has a processing time pi

and a weight wi. The objective is to assign all n jobs to the m machines such that
the total weighted completion time

∑

i∈N wiCi is minimized.
In the cost sharing context, we define U := N as before, and let C be the total

weighted completion time of an optimal schedule. We show that the β-core of this
scheduling problem is empty for β < (n + 1)/2, even for the unweighted single
machine case with unit processing times.

Corollary 3.8. Consider the single machine minimum completion time scheduling
problem with unit processing times 1|pi = 1|∑i Ci. There is no cost sharing
method ξ that is in the β-core for any β < (n + 1)/2 for this game.

Proof. Clearly, the cost of every singleton set {i}, i ∈ U , is C({i}) = 1. Set
Ti := {i}. On the other hand, C(U) = n(n + 1)/2. Thus,

C(U) ≥ n + 1

2
·
∑

i∈U

C(Ti),

and using Theorem 3.4 with S = U and f(n) = (n + 1)/2 yields the claim.

This lower bound carries over to all generalizations of the single machine min-
imum completion time scheduling problem, e.g. to the minimum weighted flow
time scheduling problem and problems with additional constraints such as release
or due dates. Note that the trivial cost sharing method ξwct(i, S) := wipi for all
i ∈ S and S ⊆ U is cross-monotonic and n-budget balanced for P | |∑i wiCi, as
shown by the following lemma.

Lemma 3.9. Consider the minimum weighted completion time scheduling problem
P | |∑i wiCi. ξwct is a cross-monotonic n-budget balanced cost sharing method
for this problem.

Proof. ξwct is obviously cross-monotonic. It is competitive since pi ≤ Ci for every
job i ∈ S and all S ⊆ U .

To show n-cost recovery, we first consider the single machine case. Take an
optimal schedule and number the jobs accordingly. Smith [96] proved that if job i
is scheduled before job j in an optimal schedule, i.e. i < j, then pi/wi ≤ pj/wj .
Thus, either pi ≤ pj or wi > wj (or both) are true, and the following inequality
holds for all i < j:

wjpi ≤ max{wipi, wjpj} ≤ wipi + wjpj.

3.4 A General Lower Bound on Budget Balance 51

Using this, we can bound the cost of an optimal schedule for a set S ⊆ U by

|S|
∑

j=1

wjCj =

|S|
∑

j=1

wj ·
(j
∑

i=1

pi

)

=

|S|
∑

j=1

j
∑

i=1

wjpi ≤
|S|
∑

j=1

(j−1
∑

i=1

(wipi + wjpj) + wjpj

)

=

|S|
∑

j=1

(
j · wjpj + (|S| − j)wjpj

)
= |S| ·

|S|
∑

j=1

wjpj ≤ n ·
|S|
∑

j=1

ξwct(j, S),

which proves n-cost recovery for the single machine case.

For the general case, consider the set Sk ⊆ S of jobs that are scheduled on
machine k ∈ [m] in an optimal schedule. Clearly, the schedule for machine k is
optimal for the corresponding single machine problem on the set of jobs Sk, for
which the above inequality holds. Summing up over all machines, we obtain

∑

j∈S

wjCj =
∑

k∈[m]

∑

j∈Sk

wjCj ≤
∑

k∈[m]

n ·
∑

j∈Sk

ξwct(j, Sk) = n ·
∑

j∈S

ξwct(j, S).

3.4.2 Average Completion Time Scheduling

In the minimum average completion time scheduling problem, the setting is as
above, but with the objective of minimizing the total average weighted completion
time, i.e. C(S) =

∑

i∈S wiCi/|S| for all S ⊆ U . In classical machine scheduling,
where an optimal (or approximate) solution for the whole set U of players is sought,
the problems with average weighted completion time and weighted completion time
objectives coincide, since the objectives only differ by a constant factor of |U |.
However, during the run of a Moulin mechanism, the size of the current player
set varies, and thus |S| can no more be seen as a constant. As a matter of fact,
due to the division by |S|, the cost function is not monotone for this game, as the
following example shows:

Example 3.10. Consider an instance on a single machine and three jobs {1, 2, 3}
with processing times pi = i and unit weights. The average completion time is 3
if only job 3 is scheduled, (1 + 4)/2 = 2.5 if jobs 1 and 3 are scheduled, and
(1 + 3 + 6)/3 > 3 if all three jobs are scheduled. Hence, the cost of an optimal
schedule can increase as well as decrease when a job is added to the scheduled set.

For this reason, we need a slightly more elaborated instance with non-uniform
processing times to show that the β-core of this game is empty for β < (n + 4)/8.
Nevertheless, the lower bound holds even for the unweighted single machine case.

52 Group-Strategyproof Cost Sharing

Corollary 3.11. Consider the single machine minimum average completion time
scheduling problem 1| |∑i Ci/n. There is no cost sharing method ξ that is in the
β-core for any β < (n + 4)/8 for this game.

Proof. Let U = S ∪̇ L be a set of n jobs, where |S| = n/2 − 1 and |L| = n/2 + 1;
we call the jobs in S small and those in L large. Define pi := ǫ for all i ∈ S,
and pi := 1 for all i ∈ L. The optimal cost for every singleton set {i}, i ∈ S, is
C({i}) = ǫ. Set Ti := {i} for all small jobs i ∈ S. For the large jobs i ∈ L, set
Ti := S ∪ {i}. In an optimal schedule for Ti, first all small jobs in S are processed
and finally the large job i. The cost of an optimal schedule is thus

C(Ti) =
1

|Ti|

|S|
∑

j=1

j · ǫ + (|S| · ǫ + 1)

 ≤ 2

n

(

1 + ǫn
(n

8
+

1

2

))

.

We obtain

∑

i∈U

C(Ti) ≤
(n

2
− 1
)

· ǫ +
(n

2
+ 1
)
(

2

n

(

1 + ǫn
(n

8
+

1

2

))
)

≤ n + 2

n

(

1 + ǫn
(n

8
+ 1
))

. (3.3)

Define ǫ′ := ǫn(n/8 + 1). On the other hand,

C(U) ≥ (n
2 + 1)(n

2 + 2)

2n
=

(n + 2)(n + 4)

8n
. (3.4)

Combining inequalities (3.3) and (3.4), we obtain

C(U) ≥ n + 4

8(1 + ǫ′)
·
∑

i∈U

C(Ti).

By Theorem 3.4, we obtain a lower bound of β ≥ (n + 4)/(8(1 + ǫ′)) for any cost
sharing method in the β-core. The claim now follows by choosing ǫ sufficiently
small.

Note that the trivial cost sharing method ξact(i, S) := wipi/n for all i ∈ S and
S ⊆ U is cross-monotonic and n-budget balanced for P | |∑i wiCi/n.

Lemma 3.12. Consider the minimum average weighted completion time schedul-
ing problem P | |∑i wiCi/n. ξact is a cross-monotonic n-budget balanced cost
sharing method for this problem.

3.5 Conclusion 53

Proof. ξact is obviously cross-monotonic. It is competitive since wipi/n ≤ wiCi/|S|
for every job i ∈ S and all S ⊆ U . The proof of n-cost recovery is analogous to
the non-average case.

On a single machine, Smith’s rule still holds for every optimal schedule for S
since the average cost is only a constant factor times the non-average cost for
fixed S. Thus, the cost of an optimal schedule for a set S ⊆ U is bounded by

|S|
∑

j=1

wjCj/|S| ≤
|S|
∑

j=1

wjpj = n ·
|S|
∑

j=1

ξact(j, S).

For the general case, again, considering the sets Sk ⊆ S for all machines k ∈ [m]
and summing up yields

∑

j∈S

wjCj/|S| ≤
∑

k∈[m]

∑

j∈Sk

wjCj/|Sk| ≤
∑

k∈[m]

n ·
∑

j∈Sk

ξact(j, Sk) = n ·
∑

j∈S

ξact(j, S),

proving n-cost recovery.

3.5 Conclusion

We proved that the efficiency of Moulin mechanisms is not approximable within
less than logarithmic factors even with the new social cost efficiency measure.
Our lower bound holds if the underlying optimization problem satisfies a certain
cost-stability property and in particular holds for all problems containing the
public excludable good problem. This reduces the hope to find truly efficient cost
sharing mechanisms for these problems. On the other hand, the new efficiency
measure allows us to characterize cost sharing mechanisms in terms of their best
polylogarithmic approximation factor.

Although most of the previously known cross-monotonic and approximately
budget balanced cost sharing methods for combinatorial optimization problems
turned out to simultaneously achieve the best possible social cost efficiency [88,
45, 89, 25], our work reveals that different cost sharing methods achieving the
same budget balance factor may indeed behave very differently with respect to
social cost.

We studied cost sharing methods for makespan and completion time related
scheduling problems. Our results demonstrate that the tractability of these prob-
lems in a cost sharing context heavily depends on the respective objective function.
Our negative result on the budget balance factor for cross-monotonic cost sharing
methods motivates the investigation of alternative cost sharing models; perhaps
with a weaker notion of truthfulness for cooperative games.

4

WEAKLY GROUP-STRATEGYPROOF

COST SHARING

We study the problem of devising truthful mechanisms for cooperative cost sharing
games that realize (approximate) budget balance and social cost. Recent nega-
tive results show that group-strategyproof mechanisms can only achieve very poor
approximation guarantees for several fundamental cost sharing games. Driven by
these limitations, we consider cost sharing mechanisms that realize the weaker
notion of weak group-strategyproofness. Mehta et al. [69] recently introduced the
broad class of weakly group-strategyproof acyclic mechanisms and show that sev-
eral primal-dual approximation algorithms naturally give rise to such mechanisms
with attractive approximation guarantees. In this chapter, we provide a very sim-
ple yet powerful approach that enables us to turn any ρ-approximation algorithm
into a ρ-budget balanced acyclic mechanism. We demonstrate the applicability of
our approach by deriving weakly group-strategyproof mechanisms for several fun-
damental scheduling problems that outperform the best possible approximation
guarantees of Moulin mechanisms. The mechanisms that we develop for com-
pletion time scheduling problems are the first mechanisms that achieve constant
budget balance and social cost approximation factors. Interestingly, our mech-
anisms belong to the class of generalized incremental mechanisms proposed by
Moulin [73].

Publication Note. The results contained in this chapter have been presented
at the 1st International Symposium on Algorithmic Game Theory (SAGT 08) [18].

55

56 Weakly Group-Strategyproof Cost Sharing

4.1 Introduction

In this chapter, we reconsider the problem of designing efficient mechanisms for
cooperative cost sharing games arising from combinatorial optimization problems,
with a particular focus on scheduling problems. We consider the binary demand
cost sharing setting introduced in Section 2.3.1. That is, we are given a set of n
players that are interested in receiving a common service and a player-set depen-
dent cost function. Each player has a private valuation for receiving the service
and announces a bid which represents the maximum price she is willing to pay.
Based on these bids, a cost sharing mechanism decides which players receive the
service and at what price. We assume that every player acts strategically in that
she aims for maximizing her own quasi-linear utility.

In recent years, considerable progress has been made in devising truthful mech-
anisms for cooperative cost sharing games. Section 2.4 gives an overview over pre-
vious results in the area. Most optimization problems that have been considered
in the literature bear the common characteristic that larger sets of served play-
ers have a larger potential for individual cost savings because the underlying cost
functions are subadditive. In general, scheduling problems do not have this char-
acteristic since the objective functions are usually superadditive and thus adding
additional players corresponds to a larger potential of individual cost increases.
To the best of our knowledge, there are only a few articles that study scheduling
problems in the cost sharing context [10, 12, 16].

Recent negative results showed that for several fundamental cost sharing games,
Moulin mechanisms inevitably suffer from poor approximation factors with respect
to budget balance [10, 16, 52, 60, 88] or social cost [16, 25, 88, 89]. As an exam-
ple, consider the minimum completion time scheduling game. Here the task is to
schedule n jobs (each owned by a selfish player) non-preemptively on m parallel
machines such that the sum of the completion times of all jobs is minimized. We
showed in Chapter 3 that no cross-monotonic cost sharing method can achieve a
budget balance approximation factor of less than (n + 1)/2, even in the single-
machine case and if all jobs have unit processing times. This is in stark contrast
to the fact that one can even compute an optimal schedule for this problem in
polynomial time.

Contributions. In this chapter, we present an approach to derive weakly group-
strategyproof mechanisms from approximation algorithms. More precisely, we
show how a ρ-approximation algorithm for the underlying optimization problem of
a cost sharing game can be turned into a generalized incremental mechanism that is
ρ-budget balanced, and prove that this mechanism is weakly group-strategyproof.
Our construction uses the approximation algorithm as a black-box. The basic idea
is very simple: According to the order on the set of players that are remaining

4.1 Introduction 57

Generalized incre- Lower bounds for

Problem mental mechanisms Moulin mechanisms

P |pi = 1|Cmax (1, log n) 2

P | |Cmax
4
3 − 1

3m
2m

m+1 [10]

P | |∑Ci (1, 2) n+1
2 [16]

P | |∑wiCi (1.21, 2.42) n+1
2 [16]

1|ri, pmtn|∑Ci (1, 4) n+1
2 [16]

P |ri, pmtn|∑i Ci (1.25, 5) n+1
2 [16]

1|ri, pmtn|∑Fi 1 n+1
2 [16]

Table 4.1: Summary of the approximation guarantees obtained by generalized incremen-
tal mechanisms in this chapter. (β, α) denotes the budget balance (β) and social cost (α)
approximation factors; all other entries refer to budget balance factors. The respective
lower bounds on the budget balance factors of Moulin mechanisms are given in the right
column.

in the game (which may change during the course of the mechanism), we charge
every player her incremental cost with respect to the approximate cost function
induced by the approximation algorithm.

A difficulty that arises is that in general the resulting mechanism per-se does not
fulfill the no positive transfer property (which requires that all cost shares are non-
negative). While there are different ways to overcome this problem, we identify a
consistency property on the order in which players are considered and argue that
the mechanism guarantees no positive transfers whenever its approximate cost
is non-decreasing according to this consistent order. We provide examples that
illustrate that several (approximation) algorithms naturally induce a consistent
order on the players such that its cost is non-decreasing.

Exploiting the consistency property, we also provide some general means that
facilitate proving social cost approximation factors of our mechanisms. Essentially,
we determine a weak monotonicity property that, if satisfied by the incremental
approximate cost shares defined by the mechanism, enables us to simplify bound-
ing its social cost approximation guarantee.

We demonstrate the applicability of our techniques by developing weakly group-
strategyproof mechanisms for completion time (and flow time) scheduling prob-
lems with and without release dates and preemption. Our techniques turn out to
be particularly effective in this scheduling context. The results are summarized in

58 Weakly Group-Strategyproof Cost Sharing

Table 4.1. Our mechanisms outperform the strong lower bounds of (n + 1)/2 on
the budget balance factor of Moulin mechanisms for all completion time related
objectives presented in Chapter 3 [16]. We emphasize that these are the first cost
sharing mechanisms that are weakly group-strategyproof and achieve constant
approximation guarantees with respect to both budget balance and social cost.

Independently of the above framework, we define a 1-budget balanced log n-
approximate acyclic cost sharing mechanism for the minimum makespan schedul-
ing problem with unit processing times P |pi = 1|max Ci. This improves over
the lower bound of 2 for the budget balance factor of Moulin mechanisms for the
problem.

Consequences and Further Implications. While previously, most cost shar-
ing mechanisms were developed in case-by-case studies, this is the first charac-
terization of sufficient conditions that allow to derive mechanisms from existing
approximation algorithms, thereby exploiting their full strength. Our results can
therefore be seen as an important first step towards quantifying the gap between
the best possible approximation guarantees achievable by approximation algo-
rithms and weakly group-strategyproof mechanisms.

Using our approach, deriving a weakly group-strategyproof mechanism essen-
tially boils down to identifying a consistent order on the players such that the cost
of the (approximation) algorithm is non-decreasing, which is an easy task in many
cases. Moreover, the resulting mechanism inherits the approximation guarantee
as budget balance factor. Hence, all that is left is to bound its social cost approx-
imation guarantee, for which we provide some general techniques. Our approach
thus simplifies the process of developing weakly group-strategyproof cost sharing
mechanisms significantly.

While group-strategyproof mechanisms with good performance guarantees have
been developed for many cost sharing games with subadditive cost functions, the
common approaches for developing such mechanisms inevitably fail for strongly
superadditive cost functions (compare Section 3.4). However, our scheduling ex-
amples demonstrate that generalized incremental mechanisms excel precisely for
these types of problems. As a consequence, generalized incremental mechanisms
form a good counterpart to Moulin mechanisms in the search for well-performing
mechanisms for cost sharing problems with different types of cost functions.

Besides the game-theoretical insights that we gain, our results have some fur-
ther implications in the scheduling context: Every mechanism that approximates
the social cost objective is at the same time an approximation algorithm for the
price-collecting variant of the underlying optimization problem. In the scheduling
context, these problems are also called scheduling problems with rejection (formal
definitions are given in Section 2.5.1). As a by-product, we therefore obtain con-
stant factor approximation algorithms for several machine scheduling problems

4.2 Generalized Incremental Mechanisms 59

with rejection. This might be of independent interest.

Our generalized incremental mechanisms belong to the class of acyclic mecha-
nisms; indeed, we first encountered these mechanisms when studying the frame-
work of acyclic mechanisms (see also the exposition in [18]). We explain how in
this framework generalized incremental mechanisms can be viewed as complemen-
tary to Moulin mechanisms regarding the degree of freedom that the mechanism
has for ordering its price proposals to players.

Interestingly, the mechanisms proposed in this chapter correspond to gener-
alized incremental mechanisms as introduced by Moulin [73] (see Section 2.4.5).
Our work therefore reveals that these mechanisms naturally arise as weakly group-
strategyproof mechanisms with attractive budget balance and social cost approx-
imation guarantees for several fundamental cost sharing games for which Moulin
mechanisms are doomed to fail.

Organization of Chapter. In Section 4.2, we present our general framework
for deriving generalized incremental mechanisms from approximation algorithms.
This framework is used in Section 4.3 to derive weakly group-strategyproof mech-
anisms for a series of fundamental cost sharing games from the domains of net-
work design and scheduling. Section 4.4 provides a method for proving approx-
imate social cost for generalized incremental mechanisms. This method is used
in Section 4.5 to prove constant social cost approximation factors of generalized
incremental mechanisms for several completion time scheduling problems. In Sec-
tion 4.6, we draw the connection between incremental mechanisms and acyclic
mechanisms and sketch the implications of our results in the area of schedul-
ing with rejection. Section 4.7 presents our optimal weakly group-strategyproof
mechanism for makespan scheduling with unit processing times. We give some
concluding remarks in Section 4.8.

4.2 Generalized Incremental Mechanisms

In the following, we describe our approach for converting approximation algorithms
into weakly group-strategyproof cost sharing mechanisms. We call the resulting
mechanisms generalized incremental mechanisms due to their affinity to Moulin’s
mechanisms in [73].

4.2.1 Construction and Basic Properties

Suppose we are given a ρ-approximation algorithm alg for the underlying opti-
mization problem P. Let C̄ denote the cost function induced by alg, i.e., C̄(S)

60 Weakly Group-Strategyproof Cost Sharing

Algorithm 3: Generalized incremental mechanism M(alg, τ) induced by
alg and τ .
Input: Set of players U and bid vector b = (bi)i∈U

Output: Allocation vector x = (xi)i∈U and payment vector x = (pi)i∈U

Initialize A := ∅, R := U .1

while A 6= R do2

Among all players i ∈ R \ A, let i∗ be the one with minimum τ(i, R).3

Define xi∗ := C̄(A ∪ {i∗}) − C̄(A).4

if bi∗ ≥ xi∗ then set A := A ∪ {i∗};5

else set R := R \ {i∗}.6

end7

Output the characteristic vector x of A and payments x.8

is the cost of the solution computed by alg for player set S ⊆ U . Without
loss of generality, we assume that C̄(∅) = 0. Besides the approximation algo-
rithm alg, the main ingredient for our framework is an injective order function
τ : U × 2U → R

+ which defines a permutation for every subset S ⊆ U by ordering
the elements in S with respect to increasing τ -values.

The generalized incremental mechanism M(alg, τ) induced by alg and τ re-
ceives the bid vector b as input and proceeds as indicated in Algorithm 3. Through-
out its execution, R refers to the set of players who currently remain in the game,
and A denotes the set of players who have been accepted so far. The mechanism
starts with the entire player set R = U and initializes A = ∅. In every iteration,
it picks the player i∗ from R \ A with the smallest τ -value, and computes her in-
cremental approximate cost share pi∗ , defined as the increase in the approximate
cost C̄ when player i∗ is added to A. If player i∗ accepts this cost share, she is
added to the set A of accepted players; otherwise, she is removed from R and
hence rejected from the game. The mechanism continues like this until eventually
all remaining players have been accepted. It outputs the characteristic vector x

of the accepted players A and the corresponding payments p (where we implicitly
set pi = 0 for all i /∈ A).

We remark that the cost shares assigned to the served players depend on the cost
function C̄ induced by the approximation algorithm alg and are not necessarily
non-negative. Thus, our generalized incremental mechanism does not necessarily
satisfy the no positive transfer property. We address this issue in Section 4.2.2
below.

It is straightforward to see that the generalized incremental mechanism inherits
its budget balance factor from the input approximation algorithm:

Lemma 4.1. The generalized incremental mechanism M(alg, τ) is ρ-budget bal-

4.2 Generalized Incremental Mechanisms 61

anced.

Proof. In every iteration of the mechanism, we have
∑

i∈A xi = C̄(A), since every
accepted player pays exactly the incremental approximate cost of adding her to
the current set A. In particular, this is true for the output set SM . Since alg is
a ρ-approximation algorithm, we obtain

C̄(SM) =
∑

i∈SM

xi ≤ ρ · C(SM),

which proves ρ-budget balance.

We next prove that the generalized incremental mechanism is weakly group-
strategyproof.

Lemma 4.2. The generalized incremental mechanism M(alg, τ) is weakly group-
strategyproof.

Proof. Fix a coalition T ⊆ U and a bid vector b with bi = vi for all i ∈ T . Assume
for contradiction that all members of the coalition can increase their utilities by
changing their bids to b′ (while bi = b′i for all i /∈ T). The runs of the generalized
incremental mechanism on b and b′ are identical until the first member of T , say j,
is offered a cost share. Since the cost share offered to her depends only on the
set A of previously accepted players, which coincides in both runs, the utility of j
is maximized when bidding vj and cannot be influenced by other members of T .
Hence j cannot increase her utility by joining the coalition.

The following theorem follows from Lemmas 4.1 and 4.2.

Theorem 4.3. Let τ be an order function and let alg be a ρ-approximate al-
gorithm for an optimization problem P. The generalized incremental mecha-
nism M(alg, τ) is a weakly group-strategyproof and ρ-budget balanced cost sharing
mechanism for P, which does not necessarily satisfy the no positive transfer prop-
erty.

The following example shows that in general, generalized incremental mecha-
nisms are not group-strategyproof.

Example 4.4. We define an instance of a cost sharing game on n = 2 players
with valuations v1 = 1 and v2 = 2. Let C̄({1}) = C̄({2}) = 1 and C̄({1, 2}) = 3.
This cost function is for instance realized by an optimal algorithm for the com-
pletion time scheduling problem on one machine with two jobs of unit processing

62 Weakly Group-Strategyproof Cost Sharing

times. Let τ be the offer function which orders players by their index. The in-
duced generalized incremental mechanism accepts both players and yields utilities
u1(v) = u2(v) = 0. Consider the forming of a coalition with bids b1 = 0 and b2 = 2.
In this case, player 1 rejects, and so u1(b) = 0 as before, but u2(b) = 2 − 1 = 1.
Hence, this coalition breaks the property of group-strategyproofness.

4.2.2 No Positive Transfer

As we have mentioned above, our generalized incremental mechanism does not
guarantee the no positive transfer property. This property is easily seen to be ful-
filled if the approximate cost function C̄ induced by the approximation algorithm
alg is non-decreasing, i.e., C̄(S) ≤ C̄(T) for all S ⊆ T ⊆ U .

Moreover, the following adaptation can be used to realize the no positive trans-
fer property if the optimal cost function C is non-decreasing, i.e., C(S) ≤ C(T)
for all S ⊆ T ⊆ U . We redefine the incremental approximate cost share in Line 4
of Algorithm 3 as

xi∗ := max

{

0, C̄(A ∪ {i∗}) −
∑

i∈A

pi

}

.

That is, we simply charge a player zero if the incremental approximate cost of
adding this player is negative.

Lemma 4.5. The adapted generalized incremental mechanism M(alg, τ) is ρ-
budget balanced if the optimal cost function C is non-decreasing.

Proof. The lemma can be shown by induction. Whenever a player i∗ is added to
the current set A, we have

∑

i∈A∪{i∗}
xi = pi∗ +

∑

i∈A

pi ≥ C̄(A ∪ {i∗}).

If pi∗ > 0 the above inequality is an equality, and it holds that C̄(A ∪ {i∗}) ≤
ρ ·C(A ∪ {i∗}) since alg is a ρ-approximation algorithm. Otherwise, pi∗ = 0 and
we have

∑

i∈A pi ≤ ρ ·C(A) by the induction hypothesis and C(A) ≤ C(A∪ {i∗})
since C is non-decreasing.

Although this adaptation works for several natural optimization problems (and
indeed also for the scheduling problems considered in this chapter), we propose a
different approach here. The reason for this is twofold:

1. The above adaptation may fail even for very simple optimization problems
for which the underlying cost function is not monotone (as illustrated by the
minimum spanning tree game below).

4.2 Generalized Incremental Mechanisms 63

2. Our approach will enable us to derive attractive approximation factors with
respect to both budget balance and social cost for completion time scheduling
problems (see Section 4.5).

To illustrate the difficulties mentioned above, we introduce the minimum span-
ning tree game. In the minimum spanning tree game, we are given an undirected
graph G = (V ∪ {r}, E) with edge weights we ≥ 0 for all edges e ∈ E and a desig-
nated root vertex r. We assume that there is an edge between r and every vertex
in V . Every player i ∈ U is associated with a unique vertex in V and the goal of
player i is to connect her vertex to the root r. A minimum spanning tree for a
given subset S ⊆ U of players is a tree T in the subgraph induced by S ∪{r} that
spans all vertices in S ∪ {r} and minimizes the total weight w(T) :=

∑

e∈T we.
The cost C(S) to connect a player set S ⊆ U is defined as the weight of a min-
imum spanning tree for S. The following example shows that the cost function
defined by the minimum spanning tree game is in general not non-decreasing.

r

1 2

3

2

2

2

Figure 4.1

Example 4.6. Consider the instance of the minimum
spanning tree game with player set U = {1, 2, 3} de-
picted in Figure 4.1. All edges incident to vertex 3 have
weight (1 + ε) with 0 < ε < 1

3 ; all other edges have
weight 2 as indicated. We have C({1}) = C({2}) = 2,
C({3}) = 1+ε, C({1, 2}) = 4, C({1, 3}) = C({2, 3}) =
2 + 2ε and C(U) = 3 + 3ε. Note that C is not non-
decreasing since C({1, 2}) = 4 > 3 + 3ε = C({1, 2, 3})
by choice of ε.

Let alg refer to an optimal minimum spanning tree
algorithm and suppose that τ orders players by increasing index. Then, the re-
sulting generalized incremental mechanism does not satisfy the no positive transfer
property since if players 1 and 2 accept, the cost share of player 3 is (3+3ε)−4 < 0.
However, if we choose the order function τ that orders players by decreasing index,
the resulting mechanism does satisfy the no positive transfer property.

The above example already illustrates some finer points of our approach. Es-
sentially, we will see that many approximation algorithms exhibit a natural order
function that ensures that the resulting incremental approximate cost shares are
non-negative. Hence, a much weaker restriction than requiring monotonicity of
the approximate cost function C̄ (or the optimal cost function C) suffices if we
define the order function τ appropriately.

64 Weakly Group-Strategyproof Cost Sharing

4.2.3 Consistency

We now define a property of order functions that will allow us to define a much
weaker requirement than monotonicity from the approximate cost function C̄.
This restriction will enable us later to find clever and well-performing combinations
of approximation algorithms and order functions.

Consider a set S ⊆ U and order the players in S according to increasing τ(·, S)
values, i.e.

S = {i1, . . . , ip} such that τ(ik, S) < τ(il, S) ∀1 ≤ k < l ≤ p.

We also say S is ordered by τ . We denote by Sk := {i1, . . . , ik} ⊆ S the set of the
first 1 ≤ k ≤ p players in S ordered by τ and define S0 := ∅.

Definition 4.7 (Consistent Order Function). An order function τ : U ×2U → R
+

is consistent if for all subsets S ⊆ T ⊆ U , ordered by τ as S = {i1, i2, . . . , ip} and
T = {j1, j2, . . . , jq}, the following holds: If k is minimal with jk ∈ T \ S, then
il = jl for all l < k.

Figure 4.2 illustrates the restriction imposed by the consistency property for
two sets S ⊆ T := {1, . . . , 9}. Both sets are ordered according to τ , and elements
belonging to S are depicted in gray. Intuitively, consistency requires that S has
to be ordered like T up to the first element jk of T that is missing in S (indicated
in bold).

jk

T 1 2 3 4 5 6 7 8 9

S 1 2 3 4 7 9 6

Figure 4.2: Illustration of the consistency property.

The simplest example of a consistent order function is one in which the order
of every subset of players is induced by a fixed global order on U . To give an
example for a more elaborate consistent order function, we reconsider the minimum
spanning tree game introduced above.

Example 4.8. Prim’s algorithm (prim) [85] solves the minimum spanning tree
problem optimally and proceeds as follows: It starts with the root vertex r as the
initial connected component and then iteratively picks a minimum weight edge that
connects a new vertex to the current component until all vertices are connected; if

4.2 Generalized Incremental Mechanisms 65

there are several minimum weight edges that might be chosen, we assume that an
arbitrary but consistent tie breaking rule is used. For a subset S ⊆ U of vertices,
let τ(·, S) be the order in which prim adds the vertices to the connected component
in the run on S. It is not hard to verify that τ is a consistent order function:

Let S ⊆ T ⊆ U be two subsets ordered by τ as S = {i1, i2, . . . , ip} and T =
{j1, j2, . . . , jq}. Let k be minimal with jk ∈ T \ S. We need to argue that the
order in which prim picks the first k − 1 vertices in the run on S is the same as
in the run on T , i.e. il = jl for all l < k. The proof is by induction on the first
1 ≤ l < k vertices added by prim in the run on T . The claim clearly holds for
l = 1, since prim starts with the same vertex in both runs. Suppose the claim is
true for the first l− 1 vertices and consider the iteration in the run on T in which
vertex jl, 1 < l < k, is added. Then jl is a vertex that is closest to the current
connected component in the run on T . By the choice of k, jl is also contained
in S. Moreover, by the induction hypothesis, the l−1 vertices that have previously
been chosen in the run on T and in the run on S are the same. Note that jl

must also be closest to the current connected component in the run on S because
S ⊆ T . Thus il = jl (assuming a consistent tie-breaking rule). However, note that
the order in which the vertices in S \ {j1, . . . , jk−1} are considered might differ
from the respective order in T due to the absence of jk. Our consistency property
reflects exactly this.

We next show that a consistent order function τ in combination with a certain
monotonicity property of the algorithm alg guarantees that the resulting general-
ized incremental algorithm M(alg, τ) (as defined in Algorithm 3) satisfies the no
positive transfer property. Consider the execution of the generalized incremental
mechanism M(alg, τ) induced by alg and a consistent order function τ . Recall
that R refers to the set of players that are currently remaining in the game. Note
that the order in which the players in R = {i1, . . . , i|R|} are considered remains
the same until the first player, say ik, is dropped. The consistency of τ now en-
sures that the ordered sets R′ = R \ {ik} and R agree on the first k − 1 players.
Said differently, only the order of the players succeeding ik in R can change in R′.
Hence, the first k−1 players correspond to the set A of currently accepted players.
We prove this formally in the next lemma.

Lemma 4.9. At the beginning of every iteration of M(alg, τ), we have R|A| = A.

Proof. We prove the lemma by induction on the number of iterations. In the first
iteration, R|A| = R0 = ∅ = A. For the induction step, assume that R|A| = A at the
beginning of some iteration. Let i∗ be the player that is picked in this iteration,
i.e., by the induction hypothesis, i∗ is the (|A| + 1)st player in the order on R.
Let R′ and A′ denote the updated sets at the end of this iteration. There are two

66 Weakly Group-Strategyproof Cost Sharing

cases: (i) If i∗ accepts, then R′ = R and A′ = A ∪ {i∗}. Hence, we can conclude
that R′

|A′| = R|A|+1 = A ∪ {i∗} = A′. (ii) On the other hand, if i∗ rejects, then

A′ = A and R′ = R \ {i∗}. Note that i∗ is the first element in the order on R
which is not in R′, and so by consistency of τ , we have R′

|A′| = R|A| = A = A′.

We can use this lemma to prove that the order in which players are added to
the set A during the course of the generalized incremental mechanism M(alg, τ)
coincides with the order induced by τ on the final output set SM .

Lemma 4.10. Let SM be the set of players output by M(alg, τ). During the
course of M(alg, τ), players are added to A by increasing τ(·, SM)-values.

Proof. Suppose SM is ordered by τ as SM = {i1, . . . , ip}. Let i be the kth player
that is added to A in the execution of M(alg, τ). We need to show that i = ik.

Consider the iteration in which player i is added to A. Let R and A be the sets
of remaining and accepted players at the beginning of the iteration, respectively,
and let R′ and A′ be the respective sets at the end of the iteration. We have
R′ = R, A′ = A∪{i} and |A′| = k. By Lemma 4.9, Rk−1 = A and R′

k = Rk = A′.
Note that all players in Rk−1 = A are contained in SM , so by consistency of τ ,

at least the first k − 1 elements of SM coincide with those of R, i.e. Rk−1 = SM
k−1.

By the same argument, we have R′
k = Rk = SM

k . We conclude that SM
k \ SM

k−1 =
Rk \ Rk−1 and thus i = ik.

Lemma 4.10 has an important consequence: If the cost function C̄ of the ap-
proximation algorithm alg is non-decreasing as players are added to SM one by
one (in the order of τ), then the final payments charged by the generalized in-
cremental mechanism M(alg, τ) to the players in SM are non-negative. Since
potentially every subset S ⊆ U might be chosen as the final output set, we re-
quire that the approximation algorithm satisfies this property for every subset of
players:

Definition 4.11 (τ -Increasing). Let alg be a ρ-approximate algorithm for an
optimization problem P. We say that alg is τ -increasing if for every S ⊆ U and
every 1 ≤ k ≤ |S|, we have C̄(Sk) ≥ C̄(Sk−1).

The following theorem now follows directly from Lemma 4.10.

Theorem 4.12. Let τ be a consistent order function and let alg be a τ -increasing
ρ-approximate algorithm for an optimization problem P. The generalized incre-
mental mechanism M(alg, τ) is a weakly group-strategyproof and ρ-budget bal-
anced cost sharing mechanism for P, which satisfies the no positive transfer prop-
erty.

4.3 Applications 67

We revisit the minimum spanning tree game to argue that Prim’s algorithm is
τ -increasing for the consistent order function defined in Example 4.8.

Example 4.13. We argued above that Prim’s algorithm induces a consistent order
function τ . It is not hard to verify that prim is τ -increasing: Given an arbitrary
subset S = {i1, . . . , ip} ordered by τ , prim adds the vertices i1, . . . , ip one by one to
the current component. The cost C(Sk)−C(Sk−1) of adding a vertex ik, 1 ≤ k ≤ p,
is equal to the weight of the edge that is added to connect ik to the tree. Since edge
weights are non-negative, it follows that prim is τ -increasing.

Recall from Example 4.6 that prim is not τ -increasing for every possible con-
sistent order function, e.g. for the one that orders vertices by increasing index.

In Section 4.3 we provide several additional examples of approximation algo-
rithms that are τ -increasing with respect to natural consistent order functions.

4.3 Applications

We demonstrate the applicability of our approach by deriving generalized incre-
mental mechanisms for a series of fundamental cost sharing games. For some of the
examples given here, better cost sharing mechanisms (with respect to social cost
approximation) exist in the literature. However, the main purpose of this section
is to show that our mechanisms can easily be derived from existing approximation
algorithms.

4.3.1 Network Design Applications

We first present examples from the field of network design.

Spanning Tree, Steiner Tree and TSP.

Reconsider the minimum spanning tree problem (MST) defined in Section 4.2.2.
We showed in Examples 4.8 and 4.13 that the order τ(·, S) in which prim adds
the vertices to the connected component if run on S is a consistent order function
and that prim is τ -increasing. We define Mprim := M(prim, τ) as the generalized
incremental mechanism induced by prim and τ . Theorem 4.12 yields the following
corollary.

Corollary 4.14. The generalized incremental mechanism Mprim induced by Prim’s
algorithm and τ is weakly group-strategyproof and budget balanced for the minimum

68 Weakly Group-Strategyproof Cost Sharing

spanning tree problem.

We can use Prim’s algorithm to obtain 2-budget balanced cost sharing methods
for the Steiner tree and traveling salesman problems. The Steiner tree problem asks
for a minimum weight tree that spans a subset of prespecified terminal vertices; the
tree may contain some non-terminal vertices. In the traveling salesman problem,
the goal is to determine a minimum weight tour through all vertices such that
every vertex is visited exactly once. Both problems admit a simple approximation
algorithm that constructs a 2-approximate solution from a minimum spanning tree
(see e.g. [98]). We can therefore use the cost sharing mechanism based on Prim’s
algorithm to obtain 2-budget balanced generalized incremental mechanisms for
these problems.

Corollary 4.15. Prim’s algorithm yields a 2-budget balanced and weakly group-
strategyproof generalized incremental mechanism for the Steiner tree problem.

Proof. Run Mprim on the set of terminals. Let T be the MST computed for the
final output set SM and let pprim

i denote the cost share of player i ∈ SM . We
output T and charge every player i ∈ SM a cost share of pi = pprim

i . The sum of
the cost shares collected equals the weight w(T) of the MST.

Let T ∗ be a minimum weight Steiner tree on SM . Double every edge of T ∗

to obtain an Euler tour on the terminals SM . By traversing this Euler tour and
shortcutting all Steiner vertices, we obtain a spanning tree T ′ on SM whose weight
is at most 2w(T ∗); note that we can assume without loss of generality that the edge
weights satisfy the triangle inequality. Since T is an optimal MST, we conclude

w(T) ≤ w(T ′) ≤ 2w(T ∗),

which proves 2-budget balance.

Corollary 4.16. Prim’s algorithm yields a 2-budget balanced and weakly group-
strategyproof generalized incremental mechanism for the traveling salesman prob-
lem.

Proof. Run Mprim on the set of vertices. Let T be the MST computed for the final
output set SM and let pprim

i be the cost share of player i. Double every edge of T
to obtain an Euler tour on the vertices in SM . By traversing this Euler tour and
shortcutting vertices that have been visited before, we obtain a traveling salesman
tour T ′ whose weight is at most 2w(T). We return T ′ and charge every player
i ∈ SM a cost share of pi := 2pprim

i . Note that
∑

i∈SM pi = 2w(T).

Let T ∗ be a minimum weight traveling salesman tour on SM . By deleting an
arbitrary edge, we obtain a tree spanning all vertices in SM and thus w(T) ≤

4.3 Applications 69

w(T ∗). We have

w(T ′) ≤ 2w(T) ≤ 2w(T ∗),

which concludes the proof.

Our generalized mechanisms for the above problems match the budget balance
factors of previously known cost sharing mechanisms [54, 59, 68], but are infe-
rior in terms of social cost approximation. While the known mechanisms achieve
polylogarithmic social cost approximation factors (see [89]), the situation is much
worse for our generalized incremental mechanisms: It is not hard to see that the
minimum spanning tree game contains the public excludable good problem as a
special case and thus inherits the social cost inapproximability of n (see Exam-
ple 4.20 below). However, our generalized incremental mechanisms stand out due
to their simplicity.

4.3.2 Scheduling Applications

Next, we state three examples from parallel machine scheduling.

Makespan Scheduling.

In the minimum makespan scheduling problem P | |Cmax, a set of jobs U is to be
scheduled on a set of identical parallel machines to minimize the latest completion
time of a job, also called the makespan. The problem is NP-complete (see [36]).
Graham’s largest processing time (lpt) algorithm [41] is a 4/3-approximation. lpt

is a list scheduling algorithm: It first orders the jobs by non-increasing processing
times and then adds jobs one by one (according to this order) to the current
schedule. Every new job is assigned to the machine which currently has the least
amount of processing time assigned to it.

We use Graham’s lpt algorithm to obtain a generalized incremental mecha-
nism which beats the corresponding lower bound of essentially 2 for Moulin mech-
anisms [10]. Let M

lpt := M(lpt, τ) be the generalized incremental mechanism
induced by lpt and the order function τ which sorts the jobs in lpt’s list schedul-
ing order.

Corollary 4.17. The generalized incremental mechanism M
lpt induced by Gra-

ham’s lpt algorithm and τ is weakly group-strategyproof and 4/3-budget balanced
for the makespan scheduling problem P | |Cmax.

Proof. The order function τ is induced by a global order and thus consistent.
Given a subset S of jobs, lpt adds the jobs in S one by one according to the
order τ to the existing schedule. The incremental approximate cost of adding

70 Weakly Group-Strategyproof Cost Sharing

a new player in every step therefore equals the increase in the makespan of the
resulting schedule. Hence, Graham’s algorithm is τ -increasing. Theorem 4.12 now
yields the claim.

The makespan scheduling problem contains the public excludable good problem
as a special case and thus M

lpt suffers from the same inefficiency as outlined in
Example 4.20. Bleischwitz et al. [12] give a 4/3-budget balanced and O(log n)-
approximate weakly group-strategyproof mechanism for the makespan problem,
which outperforms our mechanism in terms of social cost approximation.

Weighted Completion Time Scheduling without Preemption.

The weighted completion time scheduling problem P | |∑wiCi asks to schedule a
set U of n jobs with non-negative weights wi on m parallel machines such that
the total weighted completion time is minimized. Smith’s list scheduling algorithm
(sm) [96] orders the jobs by non-increasing weight per processing time ratios wi/pi

and iteratively assigns each job to a machine with smallest total load. It is optimal
on a single machine and (1 +

√
2)/2 ≈ 1.21-approximate in the general case [58].

In the unweighted setting, i.e. when wi = 1 for all i ∈ U , it reduces to the
shortest processing time policy and also delivers an optimal schedule. Even in
the unweighted case, no Moulin mechanism can achieve a budget balance factor
better than (n + 1)/2 [16]. Using generalized incremental mechanisms, we can
heavily improve upon this. We define the generalized incremental mechanism
M

sm := M(sm, τ) induced by Smith’s rule and the order function τ which orders
all jobs in the list scheduling order.

Corollary 4.18. The generalized incremental mechanism M
sm induced by Smith’s

algorithm and τ is weakly group-strategyproof and budget balanced for P | |∑Ci

and 1| |∑wiCi, and 1.21-budget balanced for P | |∑wiCi.

Proof. The order function τ is induced by the global order used by Smith’s rule and
is therefore consistent. Given a set of jobs S, sm adds the jobs in S one by one to
the existing schedule, in the order of τ . Hence, the incremental approximate cost of
adding job i is precisely its (weighted) completion time in the produced schedule.
Thus, sm is τ -increasing. It follows from Theorem 4.12 that M

sm is weakly group-
strategyproof and ρsm-budget balanced, where ρsm is the approximation guarantee
of Smith’s rule for the respective scheduling problem.

We will show in Section 4.5 that M
sm achieves constant social cost approxima-

tion guarantees for these problems.

4.4 Bounding Social Cost 71

Min-Sum Scheduling with Release Dates and Preemption.

In the completion time scheduling problem with release dates and preemption
P |ri, pmtn|∑i Ci, the goal is to schedule a set U of n jobs on m parallel ma-
chines such that the total completion time is minimized. Each job i ∈ U becomes
available at its release date ri and jobs can be preempted. The shortest remaining
processing time (srpt) policy is a good approximation algorithm for this problem.
At any point of time, srpt executes the m available jobs with the smallest remain-
ing processing times. srpt computes an optimal schedule for the total completion
time and flow time objectives in the single-machine case [93]. Sitters [95] very re-
cently showed that srpt achieves an approximation factor of 1.25 for the parallel
machine case P |ri, pmtn|∑i Ci.

Moulin mechanisms cannot achieve a budget balance factor better than Ω(n) for
these problems [16]. We obtain the following strongly superior results. For a given
subset of jobs S ⊆ U , let τ(·, S) be the order induced by increasing completion
times in the srpt schedule for S; if two jobs are completed at the same time, we
assume an arbitrary but consistent tie breaking rule. Let M

srpt := M(srpt, τ)
be the generalized incremental mechanism induced by the srpt algorithm and τ .
We prove in Section 4.5 that τ is consistent and that srpt is τ -increasing. Using
Theorem 4.12, we thus obtain the following theorem.

Corollary 4.19. The generalized incremental mechanism M
srpt induced by srpt

and τ is weakly group-strategyproof and budget balanced for 1|ri, pmtn|∑i Fi and
1|ri, pmtn|∑i Ci, and 1.25-budget balanced for P |ri, pmtn|∑i Ci.

We will prove in Section 4.5 that this mechanism also achieves constant social
cost approximation guarantees for these problems.

4.4 Bounding Social Cost

In this section, we derive some general techniques that are helpful in proving so-
cial cost approximation guarantees of generalized incremental mechanisms. These
techniques seem particularly applicable if the underlying approximate cost func-
tion is superadditive.

The following example shows that generalized incremental mechanisms cannot
be expected to achieve attractive social cost approximation factors if the underly-
ing cost function is subadditive. In the public excludable good problem, the serving
cost is C(S) = 1 for every non-empty subset of players ∅ 6= S ⊆ U , and C(∅) = 0.
Dobzinski et al. [30] showed that for this problem no constantly budget balanced
and truthful mechanism can approximate social cost by less than a logarithmic

72 Weakly Group-Strategyproof Cost Sharing

factor, even if only strategyproofness is required. The situation is worse for gen-
eralized incremental mechanisms.

Example 4.20. Consider an instance of the public excludable good problem with n
players. Set the valuation of each player i ∈ U to vi = 1−ǫ for an arbitrarily small
constant ǫ > 0. Assuming truthful bidding, any generalized incremental mechanism
serves the empty set incurring a social cost of Π(∅) = (1−ǫ)n. On the other hand,
serving the whole set induces a social cost of Π(U) = 1. We therefore obtain a
lower bound on the social cost approximation factor of essentially n.

Our bounding technique relies on a weak monotonicity property for the induced
cost sharing method of a generalized incremental mechanism. A generalized incre-
mental mechanism M(alg, τ) naturally induces the cost sharing method ξ(alg, τ)
for which ξi(S) is defined as the cost share xi that player i has to pay when S is the
output set of the mechanism. More formally, we define the cost sharing method
ξ : U × 2U → R induced by alg and τ as follows. Let S = {i1, . . . , ip} ⊆ U be an
arbitrary subset of players ordered by τ . The incremental approximate cost share
ξi(S) of player i = ik, 1 ≤ k ≤ p, is defined as ξi(S) := C̄(Sk) − C̄(Sk−1); for
every player i /∈ S, we define ξi(S) := 0. Note that Definition 4.11 is equivalent to
stating that for every subset S ⊆ U and every player i ∈ S, ξi(S) is non-negative.

We are now ready to state our weak monotonicity property, which is reminiscent
of the inverse of the core property.

Definition 4.21. Let ξ be the incremental approximate cost sharing method in-
duced by an approximation algorithm alg and an order function τ . We call ξ
weakly monotone if for all subsets S ⊆ T ⊆ U ,

∑

i∈S ξi(T) ≥ C̄(S).

For proving a social cost approximation guarantee for a mechanism M , we
need to upper bound the ratio between the social cost of the set SM chosen by
the mechanism and the cost of a socially optimal set

S∗ := arg min
S⊆U

(

C(S) +
∑

i/∈S

vi

)

.

We obtain the following theorem for generalized incremental mechanisms that
implement weakly monotone cost sharing methods.

Theorem 4.22. Let τ be a consistent order function and alg be a τ -increasing al-
gorithm. Suppose that the incremental approximate cost sharing method ξ induced
by alg and τ is weakly monotone. Then, the generalized incremental mechanism

4.4 Bounding Social Cost 73

M(alg, τ) approximates social cost by a factor of α if

C̄(SM ∪ S∗)
C(S∗) + C(SM \ S∗)

≤ α.

Proof. We can bound the social cost approximation factor by

Π(SM)

Π∗ =
C̄(SM) +

∑

i∈S∗\SM vi +
∑

i/∈SM∪S∗ vi

C(S∗) +
∑

i∈SM\S∗ vi +
∑

i/∈SM∪S∗ vi
≤

C̄(SM) +
∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ vi

≤
C̄(SM) +

∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ ξi(SM)
≤

C̄(SM) +
∑

i∈S∗\SM vi

C(S∗) + C(SM \ S∗)
.

Here, the first inequality follows from the fact that a
b ≤ a−c

b−c for arbitrary real

numbers a ≥ b > c ≥ 0. The second inequality holds because vi ≥ ξi(S
M) for

every player i ∈ SM , since i accepted and we assume truthful bidding. The last
inequality follows from weak monotonicity of ξ and the fact that C̄(S) ≥ C(S) for
every set S ⊆ U .

We conclude the proof by showing that

∑

i∈S∗\SM

vi ≤ C̄(SM ∪ S∗) − C̄(SM).

Without loss of generality, number the players in S∗ \ SM in the order in which
they were rejected by M , i.e., S∗ \SM =: {1, . . . , ℓ}. Fix a player i ∈ S∗ \SM and
consider the iteration in which player i was removed. Let R and A be the sets
of remaining and accepted players at the beginning of this iteration, respectively.
Define Ri as the subset of players in S∗∪SM that were still remaining in the game
when i was picked, i.e., Ri := SM ∪ {i, i + 1, . . . , ℓ}. Let k := |A|. By Lemma 4.9,
we have Rk = A. Moreover, since i is chosen, we have Rk+1 = A ∪ {i}. Note that
A∪{i} is a subset of Ri. By consistency of τ , the first k +1 elements of Ri and R
must coincide and we thus have A∪{i} = Rk+1 = Ri

k+1. The same argument also
yields that A = Rk = Ri

k; see Figure 4.3 for an illustration. Therefore,

pi = C̄(A ∪ {i}) − C̄(A) = C̄(Ri
k+1) − C̄(Ri

k) = ξi(R
i).

Since i rejected, we have vi < pi = ξi(R
i). Note that Ri = Ri+1∪{i}. Exploiting

that ξ is weakly monotone, we obtain that

C̄(Ri) =
∑

j∈Ri

ξj(R
i) = ξi(R

i) +
∑

j∈Ri+1

ξj(R
i) ≥ ξi(R

i) + C̄(Ri+1).

74 Weakly Group-Strategyproof Cost Sharing

R A

︷ ︸︸ ︷

R|A| = A

i

Ri A i

Figure 4.3: Illustration of the consistency property as used in the proof of Theorem 4.22.

Summing over all i ∈ {1, . . . , ℓ} yields

∑

i∈S∗\SM

vi <
ℓ∑

i=1

ξi(R
i) ≤

ℓ∑

i=1

(
C̄(Ri) − C̄(Ri+1)

)
= C̄(SM ∪ S∗) − C̄(SM).

We use Theorem 4.22 in Section 4.5 to prove constant social cost approximation
factors for our generalized incremental mechanisms for scheduling problems with
completion time objectives.

4.5 Completion Time Scheduling

In this section, we study the performance of generalized incremental mechanisms
for parallel machine scheduling problems with total completion time objectives,
also taking into account their social cost approximation guarantees. We distinguish
between the model with weights in which all jobs arrive at time zero and no
preemption is allowed, and the model in which jobs have release dates and may
be preempted.

4.5.1 Weighted Completion Time

We reconsider the (weighted) completion time scheduling problems introduced in
Section 4.3.2. We already showed that the generalized incremental mechanism
M

sm := M(sm, τ) induced by Smith’s rule and the offer function τ defined by non-
increasing weight per processing time is weakly group-strategyproof and achieves
ρsm-budget balance, where ρsm is the approximation guarantee of Smith’s rule.
In this section, we show that M

sm also achieves a surprisingly small social cost
approximation factor.

4.5 Completion Time Scheduling 75

Theorem 4.23. The generalized incremental mechanism M
sm induced by Smith’s

algorithm and τ is weakly group-strategyproof, ρsm-budget balanced, and 2ρsm-
approximate for the respective (weighted) completion time scheduling problem.

We first prove the following lemma.

Lemma 4.24. Let alg be an algorithm for P | |∑wiCi with cost function C̄. Let
X and Y be two disjoint sets of jobs. Then, the cost of an optimal schedule for
X ∪ Y can be bounded by C(X ∪ Y) ≤ 2(C̄(X) + C̄(Y)).

Proof. We prove the inequality individually for each machine M̂ . Consider the
jobs X̂ ⊆ X and Ŷ ⊆ Y scheduled on M̂ in the runs of alg on X and Y ,
respectively. We denote by ci the completion time of job i in its respective schedule,
i.e. ci := C̄i(X) for all i ∈ X̂ and ci := C̄i(Y) for all i ∈ Ŷ .

Consider the schedule which processes all jobs in X̂ ∪ Ŷ on M̂ according to
non-decreasing ci. The completion time of a job i ∈ X̂ in this schedule is ci + ci∗ ,
where i∗ denotes the last job in Ŷ that is processed before i. Since i∗ is processed
before i, we have ci + ci∗ ≤ 2ci. By exchanging the roles of X and Y , we can show
the same for the completion time of every job i ∈ Ŷ .

Since the cost of an optimal schedule for X ∪ Y is at most that of the schedule
produced by repeating the above procedure for each machine, we have

C(X ∪ Y) ≤
∑

i∈X∪Y

wi · 2ci = 2
(∑

i∈X

wici +
∑

i∈Y

wici

)

= 2
(
C̄(X) + C̄(Y)

)
.

We can now prove Theorem 4.23.

Proof of Theorem 4.23. It follows from Corollary 4.18 that M
sm is weakly group-

strategyproof and ρsm-budget balanced. In order to obtain the social cost approx-
imation guarantee, we show that the induced cost sharing method ξ is weakly
monotone. Consider an arbitrary subset S ⊆ U of jobs. Note that the incremental
approximate cost share ξi(S) of a player i ∈ S with respect to S equals her com-
pletion time in the schedule output by Smith’s rule for S. It is not hard to see that
Ci(T) ≥ Ci(S) for every i ∈ S ⊆ T . Hence,

∑

i∈S ξi(T) ≥ ∑

i∈S ξi(S) = C̄(S).
The social cost approximation factor now follows from Lemma 4.24 and Theo-
rem 4.22.

The following example shows that our social cost analysis is tight, even in the
unweighted single machine case.

Example 4.25. Consider an instance of 1|pi = 1|∑Ci on an even number of
n jobs with valuations vi = i for all i ∈ [n]. Assume that M

sm orders the jobs

76 Weakly Group-Strategyproof Cost Sharing

according to increasing valuations (note that we can easily enforce this by slightly
perturbing the processing times) and thus accepts all jobs. Consequently, Π(SM) =
C̄([n]) = n(n + 1)/2. However, if we exclude the first n/2 jobs from the scheduled
set, we obtain a social cost of

C
([n

2

])

+

n/2
∑

i=1

vi = 2 ·
(n

4

(n

2
+ 1
))

= n(n + 2)/4 ≥ Π∗,

yielding a social cost approximation ratio that approaches 2.

4.5.2 Completion Time with Release Dates and Preemption

We reconsider the preemptive completion (and flow) time scheduling problems
introduced in Section 4.3.2. We prove the following result:

Theorem 4.26. The generalized incremental mechanism M
srpt induced by the

srpt algorithm and τ is weakly group-strategyproof, ρsrpt-budget balanced, and
4ρsrpt-approximate for the respective completion time scheduling problem with re-
lease dates and preemption.

For the sake of clarity, we first consider the single machine case and comment
on the extension of the results given below to the parallel machine case at the end
of this section.

Single Machine Case. Consider the problem 1|ri, pmtn|∑i Ci of scheduling
a set of jobs U on a single machine to minimize the total completion time. The
shortest remaining processing time (srpt) policy solves this problem to optimal-
ity [93]. Throughout this section, we denote by Ci(S) the completion time of
job i ∈ S in the srpt schedule for S ⊆ U . Note that by optimality of srpt,
we have C̄(S) = C(S) =

∑

i∈S Ci(S). As in Section 4.3.2, we define τ(·, S)
to be the order induced by increasing completion times in the srpt schedule,
i.e. τ(i, S) := Ci(S) for all i ∈ S, and let M

srpt := M(srpt, τ) be the generalized
incremental mechanism induced by srpt and τ .

The proof of Theorem 4.26 relies on Lemmas 4.27 and 4.28 below. The most
work goes into showing that the order function τ is consistent and that srpt is
τ -increasing. However, we defer this part of the proof to the end of this section.
Lemma 4.28 is used to prove the social cost approximation factor.

Lemma 4.27. The order function τ is consistent. Moreover, srpt is τ -increasing.

4.5 Completion Time Scheduling 77

Lemma 4.28. Let alg be an algorithm for P |ri, pmtn|∑i Ci with cost function C̄.
Let X and Y be two disjoint sets of jobs. Then, the cost of an optimal schedule
for X ∪ Y can be bounded by C(X ∪ Y) ≤ 4(C̄(X) + C̄(Y)).

Proof. Phillips et al. [82] prove that any preemptive schedule for P |ri, pmtn|∑i Ci

can be turned into a non-preemptive schedule np with at most twice the cost. With
Lemma 4.24, we obtain C(X ∪ Y) ≤ 2(Cnp(X ∪ Y)) ≤ 4(C̄(X) + C̄(Y)).

Assuming that Lemma 4.27 holds, we can now prove Theorem 4.26.

Proof of Theorem 4.26. Lemma 4.27 together with Theorem 4.3 imply that M
srpt

is weakly group-strategyproof and budget balanced. To prove that M
srpt approx-

imates social cost, we first show that ξ is weakly monotone. Fix some set T and
let S ⊆ T . Consider the srpt schedule for T . By removing all jobs in T \ S from
this schedule, we obtain a feasible schedule for S of cost at most

∑

i∈S Ci(T),
hence

∑

i∈S Ci(T) ≥ C(S). Subsequently, it will become clear that the incremen-
tal cost share ξi(T) of a job i ∈ T with respect to T is equal to its completion
time Ci(T). We conclude that ξ is weakly monotone. Now, the bound on the
social cost approximation factor follows from Lemma 4.28 (letting alg refer to an
optimal algorithm) and Theorem 4.22.

It remains to show that the order function τ induced by increasing completion
times in the srpt schedule is consistent and that srpt is τ -increasing. To this
end, we study the effect of removing a single job from the srpt schedule. We
claim the following:

Lemma 4.29. Let T ⊆ U . Suppose we remove an arbitrary job j from T . De-
fine S := T \ {j} as the set of remaining jobs. Let Ci(S) and Ci(T) denote the
completion times of job i ∈ S in the srpt schedules for S and T , respectively.
Then

1. Ci(S) = Ci(T) for every job i ∈ S with Ci(T) < Cj(T); and

2. Ci(S) ≥ Cj(T) for every job i ∈ S with Ci(T) > Cj(T).

Suppose this lemma is true. We can then prove that τ is consistent and that
srpt is τ -increasing:

Proof of Lemma 4.27. We first prove consistency. Let S ⊆ T ⊆ U be two subsets
ordered by τ as S = {i1, i2, . . . , ip} and T = {j1, j2, . . . , jq}. Let k be minimal
with jk ∈ T \ S. Define j := jk to simplify notation. By definition of τ , for every
job i = jl with 1 ≤ l < k, we have Ci(T) < Cj(T). Also, for every job i = jr with
k < r ≤ q, we have Ci(T) > Cj(T). Thus, by removing job j from T we obtain

78 Weakly Group-Strategyproof Cost Sharing

a new set T ′ = T \ {j} such that Ci(T
′) = Ci(T) for all i = jl with 1 ≤ l < k

and Ci(T
′) ≥ Cj(T) for all i = jr with k < r ≤ q. Repeating the above procedure

(with T ′ instead of T), we eventually remove all jobs in T \S from T and conclude
that il = jl for all 1 ≤ l < k.

It remains to prove that srpt is τ -increasing. Consider an arbitrary subset
S ⊆ U of jobs and suppose S is ordered by τ as S = {i1, . . . , ip}. We need to
argue that C̄(Sk) ≥ C̄(Sk−1) for every 1 ≤ k ≤ p. The proof is by induction on k.
For k = p the claim follows since we remove a job j = ip with Cj(S) > Ci(S) for
all i ∈ S \ {j} and by Lemma 4.29, the completion times of all remaining jobs
remain the same. Thus C̄(Sp) − C̄(Sp−1) = Cj(Sp) = Cj(S) ≥ 0. Suppose the
claim holds true for all k + 1 ≥ ℓ for some 1 < ℓ ≤ p. We show that it remains
true for k. Let j = ik. We have Cj(S) > Ci(S) for all i ∈ Sk−1. The consistency
of τ implies that Cj(Sk) > Ci(Sk) for all i ∈ Sk−1. Thus, by Lemma 4.29, the
completion times of all jobs i ∈ Sk−1 remain the same if we remove job j from the
srpt schedule for Sk. We conclude that the incremental cost share of player j is
exactly its completion time, i.e., C̄(Sk) − C̄(Sk−1) = Cj(Sk) ≥ 0.

Intuitively, it is relatively easy to verify Lemma 4.29: During the lifetime
(i.e. between release and completion time) of job j in the srpt schedule for T ,
job j prevents some jobs, call them losing jobs, to be executed (because they have
a larger remaining processing time) while some other jobs, call them winning jobs,
prevent j from being executed (because they have a smaller remaining processing
time). Clearly, every losing job has a larger completion time than j, while every
winning job has a smaller completion time than j. Now suppose we remove job j
from the input set and consider the resulting srpt schedule. There are two crucial
insights: (i) nothing changes for the winning jobs, and (ii) whenever j was pro-
cessed in the srpt schedule for T , a losing job might now be processed in the srpt

schedule for S; however, this losing job will not be completed before time Cj(T).
See Figure 4.4 for an illustration.

In order to turn this intuition into a formal proof, we first introduce some
more notation. Let ei(t) be the amount of time that has been spent on processing
job i up to time t. The remaining processing time xi(t) of job i at time t is
xi(t) := pi − ei(t). We call a job i active at time t if it has been released but not
yet completed at this time, i.e., ri ≤ t < Ci. Let A(t) be the set of jobs that are
active at time t. srpt works as follows: At any time t ≥ 0, srpt schedules an
active job i ∈ A(t) with minimum remaining processing time, i.e., xi(t) ≤ xk(t)
for all k ∈ A(t). We assume that srpt uses a consistent tie breaking rule, e.g.,
if xi(t) = xk(t) for two different jobs i and k, then schedule the one with smaller
index.

Consider the srpt schedule for a set T ⊆ U . Let i, j ∈ A(t) be two jobs that
are active at time t. We define i ≺t j iff either xi(t) < xj(t) or xi(t) = xj(t) and
i ≤ j. Note that at any point of time t, srpt schedules the job i ∈ A(t) with

4.5 Completion Time Scheduling 79

0 5 10 15 t
1 33 5

2

4

T 1 2 23 34 5

S 1 2 24 5

Cj(T)

Figure 4.4: The effect of removing a single job j = 3 from the srpt schedule on T =
{1, . . . , 5}. The upper part represents the input instance for T ; jobs are numbered by
increasing release times. The lower part shows the two srpt schedules for T and S :=
T \ {j}. The winning and losing jobs are indicated in black and gray, respectively.

i ≺t j for all j ∈ A(t). Thus, if i ≺t j for some t, then i ≺t′ j for all t′ ∈ [t, Ci). We
therefore simply write i ≺ j iff there exists a time t with i ≺t j. Let σ(t) denote
the job that is executed at time t in the srpt schedule for T ; we define σ(t) = ∅
if A(t) = ∅.

Let j ∈ T be an arbitrary job and consider the time interval [rj , Cj). We define
the set Cj of jobs that are competing with j as Cj := {i ∈ T \{j} : [ri, Ci)∩[rj , Cj) 6=
∅}. Note that j /∈ Cj. We partition the jobs in Cj into a set Wj of winning jobs and
a set Lj of losing jobs with respect to j: Wj := {i ∈ Cj : i ≺ j} and Lj := Cj \Wj .
Intuitively, suppose i and j are both active at some time t. If i is a winning job,
then i prevents j from being executed by srpt. On the other hand, if i is a losing
job, then j prevents i from being executed.

We next investigate the effect of removing a job j from T . We use the super-
script S if we refer to the srpt schedule for S := T \ {j}.

Lemma 4.30. Consider the two srpt schedules on job sets T and S := T \ {j}.
For every job i ∈ Cj that is active at time t ∈ [rj , Cj),

xS
i (t) = xi(t) if i ∈ Wj and xS

i (t) ≥ xj(t) if i ∈ Lj.

Proof. We partition the time interval [rj , Cj) into a sequence of maximal subin-
tervals I1, I2, . . . , If such that the set of active jobs remains the same within every
subinterval Iℓ := [sℓ, eℓ). We prove by induction over ℓ that the claim holds for
every t ∈ [rj , eℓ).

Note that both schedules are identical up to time rj = s1. If σ(s1) 6= j, then
both schedules process the same job during I1 and the claim follows. Suppose

80 Weakly Group-Strategyproof Cost Sharing

σ(s1) = j. This implies that A(s1) ∩Wj = ∅ and thus all jobs in A(s1) \ {j} =
AS(s1) are losing jobs. If AS(s1) = ∅, the claim follows. Otherwise, let k := σS(s1)
be the job that is processed in the schedule for S. Since k is a losing job, we have
xS

k (s1) = xk(s1) ≥ xj(s1). Since k and j receive the same processing time during I1

in their respective schedules, the claim holds for all t ∈ [rj , e1).

Now, assume that the claim is true for every t ∈ [rj , eℓ−1) for some ℓ > 1. We
show that it remains true during the time interval Iℓ. By the induction hypothesis,
xS

i (t) = xi(t) for every job i ∈ Wj that is active at time t ∈ [rj , eℓ−1). This implies
that a job j ∈ Wi is executed at time t ∈ [rj , eℓ−1) in the schedule for T iff it is
executed at time t in the schedule for S. We thus have AS(sℓ)∩Wj = A(sℓ)∩Wj .
Moreover, xS

i (t) ≥ xj(t) for every job i ∈ Lj that is active at time t ∈ [rj , eℓ−1).
Since xj(t) > 0 for every t ∈ [rj , Cj), every job i ∈ Lj that is active at time
t ∈ [rj , eℓ−1) in the schedule for T must also be active at time t in the schedule
for S. Thus, AS(sℓ) ∩ Lj = A(sℓ) ∩ Lj. We now distinguish two cases:

(i) First, assume σ(sℓ) =: k ∈ Wj. Job k then has smallest remaining processing
time, i.e., xk(sℓ) ≤ xi(sℓ) for all i ∈ A(sℓ). We conclude that

xS
k (sℓ) = xk(sℓ) ≤ xi(sℓ) = xS

i (sℓ) ∀i ∈ A(sℓ) ∩Wj = AS(sℓ) ∩Wj

xS
k (sℓ) = xk(sℓ) ≤ xj(sℓ) ≤ xS

i (sℓ) ∀i ∈ A(sℓ) ∩ Lj = AS(sℓ) ∩ Lj.

Since we assume that srpt uses a consistent tie breaking rule, this implies that
σS(sℓ) = k and the claim follows.

(ii) Now, suppose σ(sℓ) = j. (Note that σ(sℓ) ∈ Lj is impossible.) Then
xj(sℓ) ≤ xi(sℓ) for every i ∈ A(sℓ) and A(sℓ) ∩ Wj = ∅. But then we also
have AS(sℓ) ∩ Wj = ∅ and thus AS(sℓ) ⊆ Lj. If AS(sℓ) = ∅, the claim follows.
Otherwise, let k := σS(sℓ) ∈ Lj be the job that is executed at time sℓ in the
schedule for S. Since xS

k (sℓ) ≥ xj(sℓ) and the remaining processing times of k and
j in their respective schedules reduce by the same amount during Iℓ, the claim
follows.

Using Lemma 4.30, we can now easily prove Lemma 4.29.

Proof of Lemma 4.29. Let i ∈ S be a job with Ci(T) < Cj(T). If i is not compet-
ing with j, then rj ≥ Ci and thus removing j from the schedule does not change
the completion time of i, i.e., Ci(S) = Ci(T). Otherwise, i is competing with j,
but since Cj(T) > Ci(T), i is a winning job with respect to j. By Lemma 4.30,
job i is completed at the same time in the srpt schedules for S and for T and
thus Ci(S) = Ci(T).

Next, consider a job i ∈ S with Ci(T) > Cj(T). The claim clearly holds if
ri ≥ Cj(T) since Ci(S) ≥ ri. Assume ri < Cj(T). Then i is competing with j
and i is a losing job with respect to j. By Lemma 4.30, job i cannot be completed
before time Cj(T) in the srpt schedule for S. Thus Ci(S) ≥ Cj(T).

4.6 Connections to Other Frameworks 81

Parallel Machine Case. The crucial insight in the single machine case is
Lemma 4.29. The same property holds in the parallel machine case if we assume
a consistent tie breaking rule between jobs with equal remaining processing times.
Showing that the computed output set is 4ρsrpt-approximate proceeds exactly
along the same lines as in Theorem 4.26 (in fact, Lemma 4.28 is formulated for
the multiple machine case). The only difference is that srpt produces a schedule
whose total completion time is at most 1.25 times the optimum [95].

Flow Time Scheduling.

The following example shows that a variant of the above mechanism for flow time
objectives does not achieve similar results. Even for the single machine problem
1|ri, pmtn|∑Fi, no cost sharing mechanism in which every player pays her own
flow time, i.e. ξi(S) := Fi(S) = Ci(S)− ri, can approximate social cost by a factor
smaller than n/4.

Example 4.31. Define two sets A and B, each containing k = n
2 jobs of unit

processing time. At each integral point of time, one job from each set is released.
All jobs in A have valuation n, whereas all jobs in B have valuation 1.

Now, at each integral point of time, the srpt algorithm may choose to schedule
the job from B that has just been released. (Note that at any integral point of time,
any job in the system has a remaining processing time of 1.) If this happens, no
job in A is executed before time t = n

2 , thus the jobs in A experience an average
delay of n

2 each. However, due to their high valuation, all jobs in A still accept,
and we obtain a total flow time of

C̄(SM) = C̄(A ∪ B) = k + k + k2 = k2 + 2k.

However, the set A only has social cost Π(A) = C̄(A) + v(B) = k + k = 2k, hence
the approximation factor for this example is more than n

4 :

Π(SM)

Π∗ ≥ Π(A ∪ B)

Π(A)
=

k2 + 2k

2k
=

k + 2

2
=

n + 4

4
>

n

4
.

4.6 Connections to Other Frameworks

4.6.1 Acyclic Mechanisms

Our generalized incremental mechanisms are a subclass of acyclic mechanisms
introduced by Mehta, Roughgarden, and Sundararajan [69] (see Section 2.4.4).
As we explain in the following, they can be viewed as being complementary to
Moulin mechanisms in the scope of acyclic mechanisms.

82 Weakly Group-Strategyproof Cost Sharing

Our research presented in this chapter was initiated by the following simple ob-
servations. Consider the offer function τ of an acyclic mechanism. For a given set
of players S ⊆ U , τ divides S into subsets of players with equal offer times τ(·, S).
We like to think about acyclic mechanisms in terms of such maximal player sets
with equal offer times, and call them clusters. Depending on the size of these
clusters, we can illustrate the landscape of acyclic mechanisms as follows:

• Towards one end, assume that every set S consists of one big cluster that
contains all players in S. Then, the Definition 2.36 reduces to (P2), which
is equivalent to the definition of cross-monotonicity. Hence, acyclic mecha-
nisms with maximum cluster size are Moulin mechanisms.

• Towards the other end, consider an acyclic mechanism for which all clusters
are singletons, i.e. in every set S, every player has a unique offer time. In
this case, Definition 2.36 reduces to (P1) and once a cost share is announced
to a player, it can never be changed again.

Following these observations, we defined order functions to be offer functions
that produce only singleton clusters, i.e. offer functions τ(i, S) in which each
i ∈ S receives a distinct offer time with respect to S. We call the subclass of
acyclic mechanisms that are induced by order functions singleton mechanisms
(see also [18]). In this chapter, we study the subclass of singleton mechanisms in
which every player is charged the incremental cost of adding her to the current
solution. It can easily be verified that consistent order functions are valid for
the induced incremental cost sharing methods defined in this chapter. Intuitively,
the reason is that the cost share of a player only depends on the set of players
that precede her in the order of τ . As a consequence, generalized incremental
mechanisms fulfill all conditions of Theorem 2.37 and thus belong to the class of
acyclic mechanisms. Bleischwitz et al. [12] showed that acyclic mechanisms are
weakly group-strategyproof against collectors. As a consequence, our generalized
incremental mechanisms also satisfy this slightly stronger truthfulness notion.

4.6.2 Scheduling with Rejection

It is easy to verify that every cost sharing mechanism that approximates social
cost by a factor of α defines an α-approximate algorithm for the underlying opti-
mization problem with rejection. Along with our results in mechanism design, we
therefore obtain several approximation algorithms for scheduling problems with
rejection.

Let P be an arbitrary scheduling problem. For every job i ∈ U , let zi be the
rejection penalty for the price-collecting variant of P. We define a cost sharing
game on P by identifying every player’s valuation with the penalty of her job,
i.e. vi := zi for all i ∈ U . An α-approximate mechanism for this cost sharing game

4.7 Makespan Scheduling with Unit Processing Times 83

outputs a served set of players SM and a feasible solution of cost C̄(SM) for this
set with social cost

C̄(SM) +
∑

i/∈SM

vi ≤ α · min
S⊆U

(

C(S) +
∑

i/∈S

vi

)

.

Now, it is easy to see that the algorithm that schedules SM and rejects all other
jobs outputs an α-approximate solution to the scheduling problem with rejection.

We therefore obtain the following theorem:

Theorem 4.32. Let M be a mechanism that approximates social cost by a factor α
for a scheduling problem P. Then, M defines an α-approximation algorithm for
the respective scheduling problem P with rejection.

Thus, the following results are immediate consequences of our mechanisms pre-
sented in Section 4.5.

Corollary 4.33. The generalized incremental mechanism M
sm induced by Smith’s

rule defines a 2.42-approximate algorithm for the weighted completion time schedul-
ing problem P | |∑wiCi with rejection. The algorithm is 2-approximate in both the
single machine case and the unweighted case.

Corollary 4.34. The generalized incremental mechanism M
srpt based on the srpt

policy defines a 5-approximate algorithm for the completion time scheduling prob-
lem P |ri, pmtn|∑Ci with rejection. The algorithm is 4-approximate in the single
machine case.

4.7 Makespan Scheduling with Unit Processing

Times

In this section, we consider the minimum makespan scheduling problem m parallel
machines with unit processing times P |pi = 1|Cmax. Any list scheduling algorithm
is optimal for this problem. We obtain a weakly group-strategyproof cost sharing
mechanism that is budget balanced and (Hn + 1)-approximate. The social cost
guarantee of our mechanism matches the the lower bound proved in [68], which
applies since we are dealing with a public excludable good problem in the special
case where m = n.

Assuming a fixed order on U , let S = {1, 2, . . . , |S|} denote the elements in
S ⊆ U according to this order. We partition every set S into ⌈ n

m⌉ clusters of size

84 Weakly Group-Strategyproof Cost Sharing

(at most) m by defining the offer function as

τ(i, S) :=
⌊

i
m

⌋
.

Further, we let every player pay an equal share of the incremental cost incurred
by her cluster, i.e.

ξi(S) :=
1

|E(i, S)| .

Let M
um denote the acyclic mechanism induced by τ and ξ.

Theorem 4.35. The acyclic cost sharing mechanism M
um is budget balanced and

approximates social cost by a factor of (Hn + 1).

Proof. We first prove that τ is valid for ξ. Property (P1) in Definition 2.36 is
fulfilled since the index of a job does not change when jobs with higher indices
leave the set. Just as well, |E(i, S)| can only decrease when a subset of G(i, S) ∪
(E(i, S) \ {i}) is removed, which ensures Property (P2).

Assume that the list schedule for a set S schedules the jobs in our given order
{1, 2, . . . , |S|}. By definition of τ , each cluster thus causes an objective function
increase of 1. Since

∑

i∈E(i,S) ξi(S) = 1, the sum of the cost shares equals exactly
the cost of the produced schedule. Hence, 1-budget balance follows from optimality
of the list schedule.

It remains to show that M
um approximates social cost by a factor of Hn+1. Let

ℓ := |SM | and let S∗ be a player set with optimal social welfare. First, consider
the case where |S∗| ≥ 1. We have

∑

i∈S∗\SM vi ≤ Hn−ℓ, because the cost share
of the job that is asked in the very last iteration is bounded by 1, that in the
second to last iteration is bounded by 1/2, and so on. Hence, the valuations of
the rejected players are upper bounded by these values. With this,

Π(SM)

Π∗ =
C̄(SM) +

∑

i∈S∗\SM vi +
∑

i/∈SM∪S∗ vi

C(S∗) +
∑

i∈SM\S∗ vi +
∑

i/∈SM∪S∗ vi
≤

C̄(SM) +
∑

i∈S∗\SM vi

C(S∗) +
∑

i∈SM\S∗ vi

≤ ⌈ ℓ
m⌉ + Hn−ℓ

1
≤ ℓ

m + 1 + Hn−ℓ ≤ Hn + 1.

Here, as in the proof of Theorem 4.22, the first inequality follows from the fact
that a

b ≤ a−c
b−c for arbitrary real numbers a ≥ b > c ≥ 0.

Otherwise, if S∗ = ∅, we have

Π(SM)

Π∗ =
C̄(SM) +

∑

i/∈SM vi
∑

i∈SM vi +
∑

i/∈SM vi
≤ C̄(SM)
∑

i∈SM vi
≤ ⌈ ℓ

m⌉
ℓ
m

≤ 2,

assuming that ℓ ≥ 1 (otherwise SM = S∗). This concludes the proof.

4.8 Conclusion 85

The best-possible budget balance factor achievable by cross-monotonic cost
sharing methods is 2− 1/m for this problem. Hence, the above result proves once
more that acyclic mechanisms allow for better budget balance factors in scheduling
than Moulin mechanisms.

4.8 Conclusion

We presented a general approach to derive weakly group-strategyproof mechanisms
from approximation algorithms, therefore allowing to benefit from the enormous
theory on approximation algorithms. The approach is applicable whenever the ap-
proximation algorithm exhibits a consistent order function with respect to which
the approximate cost is monotonically increasing. We provided a series of ex-
amples showing that many approximation algorithms naturally give rise to such
order functions. It turned out that our mechanisms are particularly efficient for
completion time scheduling problems. We are confident that our approach can be
applied to various other combinatorial optimization problems. It would be inter-
esting to see more examples for which good social cost approximation guarantees
can be proven. The most promising problems in this context seem to be ones with
superadditive cost functions, i.e. where congestion effects occur. Concurrently,
these are problems for which Moulin mechanisms usually perform only poorly.

Our generalized incremental mechanisms belong to the class of singleton mech-
anisms that constitutes a subclass of acyclic mechanisms which can be seen as
being complementary to Moulin mechanisms. While different cost share defini-
tions are conceivable, we concentrated on singleton mechanisms with incremental
approximate cost shares. We showed that these types of mechanisms are sufficient
to exploit the full strength of existing approximation algorithms for completion
time scheduling problems and allow to derive mechanisms with attractive budget
balance and social cost approximation guarantees. It would be interesting to un-
derstand the limitations of singleton mechanisms in general. Moreover, stepping
back to the full generality of acyclic mechanisms, some of the most intriguing open
problems are to find a general way to construct acyclic mechanisms from approx-
imation algorithms and to find a general property for proving approximate social
cost, alike the summability property for Moulin mechanisms.

5

ONLINE COST SHARING

The problem of sharing the cost of a common infrastructure among a set of strate-
gic and cooperating players has been the subject of intensive research in recent
years. However, most of these studies consider cooperative cost sharing games in
an offline setting, i.e. the mechanism knows all players and their respective input
data in advance. In this chapter, we study cooperative cost sharing games in an
online setting: Upon the arrival of a new player, the mechanism has to take in-
stantaneous and irreversible decisions without any knowledge about players that
arrive in the future. We propose an online model for general demand cost sharing
games and give a complete characterization of both weakly group-strategyproof
and group-strategyproof online cost sharing mechanisms in this model. Moreover,
we present a simple method to derive incremental online cost sharing mechanisms
from online algorithms such that the competitive ratio is preserved. Based on
our general results, we develop online cost sharing mechanisms for several binary
demand and general demand cost sharing games.

Publication Note. The results contained in this chapter have been presented at
the 7th International Conference on Algorithms and Complexity (CIAC 10) [19].

87

88 Online Cost Sharing

5.1 Introduction

The pivotal point in mechanism design is to achieve a global objective even though
part of the input information is owned by selfish players. In cost sharing, the aim
is to share the cost of a common service in a fair manner while the players’ valu-
ations for the service are private information. Based on the declared bids of the
players, a cost sharing mechanism determines a service allocation and distributes
the incurred cost among the served players. In many cost sharing games, the com-
mon service is represented by a combinatorial optimization problem like minimum
Steiner tree, machine scheduling, etc., which defines a cost for every possible ser-
vice allocation. We consider cooperative cost sharing games, i.e. players may form
coalitions to coordinate their bidding strategies.

During the last decade, there has been substantial research on binary demand
cost sharing games, where a service allocation defines simply whether or not a
player is served. In this chapter, we consider the general demand setting intro-
duced in Section 2.3.4. In this setting, players require not only one but several
levels of service, and the mechanism determines which service level is granted to
each player and at what price. We assume that players are concerned only about
the quantity of service levels they obtain, e.g. the number of distinct connections
to a source, executions of their job, etc. Moreover, once a player’s request for a
certain service level was refused, she will not be granted a higher level. This gen-
eral demand cost sharing model has recently been investigated quite intensively;
see [14, 29, 69, 73].

To the best of our knowledge, all previous works on cooperative cost sharing
consider offline settings, where the entire instance is known in advance. Hence,
when determining the allocation and payment scheme, the mechanism can take
into account all input data associated with every player (bids for different service
levels and other relevant player characteristics). However, many natural cost shar-
ing games inherently bear an online characteristic in the sense that players arrive
over time and reveal their input data only at their arrival. In such settings, the
mechanism needs to take instantaneous and irreversible decisions with respect to
the assigned service level and payment of the player without any knowledge about
players that arrive in the future. Problems in which the input data is revealed
gradually and irreversible decisions have to be taken without knowledge of future
requests are the subject of online computation [15]. The standard yardstick to as-
sess the quality of an online algorithm is by means of its competitive ratio, i.e. the
worst case ratio of the cost of the solution produced by the online algorithm com-
pared to the cost of an optimal offline algorithm that knows the entire input data
in advance.

Our Contributions. The main contributions of this chapter are as follows:

5.1 Introduction 89

1. We propose the first online model for general demand cost sharing games:
In its most general form, every player arrives several times to request an
additional service level. Upon the arrival of a player, the online mechanism
immediately determines a price for her new request. We require that at each
point of time, the sum of the collected payments approximates the cost of
the (optimal offline) solution for the current allocation.

2. We completely characterize weakly group-strategyproof and group-strategy-
proof online mechanisms for general demand cost sharing games: We show
that online cost sharing mechanisms are inherently weakly group-strategy-
proof for binary demand games. In the general demand case, this is true if
the marginal costs of the underlying cost function are increasing. Moreover,
we prove necessary and sufficient conditions for group-strategyproofness of
online cost sharing mechanisms.

3. We present a simple yet effective method to derive online cost sharing mecha-
nisms from competitive online algorithms: Given a ρ-competitive algorithm
for the underlying problem, we show that the induced incremental online
mechanism is ρ-budget balanced at all times. Using the above characteri-
zation, this enables us to derive incentive compatible online mechanisms for
several binary demand and general demand cost sharing games for network
design and scheduling problems. For example, we obtain an O(log2 |V |)-
budget balanced group-strategyproof online mechanism for the online binary
demand Steiner forest cost sharing game, where V denotes the set of vertices
of the underlying graph.

Related Work. Immorlica et al. [53] partially characterized group-strategyproof
cost sharing mechanisms in the offline case. They state that upper-continuous
group-strategyproof β-budget balanced binary demand cost sharing mechanisms
correspond to cross-monotonic cost sharing schemes. Juarez [56] very recently
gave a similar characterization for mechanisms fulfilling the MAX property, mean-
ing that indifferent players are always accepted.1 He also showed that group-
strategyproof cost sharing mechanisms correspond to feasible sequential mecha-
nisms if indifferent players are always rejected. A sequential mechanism offers
players service one after another according to an order that may change with pre-
vious decisions. The player is added to the set of selected players if her bid is
larger than her payment (see Section 2.4.5 for more details).

Moulin [73] introduced incremental cost sharing mechanisms in the offline set-
ting. An incremental mechanism is a sequential mechanism in which the payment
offered to a player is equal to her incremental cost, i.e. the increase in cost caused

1A player is said to be indifferent if her bid is equal to her requested payment.

90 Online Cost Sharing

by adding her to the set of previously selected players. He claimed that for su-
permodular cost functions, incremental mechanisms are group-strategyproof and
budget balanced. However, this statement is flawed (as indicated in [56]) and
holds only under the assumption that players are never indifferent.

We extend the characterizations for group-strategyproof mechanisms to the
general demand online setting. The mechanisms in our online model always ac-
cept indifferent players and thus fulfill Juarez’ MAX property. This allows us to
guarantee group-strategyproofness for all incremental mechanisms derived from
submodular cost functions. Moreover, we achieve weak group-strategyproofness
for the whole class of games with increasing marginal cost functions.

Organization of Chapter. In Section 5.2, we present our online model for
general demand cost sharing. Section 5.3 contains the characterizations of weakly
strategyproof, group-strategyproof and group-strategyproof mechanisms in this
model. In Section 5.4, we show how to derive incremental online mechanisms
from competitive algorithms and provide several examples. We conclude with
Section 5.5

5.2 Online General Demand Cost Sharing

We extend general demand cost sharing games as defined in Section 2.3.4 to an
online scenario [15]. Many cost sharing games studied in the literature are derived
from combinatorial optimization problems. This motivates us to define online
cost sharing games very generally depending on the varying online characteristics
inherited from different online optimization problems.

The most important characteristic of our model is that an online mechanism
must immediately fix the payment for a requested service at the point of time
when it is revealed, without any knowledge about future requests. As in the
offline setting, we assume that an online mechanism never accepts further requests
from players that have previously been rejected. For cost sharing games that are
derived from combinatorial optimization problems, the mechanism has to maintain
a (possibly suboptimal) feasible solution for the current service allocation. The
feasible modifications of this current solution are inherited from the underlying
online optimization problem.

We use the online list model by Borodin et al. [15] to describe the proceeding
of an online mechanism: Service requests (i, l) arrive according to an online order.
(For certain problems like online scheduling, jobs may have release dates which are
then treated as arrival times of the respective requests.) Upon arrival, the player
reveals the characteristics of her new request (i.e. the input information for the

5.3 Incentive Compatibility 91

Algorithm 4: Online general demand cost sharing mechanism.

Input: online cost sharing game
Output: allocation vector x = (xi)i∈U , payment vector φ = (φi,l)i∈U,l≤L

Initialize x0 = 01

forall requests t ∈ T do2

Read out input data and bid bi,l of newly arrived request t =: (i, l).3

Determine payment p for new request.4

if bi,l ≥ p then set xt = xt−1 + ei and φi,l = p5

else set xt = xt−1 and φi,l = 0 and delete all further appearances of6

player i.
end7

Output allocation vector x and payments φ8

underlying combinatorial optimization problem) and her bid bi,l. The mechanism
immediately offers her the additional service level at a price p that may depend
on previous inputs and decisions only. If her bid bi,l is larger or equal to this
price, the request is accepted and added to the current allocation. Otherwise, the
request is rejected and all further appearances of player i are removed from the
online list (formally, we may set p = ∞ for all subsequent requests of player i). A
more formal description is given in Algorithm 4. We denote by ei ∈ N

U
0 the ith

unit vector. We sometimes write x(b) and φ(b) to refer to the outcome resulting
from bid vector b.

Let xt denote the current allocation after processing request t ∈ T = {1, 2, . . .}.
Let C̄(xt) denote the cost of the actually computed solution for xt. We call an
online cost-sharing mechanism β-budget balanced at all times for some β ≥ 1 if for
all requests t ∈ T :

C̄(xt) ≤
∑

i∈U

xt
i∑

l=1

φi,l ≤ β · C(xt).

The conditions of individual rationality and no positive transfer as well as the
different forms of incentive compatibility transfer in a straightforward way.

5.3 Incentive Compatibility

The following characterizations hold for all online mechanisms in our framework.
Note that the requirements for group-strategyproofness highly depend on the fact
that requests are accepted if the announced bid is equal to the offered price.

92 Online Cost Sharing

5.3.1 Strategyproofness

To achieve strategyproofness, we need to bound the increase in marginal valuations
of individual players. As expressed by Fact 5.3 below, this is essential to prevent
players from overbidding for some level to obtain positive utility for higher levels.
In previous works on general demand cost sharing [14, 69], players’ valuations were
assumed to be non-increasing. However, we can slightly relax this condition by
introducing a positive factor λ:

Definition 5.1 (λ-Decreasing Valuations). A valuation vector vi ∈ R
L is λ-

decreasing if for all 1 < l ≤ L,

vi,l ≤ λ · vi,l−1.

Given λ-decreasing valuations for all players, an online mechanism is guaranteed
to be weakly group-strategyproof if and only if the induced cost shares grow faster
than the valuations (the proof is given in Section 5.3.2):

Definition 5.2 (λ-Increasing Prices). A cost sharing mechanism has λ-increasing
prices if for every bid vector b and player i ∈ U , the price for any service level
1 < l ≤ xi(b) is at least λ times the price for the previous service level, i.e.

φi,l(b) ≥ λ · φi,l−1(b).

service level xi

total price

xi
X

l=1

φi,l

total valuation

xi
X

l=1

vi,l

Figure 5.1: Example of λ-decreasing valuations and λ-increasing prices for λ = 1

The above conditions can be further generalized by letting λ vary for every
player (and/or level) or by adding constant terms to the right hand sides. However,
the following fact emphasizes that a set of conditions similar to the above are
indeed necessary to achieve strategyproofness. We omit the proof due to space
restrictions.

5.3 Incentive Compatibility 93

Fact 5.3. A general demand online mechanism is not strategyproof if cost shares
do not increase by more than valuations per service level.

Proof. We assume for simplicity that there is only one player. Further, assume
that there is a bid vector b such that for some service level l ≤ x(b), we have
φl(b) < λ · φl−1(b); say φl(b) = λ · φl−1(b) − δ for some δ > 0. We define the
player’s valuations as vl−1 = φl−1(b)− ǫ, vl = λ ·vl−1 and vk = φk(b) for k < l−1.
Thus, the valuation increases by a factor λ when going from level l − 1 to level l,
whereas the prices increase by less than a factor λ.

With this valuation vector, the player obtains positive utility in the run on b:
u(b) = 0+ ul−1(b)+ ul(b) = −ǫ+ λ(φl−1(b)− ǫ)− (λφl−1(b)− δ) = δ− (λ+ 1)ǫ >
0 for sufficiently small ǫ. On the other hand, she gets zero utility if she bids
truthfully since she gets rejected at service level l − 1. Hence, the mechanism is
not strategyproof. The same argumentation can be pursued with additive instead
of multiplicative increase.

5.3.2 Weak Group-Strategyproofness

We prove now that under the above conditions, an online mechanism is in fact
weakly group-strategyproof.

Theorem 5.4. If valuations are λ-decreasing, a general demand online cost shar-
ing mechanism with λ-increasing prices is weakly group-strategyproof.

Proof. Fix a coalition S ⊆ U and a bid vector b with bi = vi for all i ∈ S.
Assume for contradiction that all members of the coalition can strictly increase
their utilities by changing their bids to b′ (while bi = b′i for all i /∈ S). Let (i, l) be
the first request for which the mechanism makes different decisions in the runs on
b and b′. By the online character of the mechanism, the price offered for request
(i, l) only depends on previous decisions and is thus equal in both runs. Let p
denote this offer price. There are two possible cases:

1. vi,l < p ≤ b′i,l. Then, φi,l(b
′) = p, and λ-decreasing valuations and λ-

increasing prices yield . . . ≤ λ−2vi,l+2 ≤ λ−1vi,l+1 ≤ vi,l < φi,l(b
′) ≤

λ−1φi,l+1(b
′) ≤ λ−2φi,l+2(b

′) ≤ Hence, player i has negative utility for
service levels l and higher in the run on b′, whereas when bidding truthfully,
the utility for each level is non-negative.

2. b′i,l < p ≤ vi,l. Then, player i obtains only l − 1 levels of service in the run

on b′, whereas she may get additional utility by accepting level l in the run
on b.

94 Online Cost Sharing

Consequently, player i gets less or equal utility in the run on b′, a contradiction
to the assumption.

For binary demand cost sharing games, both Definitions 5.1 and 5.2 are always
fulfilled since there is only one service level. Hence, quite remarkably, binary de-
mand online cost sharing mechanisms are inherently weakly group-strategyproof.

5.3.3 Group-Strategyproofness

In order to ensure the stronger notion of group-strategyproofness, we need to pre-
vent that dropping out, i.e. underbidding in case of indifference, can help sub-
sequent players. Towards this end, we introduce the following generalization
of the well-known notion of cross-monotonicity for binary demand cost sharing
games [73].

Consider a fixed instance of an online cost sharing game and let φi,l(b) denote
the price that player i is offered for service level l when b is the bid vector input
to the mechanism. Throughout this section, we assume λ-decreasing valuations
and λ-increasing prices.

Definition 5.5 (Cross-monotonicity). An online mechanism is cross-monotonic
if for every player i ∈ U and service level l, the offered price does not decrease
when a subset of requests are accepted in previous iterations, i.e.

φi,l(b
′) ≥ φi,l(b)

for all bid vectors b, b′ such that xt−1(b′) ≤ xt−1(b), where (i, l) is request t.

This condition is sufficient for an online cost sharing mechanism to be group-
strategyproof. The proof contains two main ideas: First, dropping out can never
help others since it only increases cost shares of subsequent bidders. Second, the
first member of a coalition who overbids for an additional level of service can only
decrease her utility by doing this, since prices increase more than valuations in
terms of service levels.

Theorem 5.6. If valuations are λ-decreasing, an online cost sharing mechanism
with λ-increasing prices is group-strategyproof if it is cross-monotonic.

Proof. Fix a coalition S ⊆ U and a bid vector b with bi = vi for all i ∈ S. Assume
that every member of the coalition increases or maintains her utility when the
coalition changes their bids to b′ (while bi = b′i for all i /∈ S).

We first prove that xt(b′) ≤ xt(b) for all t ∈ T . Assume for contradiction that
there is a request which is accepted in the run on b′ but not in the run on b. Let

5.4 Incremental Online Mechanisms 95

(i, l) be the earliest such request, say request t. That is, xτ (b′) ≤ xτ (b) for all
τ < t. By cross-monotonicity, we have φi,l(b

′) ≥ φi,l(b). Since players outside the
coalition submit the same bids in both runs, player i must be a member of the
coalition to gain service in the run on b′. But then, φi,l(b

′) ≥ φi,l(b) > bi,l = vi,l

and hence by λ-decreasing valuations and λ-increasing prices, player i has negative
utility for service levels l and higher in the run on b′. Since xτ (b′) ≤ xτ (b) for all
τ < t, by cross-monotonicity φi,k(b

′) ≥ φi,k(b) for all k < l as well, and therefore
ui(b

′) < ui(b), contradicting the first assumption.
We can conclude that xt(b′) ≤ xt(b) for all t ∈ T . Hence, φi,l(b

′) ≥ φi,l(b) for
all i, l by cross-monotonicity. This means that

ui(b
′) =

xi(b
′)

∑

l=1

(vi,l − φi,l(b
′)) ≤

xi(b)
∑

l=1

(vi,l − φi,l(b)) = ui(b)

for all i and l, hence we obtain group-strategyproofness.

We prove next that the conditions in Theorem 5.6 are not only sufficient but
also necessary, even in the binary demand case.

Theorem 5.7. A binary demand online mechanism is not group-strategyproof if
it is not cross-monotonic.

Proof. Consider an online mechanism that is not cross-monotonic; let L = 1. That
is, there are bid vectors b, b′ with xt−1(b′) ≤ xt−1(b) and φi(b

′) < φi(b) for some
player i. For simplicity, assume that i is the last player in the online instance.
Since the mechanism is online, φi(b

′) does not depend on b′i, so we can assume
that b′i = φi(b). We will define valuations such that there is a coalition S which
has an incentive to misreport their valuations.

Define S := {j ∈ U | bj 6= b′j}∪{i}. Assume that all j ∈ U \S bid bj = b′j. Now,
define vj := φj(b) for all j ∈ S. Observe that if all players in S bid truthfully, the
outcome of the mechanism is the same as for bid vector b. Now, if the coalition
changes their bids to b′, some players j ∈ S \ {i} lose service but all retain their
previous utility of zero. Meanwhile, player i increases her utility from zero to
φi(b) − φi(b

′) > 0. Hence, the mechanism is not group-strategyproof.

5.4 Incremental Online Mechanisms

We now describe a generic method to turn competitive online algorithms into
online cost sharing mechanisms. Given a ρ-competitive online algorithm alg for a
combinatorial optimization problem P, we define an incremental online mechanism

96 Online Cost Sharing

for the corresponding cost sharing game, which is ρ-budget balanced at all times.
The mechanism is weakly group-strategyproof if the algorithm’s marginal costs
are increasing, which is gratuitous in the binary demand case.

Let alg be a ρ-competitive algorithm for an online combinatorial optimization
problem P. Consider an instance I of P. The incremental online mechanism
induced by alg works as follows: Requests arrive according to I. Each time
a new request arrives, we simulate alg on the online instance induced by the
requests that have previously been accepted plus the new item. The price p for
the additional service level is set to be the incremental cost caused by the update in
the competitive algorithm. We call an online algorithm alg cross-monotonic if the
induced incremental online mechanism is cross-monotonic. It is straightforward to
see that the budget balance factor of an incremental online mechanism is inherited
from the competitive ratio of the input algorithm:

Lemma 5.8. The incremental online mechanism is ρ-budget balanced at all times.

Proof. In every iteration t of the mechanism, we have

∑

i∈U

xt
i∑

l=1

φi,l = C̄(xt),

since every accepted player pays exactly her incremental cost. Since alg is ρ-

competitive, we obtain C̄(xt) =
∑

i∈U

∑xt
i

l=1 φi,l ≤ ρ · C(xt).

5.4.1 Binary Demand Examples

To demonstate the applicability of our framework, we now apply it to competitive
online algorithms for a number of combinatorial optimization problems. In this
section, we give examples for binary demand cost sharing games, i.e. the maximum
service level is L = 1 and every player has only one request.

Online Scheduling.

Consider the parallel machine scheduling problem with the objective of minimizing
the makespan. Any list scheduling algorithm has an approximation factor of at
most 2 for this problem. Hence, the online algorithm that adds each arriving job
to the machine with the currently least load is 2-competitive. Unfortunately, it is
not cross-monotonic as deleting jobs can cause higher or lower completion times
for subsequent jobs. Nonetheless, our framework leads to a 2-budget balanced,
weakly group-strategyproof online mechanism. Note that in this scenario, jobs do
not have release dates and so the online order is not coupled with scheduling time.

5.4 Incremental Online Mechanisms 97

Corollary 5.9. There is a 2-budget balanced weakly group-strategyproof incremen-
tal online mechanism for the minimum makespan scheduling problem on parallel
machines P | |Cmax.

Online Steiner Tree and Forest.

Given an undirected graph G with edge costs, connection requests arrive online.
In the Steiner forest problem, each request consists of a pair of terminals si, ti;
in the Steiner tree problem, all requests have one vertex in common, i.e. si = sj

for all i, j ∈ U . The goal is to select a minimum cost set of edges such that each
terminal pair is connected by a path. Let n denote the number of players (i.e.,
terminal pairs).

The online greedy Steiner tree algorithm picks the shortest path to the cur-
rent tree each time a new terminal pair arrives. It has a competitive ratio of
log n, while the competitive ratio of any online algorithm is shown to be at least
1/2 log n [51]. Hence, our framework gives a weakly group-strategyproof Θ(log n)-
budget balanced online cost sharing mechanism for the Steiner tree problem, which
is asymptotically best possible. The greedy algorithm for the online Steiner forest
problem achieves an approximation ratio of O(log2 n).

Corollary 5.10. There is an O(log2 n)-budget balanced weakly group-strategyproof
incremental online mechanism for the Steiner forest game. This mechanism is
(log n)-budget balanced for the Steiner tree game.

Unfortunately, the greedy algorithm is not cross-monotonic, as the removal of
some players may have the effect that some other players switch their paths, which
in turn can have arbitrary effects on the costs incurred by subsequent players.
This issue can be overcome if paths are unambiguous; e.g. if G = (V,E) is a
forest, the above mechanisms are group-strategyproof. Pushing this insight even
further, we obtain an O(log |V |)-budget balanced group-strategyproof mechanism
for the Steiner forest game if the underlying graph is known in advance: We
use the oblivious online Steiner forest algorithm proposed by Gupta et al. [44],
which essentially works as follows: Given the underlying graph, the algorithm
precomputes a collection of paths. When a new terminal pair arrives, it simply
connects it by one of the predefined paths. The authors show that one can identify
a collection of paths such that the resulting algorithm is O(log |V |)-competitive.
Since the used paths are defined in advance, a player can only benefit from the
presence of other players, who might pay for parts of her designated path. Hence,
we obtain cross-monotonicity without losing much in terms of the budget balance
guarantee.

Corollary 5.11. There is an O(log2 |V |)-budget balanced group-strategyproof in-

98 Online Cost Sharing

cremental online mechanism for the Steiner forest game, where V is the vertex set
of the underlying graph.

We believe that such “universal” algorithms that determine generic approx-
imate solutions without knowing the upcoming instance will also yield group-
strategyproof incremental online mechanisms for several other interesting prob-
lems such as e.g. the traveling salesman problem.

5.4.2 General Demand Examples

In this section, we exploit the whole range of our framework by deriving incre-
mental mechanisms for general demand cost sharing games. In the first example,
we assume that players arrive only once with the complete list of their requests,
while in the second example, the arrival sequence is mixed, i.e. players can take
turns announcing additional requests.

Online Preemptive Scheduling.

A common problem in preemptive scheduling is the parallel machine setting in
which each job has a release date. The cost of a solution is given by the sum of
all completion times. The single machine case is solved optimally by the shortest
remaining processing time (srpt) algorithm [93]. srpt is a 1.25-approximation
for the parallel machine case [95].

In the corresponding cost sharing game, we treat the release date of a job as its
arrival time. Upon arrival, each player may request multiple executions of her job.
In scheduling terms, each player owns a set of jobs which all have the same release
date and processing time. E.g. consider a student who asks a copy shop to print
and bind several copies of his thesis, or a joinery is asked to produce a few of the
same individual piece of furniture. In such scenarios, it is very natural to assume
that the marginal valuation for each additional copy is decreasing, i.e. vi,l ≥ vi,l+1

for all i, l.

Before subsequent players arrive, srpt schedules all of player i’s jobs subse-
quently. Hence, each of them delays the same number of jobs, and later copies
have larger completion times. Therefore, the general demand incremental online
mechanism induced by srpt has increasing marginal prices.

Corollary 5.12. There is a 1.25-budget balanced weakly group-strategyproof gen-
eral demand incremental online mechanism for the preemptive scheduling problem
with release dates P |ri, pmtn|∑Ci. This mechanism is budget balanced in the
single machine case.

5.5 Conclusion 99

Online Multicommodity Routing.

In an online multicommodity routing problem, we are given a directed graph with
monotonically increasing cost functions on each arc. Commodities arrive online
and request routing of l units of capacity from some vertex to another. We assume
that the routing is splittable in integer units. The greedy algorithm which routes
each unit of flow separately in an optimal way is (3 + 2

√
2)-competitive for this

problem [47]. It is clear that marginal costs are increasing, since the cost functions
on each arc grow with increasing traffic. This is true even when players arrive in a
mixed order and request to route additional units between their source-destination
pair. However, this is a congestion-type game (the more players in the game, the
higher the costs per request), and so we cannot expect group-strategyproofness.

Corollary 5.13. There is a (3 + 2
√

2)-budget balanced weakly group-strategyproof
incremental online mechanism for the online multicommodity routing problem in
which each player arrives multiple times.

5.5 Conclusion

We proposed a new framework for online general demand cost sharing games and
characterized strategyproof, weak group-strategyproof and group-strategyproof
mechanisms in this framework. Quite surprisingly, weak group-strategyproofness
comes for free for binary demand problems; for general demands, cost shares for
subsequent service levels must increase faster than valuations. In both cases, on-
line mechanisms are group-strategyproof if and only if dropping out cannot help
subsequent players. Consequently, we cannot expect incremental cost sharing
mechanisms for problems with congestion effects like e.g. scheduling games to be
group-strategyproof, while this seems easier for network design problems.

In the offline setting, finding an appropriate order in which players are consid-
ered is the key to derive cost sharing mechanisms with attractive budget balance
guarantees (see [18]). In the online case, this order is determined by an adversary
and thus not under the control of the mechanism designer, which strongly con-
strains the possibilities of designing valuable cost sharing mechanisms. However,
our results prove that binary demand problems, there is no gap between the best
possible competitive ratio of an online algorithm and the best possible budget
balance factor of a weakly group-strategyproof online cost sharing mechanism.

We consider this work as a very natural and general starting point to exploit
the possibilities and limits of cooperative cost sharing in different online contexts.
It would be interesting to see more applications to our framework, with and with-
out usage of the direct derivation of incremental mechanisms from competitive

100 Online Cost Sharing

algorithms. Our model restricts feasible allocations to a continuous sequence of
accepts for each player, starting with their first request. This feature of the model
enhances truthfulness as it prevents players from underbidding to reject some ser-
vice request and then obtain it later for a cheaper price. One interesting line
of research would be to allow for more general mechanisms which might accept
further requests of players even after a request has been rejected.

6

MECHANISM DESIGN WITH

CONGESTION

We study mechanisms for resource allocation problems with congestion externali-
ties. Our model is based on standard models from the area of congestion games.
On top of this, we develop a natural definition for players’ utility functions in the
presence of congestion, thereby combining the two fields of mechanism design and
congestion games. In this chapter, we assume that the utility of a player depends
only on the most congested resource she uses, as in so-called bottleneck congestion
games. Our main result is a generic mechanism for symmetric bottleneck conges-
tion games which is truthful and approximates social welfare. Our approach is to
reduce any given instance to an instance with singleton strategies only, which we
then solve optimally using a dynamic program. The resulting mechanism applies
to various resource allocation settings and achieves different approximation guar-
antees that we prove using duality in hypergraphs. We show that our mechanism is
optimal for problems evolving from single-commodity network congestion games.
We complement our results by identifying several special cases of the problem that
are hard to approximate.

101

102 Mechanism Design with Congestion

6.1 Introduction

Resource allocation has been a central topic in computer science ever since it ex-
ists. In a resource allocation problem, resources are requested by different users.
A resource may be allocated to multiple users and shared among them. For ex-
ample, consider a network link: Several computers may be assigned to route their
data using the same link. Similar and more complex situations arise in diverse
applications ranging from job scheduling to sponsored search (where the search
result page is shared among different advertisers). In such settings, the utility of a
user is not only determined by whether she is allocated a resource but is also influ-
enced by other users who are allocated the same resource: A page with numerous
advertisements may not have the same impact as one with only few. Similarly, an
overloaded network link may have bad performance. This phenomenon in general
is known as congestion.

Upon the introduction of algorithmic game theory [76, 81], the resource al-
location problem has been revisited from various economic viewpoints. These
approaches are motivated by computer systems that are used by players with di-
verse and selfish interests. The main challenge in such settings is that the players’
interests are usually not aligned with the desired global performance measure.
This measure may depend on data part of which is only available to the users.
For instance, in packet routing, only the sender knows how important/urgent her
request is. A strategic user may not want to reveal her true data if she prefers the
outcome of the algorithm fed with a false report. As described in Section 2.2, the
area of mechanism design aims at designing efficient mechanisms that elicit the
true data from selfish players and yet optimize a global objective.

One natural approach to model resource allocation in a game theoretic context
is via congestion games, which we introduced in Section 2.6. In a congestion
game, we are given a set of resources and a set of players. Each player has a set of
strategies. A strategy corresponds to a subset of the resources, e.g. a route between
a source and a destination in a given network. In a classical congestion game, it
is assumed that each player chooses one of her strategies to optimize her payoff,
e.g. minimize the total delay of her route. The cost depends on the congestion of
a resource, i.e. the number of players using this resource. A congestion game is
called symmetric if all players have the same strategy set. Many works employ
Nash equilibria to predict the outcome of congestion games. In particular, the price
of anarchy and the price of stability [90] are used to quantify the degradation of
the solution in the worst and the best Nash equilibria compared to the optimal
allocation, respectively.

Contributions. In this chapter, we take a mechanism design approach to re-
source allocation problems inspired by congestion games. We model a mechanism

6.1 Introduction 103

design problem based on a given congestion game as follows: For a given set of
strategies and set of players, we assume that each player assigns a private valuation
if she is assigned one of the strategies in her strategy set. The resources can be
shared among the players; however, like in congestion games, there is a loss caused
by resource congestion. We model this loss by decreasing the player’s valuation
for a resource through multiplying it with a decreasing throughput function that
depends on the number of players using the resource. In general, an allocation
causes players to have different congestion on different resources. Although our
model in general captures different metrics for computing players’ utility functions
(compare Section 2.6), all our results in this chapter concern the case that play-
ers experience the loss of their most congested resource (also called bottleneck).
Our goal is to design efficient mechanisms in the sense that they maximize social
welfare.

We design a generic truthful mechanism for maximizing social welfare of sym-
metric bottleneck congestion games. Our mechanism is based on reducing the
problem to an instance with singleton strategies by using duality in hypergraphs.
Our mechanism applies to various settings and achieves different approximation
guarantees. As an example, it computes optimal allocations for single-commodity
network congestion games. In order to prove truthfulness, we extend the notion
of monotone mechanisms and show that this extension is sufficient for incentive
compatibility in our setting. We also identify several special cases of congestion
games in which the optimal social welfare is hard to approximate.

Related Work. There is a significant amount of work in the field of congestion
games, most of which studies several variations of the price of anarchy or stability;
see Section 2.6 for an overview of related work in that area.

Chakrabarty, Mehta, Nagarajan and Vazirani [24] study congestion games from
a coordinational point of view. They give a polynomial-time algorithm for com-
puting the social optimum of single-commodity network congestion games with
linear edge-dependent cost functions and unweighted players. They also present
efficient algorithms based on dynamic programming for finding the social optimum
of singleton congestion games for different scenarios. Meyers [70] studies the com-
putational complexity of finding socially optimal allocations for different classes
of congestion games. However, in both works, players sum up the latencies over
all resources they use, i.e. they do not consider the bottleneck case. Also, neither
considers truthful implementations of their allocation algorithms.

Our work generally belongs to the area of auctions with externalities [57, 20, 55]
in which different types of negative externalities among the winners of an auction
are studied. Ghosh and Mahdian [38] recently examined the computational chal-
lenges of allocation problems with externalities and showed that the problem is
inapproximable in some general settings. Our problem, however, is much simpler

104 Mechanism Design with Congestion

because it is “anonymous”: Our negative externalities only depend on the number
of winners and not on their identities or characteristics. Salek and Kempe [92]
study auctions with congestion externalities. In their model, bidders can share
items and each bidder has a “share-averseness” function that reflects her disutility
with respect to sharing. They derive partial characterizations for revenue maxi-
mization in the Bayesian setting. Moreover, they obtain tight approximations for
maximizing social welfare in the case of single-minded bidders.

Organization of Chapter. In Section 6.2, we present our model for congestion
games in a mechanism design context. Section 6.3 develops necessary conditions
for truthful mechanisms in this model. We present our generic mechanism in
Section 6.4, and give several examples for applications and the corresponding
approximation guarantees in Section 6.5. These results are complemented with
several hardness results in Section 6.6. We conclude with some final remarks in
Section 6.7.

6.2 Model

We now introduce our model for mechanism design with congestion externali-
ties. The setting largely corresponds to the mechanism design setting with single
parameter domains described in Section 2.2.5. However, to incorporate the exter-
nalities caused by congestion effects, we perturb the players’ utility functions by
a parameter g that depends on the congestion experienced by a player. We model
the congestion along the lines of standard models in the classical congestion games
literature [87, 72]. See Section 2.6 for an introduction to congestion games.

Let R be a set of m resources and let U be a set of n potential users of the
resources, also called players. Every player i ∈ U has a strategy set Si ⊆ P(R)
and is interested in using one of the resource sets contained in her strategy set.
For intuition, consider the example of network congestion games:

Example 6.1 (Network Congestion Game). In a network congestion game, the
set of resources corresponds to the set of edges in a given graph. Each player
wishes to route one unit of demand from her specified source to her sink vertex.
The strategy set of a player is thus defined as the set of all paths between these two
vertices.

An outcome of the corresponding mechanism design problem is defined by an
allocation of resources to players. We denote an allocation by a matrix x ∈
{0, 1}n×m, where xir = 1 if player i is allocated resource r and xir = 0 otherwise.

6.2 Model 105

We denote by xr :=
∑

i∈U xir the total congestion on resource r. We call an
allocation feasible if every player is either allocated one of her strategies or nothing.
More precisely, an allocation is feasible if either xir = 0 for all r ∈ R (the player
loses), or there is a strategy S ∈ Si such that xir = 1 for all r ∈ S and xir = 0 for
all r /∈ S (she wins and is assigned strategy S). We define xiS = 1 if player i is
assigned strategy S ∈ S and xiS = 0 otherwise.

The throughput of a resource is defined by a function g : N → [0, 1], where g(k)
denotes the throughput of resource r ∈ R when this resource is used by k players.
We assume w.l.o.g. that g is scaled such that maxk≤n g(k) = 1. Unless otherwise
stated, we require g to be non-increasing to account for the negative externalities
caused by congestion.

The valuation function of a player depends on the throughput of the most
congested resource that she uses, which we call her bottleneck. Formally, player i’s
valuation function is defined as

wi(x) :=

{

vi · g(ci(x)) if i wins,

0 if i loses.

Here,
ci(x) := max{xr | r ∈ R and xir > 0}

denotes the maximum congestion that player i experiences (her bottleneck conges-
tion), and vi ∈ R

+ is her private type. Intuitively, vi corresponds to player i’s
congestion-free value of winning. Note that vi is only known to player i, while the
throughput function g is publicly known.

Accordingly, when p = (p1, . . . , pn) is the vector of prices requested from the
players, the utility of player i ∈ U is defined as

ui(x,p) :=

{

vi · g(ci(x)) − pi if i wins,

0 otherwise.

We assume that each player aims at maximizing her own utility. Players are
strategic, i.e. each player tries to influence the outcome by reporting a possibly
false bid bi instead of her true value vi.

A direct revelation mechanism M = (x,p) consists of an allocation rule x :
R

n
+ → {0, 1}n×m and a payment rule p : R

n
+ → R

n
+. Given the bid vector b =

(b1, . . . , bn), a it selects a feasible allocation x(b) and requests a non-negative
payment pi(b) from every player i ∈ U . We require that pi = 0 for all losing
players.

We are interested in strategyproof mechanisms that maximize the (utilitarian)
social welfare. The social welfare of an allocation x is defined as

W(x) :=
∑

i∈U

wi(x).

106 Mechanism Design with Congestion

As defined in Section 2.2.1, a mechanism is strategyproof if no player can increase
her utility by reporting a false bid bi 6= vi.

The results presented in this chapter concern the important special case of
symmetric congestion games. A congestion game is called symmetric if all players
have the same strategy set, i.e. Si = S for all i ∈ U . We denote by Γ = (U,R,S)
the symmetric bottleneck congestion game induced by U , R and S.

We call a congestion game in which all strategies are singletons, i.e. |S| = 1
for all S ∈ S, a singleton congestion game. In the singleton case, the bottleneck
measure coincides with other standard measures used for congestion games, and
so we no longer distiguish between bottleneck congestion games and congestion
games. We denote by Γa = (U, [a], [a]) a symmetric singleton congestion game on
a resources with S = [a]. We speak of cardinality two strategies if |S| = 2 for all
S ∈ S.

6.3 Conditions for Truthfulness

As we stated in Section 2.2.3, a social choice function is truthfully implementable
if it is weakly monotone. For binary demand games (where players either “lose”
or “win”), weak monotonicity reduces to the property that a winner continues to
win if she raises her bid. For mechanisms that provide different levels of service,
the condition is more subtle. Below, we prove that a condition we call smooth
monotonicity gives rise to truthful mechanisms in our setting. Intuitively, smooth
monotonicity requires that when a winner raises her bid, this must not degrade
her quality of service, i.e. she can only experience less congestion.

Definition 6.2 (Smooth Monotonicity). An allocation rule x(b) is smoothly mono-
tone if for every winner i in x(v), if i raises her bid to bi > vi then she still wins
and her bottleneck congestion does not increase, i.e.

ci(x(bi, v−i)) ≤ ci(x(v)).

Since the types in our mechanism design setting are real numbers vi, the type
domains are convex and thus Theorem 2.13 applies.1 However, to make this
thesis as self-contained as possible, we directly prove that smoothly monotone
allocation rules are implementable. Furthermore, we explicitly provide a pricing

1In our model, using the above notation, the weak monotocity condition in Definition 2.12
translates to vig(ci(x(v)))− vig(ci(x(bi, v−i))) ≤ big(ci(x(v)))− big(ci(x(bi, v−i))). Rearranging
yields g(ci(x(bi, v−i))) ≥ g(ci(x(v))) for the case that bi > vi, w.l.o.g. Hence, smooth mono-
tonicity is just a slightly stronger condition than weak monotonicity in our setting (while both
conditions coincide if g is strictly decreasing).

6.3 Conditions for Truthfulness 107

g(c∗
i
)

bid bi

τn

i
τn−1
i

τk

i vi
τk−1
i

τ1
i

g(ci)

Figure 6.1: The troughput of player i as a function of her bid bi given a fixed vector b−i

scheme combined with which a smoothly monotone allocation rule yields a truthful
mechanism. This also enables us to show that both the allocation rule and the
payment scheme can be computed in polynomial time, given that the currency of
prices and bids exhibits a smallest unit.

Let x(b) be a smoothly monotone allocation function. Consider a player i and
fix arbitrary bids b−i for all other players. We define the kth critical bid τk

i (b−i) of
player i as the infimum over all bi such that her congestion ci(x(b)) is at most k.
Player i loses if she bids less than τn

i . The property of smooth monotonicity
implies that τn

i ≤ . . . ≤ τ2
i ≤ τ1

i . Given all critical bids, we charge player i an
amount of

pi := g(k)τk
i −

n∑

j=k+1

(τ j−1
i − τ j

i)g(j)

if her bid bi lies in the interval (τk
i , τk−1

i].

Figure 6.3 illustrates the pricing scheme for player i given a fixed vector b−i

of bids submitted by other players. On the x-axis, the critical bids τk
i (b−i) for

player i are marked. The bold curve depicts her bottleneck troughput g(ci(x(b))
as a function of her bid bi. The area of the light gray rectangle corresponds to her
valuation wi = vi · g(c∗i) if she receives congestion c∗i by bidding her true value vi.
The dark gray area marks the payment pi she has to make when she bids vi or
any value in the interval (τk

i , τk−1
i].

As we have stated above, the necessary critical bids can be computed in poly-
nomial time if there is a smallest currency unit: For every player and congestion
level, we make a binary search to find her respective critical bid while holding
all other players’ bids fixed. We thus perform a polynomial number of binary
searches, each of which takes O(log bi) time, which is equal to the encoding size of
player i’s bid bi, assuming binary encoding.

108 Mechanism Design with Congestion

The following theorem states that the above payment scheme guarantees truth-
fulness.

Theorem 6.3. Given a smoothly monotone allocation rule x, the mechanism M =
(x,p) induced by x and the above payment scheme is strategyproof.

Proof. Fix a player i ∈ U . Let (x,p) denote the outcome when all players bid
according to v, and (x′,p′) denote the outcome when player i unilaterally switches
to bi 6= vi while all other bidders stick to v. Let c and c′ be the bottleneck
congestion values that player i experiences, respectively. We prove the claim by
doing a case distinction. For a better readability, we sometimes drop the index i
from τi and vi in this proof.

First, assume that player i loses in x and hence ui(x,p) = 0. She can only
improve her utility by submitting a higher bid bi ≥ τn

i ≥ vi to become a winner
in x′. However, by doing this, she obtains non-positive utility:

ui(x
′,p′) = vg(c′) − p′ = (v − τ c′)g(c′) +

n∑

k=c′+1

(τk−1 − τk)g(k)

≤ (v − τ c′)g(c′) +
n∑

k=c′+1

(τk−1 − τk)g(c′)

= (v − τn)g(c′)

≤ 0

Next, assume that player i wins in x and loses in x′. Then by definition,
her utility is zero in x′. However, she obtains non-negative utility by bidding
truthfully:

ui(x,p) = vg(c) − p = (v − τ c)g(c) +

n∑

k=c+1

(τk−1 − τk)g(k) ≥ 0

since v > τ c and thus both summands are non-negative.

Finally, assume that player i wins both in x and x′. If this does not change
her bottleneck congestion, her utility remains equal. We distinguish the remaining
two cases:

Case 1. Player i underbids and obtains a larger congestion c′ > c. This means
that τ c′ < τ c < vi, and we can conclude (using monotonicity of g) that

6.3 Conditions for Truthfulness 109

ui(x,p) = (v − τ c)g(c) +

n∑

k=c+1

(τk−1 − τk)g(k)

≥ (v − τ c)g(c′) +

c′∑

k=c+1

(τk−1 − τk)g(c′) +

n∑

k=c′+1

(τk−1 − τk)g(k)

= (v − τ c)g(c′) + (τ c − τ c′)g(c′) +
n∑

k=c′+1

(τk−1 − τk)g(k)

= (v − τ c′)g(c′) +
n∑

k=c′+1

(τk−1 − τk)g(k)

= ui(x
′,p′).

Case 2. Player i overbids to obtain a smaller congestion c′ < c. In this case,
we have τ c < vi ≤ τ c−1 ≤ τ c′ and obtain (again using monotonicity of g) that

ui(x
′,p′) = (v − τ c′)g(c′) +

n∑

k=c′+1

(τk−1 − τk)g(k)

≤ (v − τ c′)g(c′) +
c−1∑

k=c′+1

(τk−1 − τk)g(c′)

+(τ c−1 − τ c)g(c) +
n∑

k=c+1

(τk−1 − τk)g(k)

= (v − τ c′)g(c′) + (τ c′ − τ c−1)g(c′)

+(τ c−1 − τ c)g(c) +

n∑

k=c+1

(τk−1 − τk)g(k)

= (v − τ c−1)g(c′) + (τ c−1 − τ c)g(c) +

n∑

k=c+1

(τk−1 − τk)g(k)

≤ (v − τ c−1)g(c) + (τ c−1 − τ c)g(c) +
n∑

k=c+1

(τk−1 − τk)g(k)

= (v − τ c)g(c) +
n∑

k=c+1

(τk−1 − τk)g(k)

= ui(x,p)

The second inequality in the above equation is true because by monotonicity of g
and since v ≤ τ c−1, we have (v − τ c−1)g(c′) ≤ (v − τ c−1)g(c).

110 Mechanism Design with Congestion

Concluding, player i cannot improve her utility by misreporting her valuation.
This completes the proof.

6.4 Approximation via Disjoint Strategies

Section 6.3 reduces the problem of designing truthful mechanisms for bottleneck
congestion games to finding smoothly monotone allocation functions. Since our
goal is to design truthful mechanisms that maximize social welfare, we seek for
allocation functions that approximate this objective function as well as possible.
In this section, we define a generic mechanism for symmetric bottleneck conges-
tion games. Our idea is to restrict the problem to a set of disjoint strategies for
which we calculate an optimal allocation using a dynamic program. The social
welfare approximation guarantee of our mechanism can be bounded using duality
in hypergraphs.

In order to state our main theorem, we first define the notions of a hitting set
and an independent set. A hitting set for the strategy set S is a set H ⊆ R of
resources such that every strategy contains at least one element of the hitting
set, i.e. S ∩ H 6= ∅ for all S ∈ S. A minimum hitting set is a hitting set of
minimum cardinality; we denote the size of a minimum hitting set by η(S). An
independent set I of strategies in S is a subset of strategies which are pairwise
disjoint. A maximum independent set is one of maximum cardinality; we denote
this maximum cardinality by ι(S). It is easy to see that η ≥ ι: Any hitting set
must contain at least one resource of every strategy contained in an independent
set I.

Our main result is the following theorem, which we prove in Section 6.4.1.

Theorem 6.4. Given a c-approximation algorithm for the independent set prob-
lem, and provided that η/ι ≤ r, we derive a truthful rc-approximation for the opti-
mal social welfare of a symmetric bottleneck congestion game with non-increasing
throughput function g.

Our generic mechanism roughly works as follows: Let Γ = (U,R,S) be an in-
stance of a symmetric bottleneck congestion game. First, we identify a maximum
independent set of strategies in S using an approximation algorithm for the inde-
pendent set problem. Let a be the cardinality of this independent set. We derive
an instance Γa = (U, [a], [a]) of the singleton congestion game on a resources by
keeping the same player set and introducing a disjoint strategies that each contain
a single resource. We then compute an optimal allocation on Γa which we transfer
back to the disjoint strategies in our original independent set.

6.4 Approximation via Disjoint Strategies 111

6.4.1 Reduction

The proof of Theorem 6.4 relies on the following three lemmas and is presented
at the end of this section.

Lemma 6.5. Any feasible allocation for the singleton congestion game Γι(S) on
ι(S) resources yields a welfare equivalent allocation for the corresponding symmet-
ric bottleneck congestion game Γ with strategy set S.

Proof. Let I be a maximum independent subset of S. Consider an allocation x′

for the singleton congestion game Γι(S) on ι(S) = |I| resources. We construct a
welfare equivalent allocation x for Γ as follows: Identify each resource in Γι(S)

with a strategy in I in a one-to-one fashion. For all r = 1, . . . , ι, assign every
player who uses resource r in x′ to the corresponding strategy in I. Since all
strategies in I are disjoint, the bottleneck congestion of a player in x equals her
congestion in the original allocation x′. Hence, the social welfare is equal in both
allocations.

The following lemma states that any allocation for a singleton congestion game
yields an allocation for the corresponding singleton congestion game on fewer
resources such that the social welfare only decreases by the ratio of the two different
numbers of resources.

Lemma 6.6. Let U be a set of players and let 0 < a ≤ b be integers. Any
allocation for the singleton congestion game Γb = (U, [b], [b]) yields an allocation
for the singleton congestion game Γa = (U, [a], [a]) which achieves at least an a/b
fraction of the social welfare of the former.

Proof. Pick an allocation x for Γb. Choose the subset of a resources which con-
tribute the most welfare. We define an allocation x′ for Γa by assigning the same
players to these resources as before, and not serving the rest of the players. By
construction, we have W(x′) ≥ a/b · W(x).

Lemma 6.7. Given that g is non-increasing, any feasible allocation to a symmet-
ric bottleneck congestion game Γ yields a feasible allocation with better or equal
social welfare for the corresponding singleton congestion game Γη(S) on η(S) re-
sources.

Proof. Let H ⊆ R be a minimum hitting set for the strategy set S. For every
player i ∈ U and strategy S ∈ S, we choose an arbitrary resource ri(S) ∈ S ∩ H
and call it the representative of S for player i. This is possible since H is a hitting
set for S and thus S ∩ H 6= ∅ for all S ∈ S. For every resource r ∈ H and player

112 Mechanism Design with Congestion

i ∈ U , let Pi(r) := {S ∈ S | r = ri(S)} denote the set of strategies for which r is
the representative for player i.

Consider a feasible allocation x for Γ. We define an allocation x′ for the
singleton congestion game Γη(S) on η(S) = |H| resources which achieves better or
equal social welfare. Identify the resources of Γη with those in the hitting set H in
a one-to-one fashion. We define x′ by assigning every player who uses a strategy
in x to her representative resource of this strategy in Γη. More formally, for every
i ∈ U and r ∈ H, we define x′

ir :=
∑

S∈Pi(r)
xiS . Note that we have

x′
ir =

∑

S∈Pi(r)

xiS ≤
∑

S∈S:r∈S

xiS = xir.

Thus x′
r ≤ xr for every r ∈ H. The bottleneck congestion of player i in x′ is

ci(x
′) = max

r∈H:x′

ir>0
x′

r ≤ max
r∈H:x′

ir>0
xr ≤ max

r∈H:xir>0
xr ≤ max

r∈R:xir>0
xr = ci(x).

Since g is non-increasing, we conclude that
∑

i∈U wi(x
′) ≥∑i∈U wi(x).

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. We compute an approximately maximum independent set I
of the strategy set S with the given c-approximation algorithm. Let a := |I| de-
note the cardinality of I. By the approximation factor and since η/ι ≤ r by
assumption, we have a ≥ ι/c ≥ η/(rc).

We compute an optimal allocation xa to the corresponding singleton conges-
tion game Γa on a resources using Algorithm 5 presented in Section 6.4.2. We
transfer this solution to the original problem Γ by assigning every player to the
corresponding strategy in I as in the proof of Lemma 6.5. Let x be the resulting
allocation. For any congestion game Γ, we denote by Wopt(Γ) the maximum social
welfare obtainable for Γ.

By Lemma 6.5 and optimality of xa, we have

W(x) = W(xa) = Wopt(Γa).

Applying Lemma 6.6 with b := η ≥ ι ≥ a and plugging in a/η ≥ 1/(rc) as derived
above implies that

Wopt(Γa) ≥
a

η
· Wopt(Γη) ≥

1

rc
· Wopt(Γη)

for the optimal social welfare Wopt(Γη) obtainable in the corresponding singleton
game on η resources.

Putting both equations together and employing Lemma 6.7 yields

W(x) ≥ 1

rc
· Wopt(Γη) ≥

1

rc
· Wopt(Γ).

6.4 Approximation via Disjoint Strategies 113

Hence, x is an rc-approximation for social welfare of the original problem Γ.

To verify that this mechanism is strategyproof, note that the choice of the
independent set I does not depend on the bids reported by the players. In fact, the
bids are only taken into account by Algorithm 5. Further, the proof of Lemma 6.5
shows that the congestion experienced by a player, and thus her utility, does
not change when the allocation is transferred to the original instance. Hence,
truthfulness is inherited from that of Algorithm 5, which we prove in Lemma 6.9.

6.4.2 Optimal Mechanism for Singleton Congestion Games

In this section, we define a smoothly monotone allocation rule for singleton con-
gestion games that maximizes social welfare. The allocation is computed using a
dynamic program. The basic idea for our approach relies on the following simple
observation.

Consider a singleton congestion game Γm = (U, [m], [m]) with a set of play-
ers U and m resources. W.l.o.g. we assume that the players are numbered such
that v1 ≥ v2 ≥ . . . ≥ vn. Now, assume that we are given the congestion values
x1 ≤ . . . ≤ xm of all resources corresponding to an optimal allocation of players
in U . By monotonicity of g, we know that the least congested resource has the
most throughput and so on. Hence, since all players have unit demands and are
thus indistinguishable except for their valuations, it is easy to reconstruct an op-
timal allocation from the given values x1 ≤ . . . ≤ xm. We simply allocate the
highest x1 bidders to the least congested resource, the next x2 highest bidders
to the second least congested resource, and so on, until all resources have their
designated congestion values.

Let opt(k, l) denote the optimal social welfare obtainable by assigning the k
highest-valued bidders to l resources. Our dynamic program determines the value
opt(k, l) by optimizing over the number of players assigned to the lth strategy.
Given this number j, opt(k, l) is easily calculated as the optimal welfare opt(k−
j, l − 1) of assigning the first k − j players to l − 1 strategies plus the welfare
contributed by strategy l when used by players k − j + 1 through k. Given all
values of opt(k, l) for k ≤ n and l ≤ m, the optimal social welfare of the singleton
congestion game Γm is the largest number in the table. Given this number, the
algorithm recapitulates which congestion values led to the optimal social welfare
and assigns the players as described above. A formal definition of our dynamic
program is given in Algorithm 5.

Lemma 6.8. Algorithm 5 maximizes social welfare.

Proof. We already argued that a vector of congestion values for all resources de-

114 Mechanism Design with Congestion

Algorithm 5: Dynamic Program for Singleton Congestion Games.

Input: n players with values v1 ≥ v2 ≥ . . . ≥ vn, m resources
Output: optimal allocation x

Initialize opt(k, 1) :=
∑k

i=1 g(k)vi, x = 01

for l = 2 to m do2

for k = l to n do3

opt(k, l) := maxj<k(opt(k − j, l − 1) +
∑k

i=k−j+1 g(j)vi)4

pred(k, l) := arg maxj<k(opt(k − j, l − 1) +
∑k

i=k−j+1 g(j)vi)5

end6

end7

Let (n∗,m∗) ∈ {arg maxk≤n,l≤m opt(k, l)} with (n∗,m∗) lexicographically8

minimal.
Set k := n∗

9

for l = m∗ to 1 do10

xl := pred(k, l)11

xil := 1 for all players i = k − xl + 1, . . . , k12

k = k − xl13

end14

Return allocation x15

fines an optimal allocation by allocating the highest bidders to the least congested
resources. Algorithm 5 optimizes over all such allocations defined by possible
congestion vectors and thus returns an allocation of maximum social welfare.

Lemma 6.9. Algorithm 5 is smoothly monotone.

Proof. Let x := x(v) be the allocation output by Algorithm 5 when it receives
the valuations v as input. We need to show that no winner in x can experience
more congestion or even lose by raising her bid. Assume for contradiction that
player i achieves this by reporting a valuation of vi + ǫ for some ǫ > 0. Let
x′ := x(vi + ǫ, v−i) denote the resulting allocation output by Algorithm 5.

For ease of notation, we denote by W(y, t) the social welfare of allocation
y ∈ {x,x′} when player i’s true value is t, i.e. W(y, t) :=

∑

j 6=i wj(y) + tg(ci(y))
if she wins and W(y, t) :=

∑

j 6=i wj(y) if she loses in y.
First, assume that player i loses in x′. By optimality of x, we have W(x, vi) ≥

W(x′, vi). Further, W(x′, vi + ǫ) = W(x′, vi) since i loses in x′ and W(x, vi + ǫ) >
W(x, vi) since i wins in x and g(ci(x)) > 0 by minimality of n∗ in Line 8 of
Algorithm 5. Together, we obtain

W(x, vi + ǫ) > W(x, vi) ≥ W(x′, vi) = W(x′, vi + ǫ),

6.5 Implications and Applications 115

a contradiction to the optimality of x′.
Next, assume that player i experiences more congestion in x′. Let c := ci(x) <

c′ := ci(x
′) be her respective experienced bottleneck congestions. As before,

W(x, vi) ≥ W(x′, vi) by optimality of x. Further, W(x, vi + ǫ) = ǫg(c) + W(x, vi)
and W(x′, vi + ǫ) = ǫg(c′) + W(x′, vi). By monotonicity of g, we obtain

W(x, vi + ǫ) = ǫg(c) + W(x, vi) ≥ ǫg(c′) + W(x′, vi) = W(x′, vi + ǫ),

which contradicts the optimality of x′ unless W(x, vi + ǫ) = W(x′, vi + ǫ). In this
case, we can conclude from lexicographical minimality of (n∗,m∗) that x′ = x and
thus c = c′. Hence, player i cannot increase her congestion by overbidding.

6.5 Implications and Applications

6.5.1 Network Congestion Games

Our first implied result is a truthful polynomial-time approximation mechanism
for maximizing the social welfare of single-commodity network congestion games
with the bottleneck metric. In the network setting, resources are the edges of a
given directed graph G = (V,E). Each agent wishes to route one unit of demand
along a path between a source and a sink. In the symmetric (or single-commodity)
case, all players have the same common source s and sink t. Accordingly, the set
of strategies S is defined as the set of all s, t-paths in G.

Due to the min-cut max-flow equality (see e.g. [61]), the results of Section 6.4
yield particularly nice results which we summarize in the following theorem.

Theorem 6.10. Algorithm 5 defines a truthful mechanism for single-commodity
network congestion games which maximizes social welfare in the bottleneck setting.

Proof. We apply Theorem 6.4. By the min-cut max-flow equality, we have r = 1.
Furthermore, the maximum independent set problem corresponds to the single-
commodity maximum flow problem which can be solved in polynomial time,
thus c = 1.

6.5.2 Hypergraph Models

We can model the strategy set S by a hypergraph in two different ways, and obtain
different upper bounds the ratio between η and ι.

1. In the vertex-strategy model, every strategy is represented by a vertex, and

116 Mechanism Design with Congestion

for every resource r ∈ R, we introduce a hyperedge which contains all vertices
corresponding to strategies containing r.

2. Controversely, in the edge-strategy model, we identify with every resource
r ∈ R a vertex, and define a hyperedge e = S for every strategy S ∈ S.

In the following, we discuss some bounds that we can obtain from existing litera-
ture on hypergraphs for different classes of congestion games. Using Theorem 6.4,
these bounds yield strategyproof mechanisms that approximate the social cost for
the respective classes of congestion games.

The Vertex-Strategy Model.

In the vertex-strategy model, we make use of the following theorem by Berger and
Ziv [8] to upper bound the size of a minimum hitting set of resources:

Theorem 6.11 ([8]). Consider a hypergraph with m edges whose maximal edge
cardinality (i.e. rank) is at most r ≥ 3. Let α denote the maximal cardinality of
an independent set of vertices. Then, the size of a minimum edge cover is at most

ρ ≤ (r − 2)m + α

r − 1
.

Here, the rank of the modeled hypergraph is the maximal cardinality of an
edge, i.e. a resource. Hence, the theorem conditions on the fact that the maxi-
mum frequency of a resource is upper bounded by r, and the number of resources
is m. Further, an edge cover corresponds to a hitting set of resources, and an in-
dependent set of vertices corresponds to an independent set of strategies. Hence,
the theorem gives us that

η ≤ (r − 2)m + ι

r − 1
.

Especially, if every resource is constrained to belong to at most 3 strategies
(i.e. r = 3), we obtain η ≤ m+ι

2 .

The Edge-Strategy Model.

In the edge-strategy model, a minimum hitting set corresponds to a minimum ver-
tex cover, and a maximum independent set corresponds to a maximum matching
of hyperedges.

It is well known that in case every edge has cardinality two, i.e. when the
hypergraph is a graph, the ratio between the cardinalities of a maximum matching
and a minimum vertex cover is at most two. Thus, we have η/ι ≤ 2 if every
strategy has cardinality two. Since there exist polynomial-time algorithms for

6.6 Hardness Results 117

finding a maximum matching in a graph, Theorem 6.4 together with Lemma 6.6
yield the following corollary:

Corollary 6.12. There is a truthful 2-approximate mechanism for symmetric car-
dinality two bottleneck congestion games with monotone throughput function g.

Further results on the maximum ratio between the cardinalities of a maximum
matching and a minimum vertex cover in hypergraphs for many different graph
classes can be found in the graph theory literature.

6.6 Hardness Results

6.6.1 Symmetric Bottleneck Congestion Games

Finding the social optimum of symmetric bottleneck congestion games with mono-
tone throughput functions is NP-complete, even when every resource is contained
in exactly two strategies. The proof is by reduction from the Independent Set

problem for graphs.

In the Independent Set problem for graphs, we are given a graph G = (V,E)
and a positive integer K. A set of vertices V ′ ⊆ V is called an independent set if
for every pair of vertices u, v ∈ V ′, the edge (u, v) is not in E. The question is
whether G contains an independent set V ′ of cardinality at least K. Independent

Set is known to be NP-complete (see [37]).

Theorem 6.13. Finding the social optimum of symmetric bottleneck congestion
games is NP-complete, even if every resource is contained in exactly two strategies.

Proof. We reduce Independent Set to our setting. Let G = (V,E) be the graph
in the given independent set instance. Define a resource for every edge e ∈ E,
and a strategy for every vertex v ∈ V containing exactly those resources that are
identified with an edge e ∈ δ(v), as in the vertex-strategy model introduced in
Section 6.5.2. Introduce |V | players with equal private values vi = 1 and define
g(1) = 1 and g(k) = 0 for all k ≥ 2. The maximum social welfare obtainable
in this congestion game instance equals the number of disjoint strategies, which
correspond to independent vertices in G. Thus, an allocation of social welfare K
or greater immediately reveals an independent set of the same size in G and vice
versa. Thus, NP-completeness follows from that of Independent Set.

Since the above reduction conserves objective function values, it also leads to
various inapproximability results as a consequence of results for independent set

118 Mechanism Design with Congestion

problems in graphs or hypergraphs (replace “edge” by “hyperedge” in the proof of
Theorem 6.13 to obtain the reduction for hypergraphs). We give two examples
below.

In the Max Clique problem, we are given a graph G = (V,E). A set of
vertices V ′ ⊆ V is called a clique if for every pair of vertices u, v ∈ V ′, the edge
(u, v) is in E. The problem is to find the largest integer K such that G contains
a clique of cardinality K. Note that a clique in G = (V,E) is an independent set
in the complementary graph G = (V,E), where E := (V × V) \ E contains an
edge between each pair of vertices that is not adjacent in G. For general graphs,
the Max Clique problem is thus equivalent to the maximum independent set
problem in graphs.

Proposition 6.14. It is NP-hard to approximate the social welfare of symmetric
bottleneck congestion games by a factor of

• |S|1−ǫ by hardness of approximation of the max clique problem in graphs [31].

• B/2O(
√

log B) if the cardinality of each strategy is at most B [97].

6.6.2 Matroid Bottleneck Congestion Games

For the much more restricted class of matroid congestion games, the problem
of finding a social optimum remains NP-hard at least when one refrains from
restricting the throughput function g to be monotone. The proof is in the spirit
of a similar proof in [1] for classical congestion games, where the payoff of a player
is defined as the sum of payoffs over all resources that she uses.

In a matroid congestion game, the strategy set of a player is defined as the
set of bases of a matroid. See Section 2.6 for a formal definition of matroids and
matroid congestion games. In the special case of a cycle matroid, the resource set
is the set of edges of a given graph G, and an independent set is a forest in G. In
the corresponding congestion game, the strategy set of each player is thus the set
of all spanning trees of G.

Theorem 6.15. Finding the social optimum of symmetric bottleneck congestion
games with arbitrary throughput functions whose strategy space is the set of bases
of a cyclic matroid is NP-complete.

Proof. The proof is by reduction from the Hamiltonian Cycle problem, in which
we are given a graph G = (V,E) and the question is whether G contains a simple
cycle which contains all vertices in V . Hamiltonian Cycle is NP-complete as
shown in [37].

6.7 Conclusion 119

We define a cycle matroid congestion game on G by introducing n = |V | players
with equal private values vi = 1 and setting g(n − 1) := 1 and g(k) := 0 for all
k 6= n−1. Observe that there is an allocation with social welfare n if the graph has
a Hamiltonian cycle: Assign each player to one of the trees obtained by deleting
one edge of the Hamiltonian cycle. On the other hand, if there is an allocation of
social welfare n, every player’s throughput must be 1, so every used edge needs to
be used by exactly n − 1 players. Then, as argued in [1], the allocation defines a
Hamiltonian cycle in G.

6.7 Conclusion

In this chapter, we studied a new model for incorporating negative externalities
caused by congestion of resources in a mechanism design setting. We achieved this
by employing standard models used in the area of congestion games. Instead of
allowing each player to choose her strategy, we requested a bid from every player
and studied the problem of finding socially optimal allocations that give each
player the incentive to report her true valuation and thus support the imposed
allocation.

Externalities describe an important effect that arises in many real world ap-
plications and is not yet considered sufficiently in game theoretic models such
as mechanism design. We describe a very natural model for incorporating ex-
ternalities which is relevant for many applications. Our model entails numerous
intriguing research questions, among which are to extend the model to cooperative
settings and/or cost sharing problems. Our contributions in this chapter form a
starting point for this promising line of research.

BIBLIOGRAPHY

[1] H. Ackermann, H. Röglin, and B. Vöcking. On the impact of combinatorial structure
on congestion games. Journal of the ACM, 55(6):1–22, 2008. 37, 118, 119

[2] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes
for minimizing average weighted completion time with release dates. In Proceedings
of the 40th Symposium on the Foundations of Computer Science, pages 32–43, 1999.
33

[3] A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47(1):36–71, 2004. 27

[4] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Pro-
ceedings of the 42nd Symposium on the Foundations of Computer Science, pages
482–491. IEEE Computer Society, 2001. 40

[5] R. Banner and A. Orda. Bottleneck routing games in communication networks.
IEEE Journal on Selected Areas in Communications, 25(6):1173–1179, 2007. 37

[6] N. Bansal, A. Blum, S. Chawla, and K. Dhamdhere. Scheduling for flow-time with
admission control. In In Proceedings of the 11th Annual European Symposium on Al-
gorithms, volume 2832 of Lecture Notes in Computer Science, pages 43–54. Springer,
2003. 34

[7] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, and L. Stougie. Multiprocessor
scheduling with rejection. In Proceedings of the 7th ACM-SIAM Symposium on
Discrete Algorithms, pages 95–103, 1996. 33

[8] E. Berger and R. Ziv. A note on the edge cover number and independence number
in hypergraphs. Discrete Mathematics, 308(12):2649–2654, 2008. 116

[9] S. Bikhchandani, S. Chatterji, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen. Weak
monotonicity characterizes deterministic dominant-strategy implementation. Econo-
metrica, 74(4):1109–1132, 2006. 13

121

122 Bibliography

[10] Y. Bleischwitz and B. Monien. Fair cost-sharing methods for scheduling jobs on
parallel machines. In Proceedings of the 6th International Conference on Algorithms
and Complexity, volume 3998 of Lecture Notes in Computer Science, pages 175–186,
2006. 4, 27, 28, 44, 45, 46, 56, 57, 69

[11] Y. Bleischwitz and B. Monien. Fair cost-sharing methods for scheduling jobs on
parallel machines. Journal of Discrete Algorithms, 7(3):280–290, 2009. 41, 47

[12] Y. Bleischwitz, B. Monien, and F. Schoppmann. To be or not to be (served). In
Proceedings of the 3rd International Workshop on Internet and Network Economics,
volume 4858 of Lecture Notes in Computer Science, pages 515–528, 2007. 27, 30,
56, 70, 82

[13] Y. Bleischwitz, B. Monien, F. Schoppmann, and K. Tiemann. The power of two
prices: Beyond cross-monotonicity. In Proceedings of the 32nd International Sym-
posium on Mathematical Foundations of Computer Science, volume 4708 of Lecture
Notes in Computer Science, pages 657–668, 2007. 28

[14] Y. Bleischwitz and F. Schoppmann. Group-strategyproof cost sharing for metric
fault tolerant facility location. In Proceedings of the 1st International Symposium
on Algorithmic Game Theory, volume 4997 of Lecture Notes in Computer Science,
pages 350–361, 2008. 22, 88, 92

[15] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA, 1998. 88, 90

[16] J. Brenner and G. Schäfer. Cost sharing methods for makespan and completion
time scheduling. In Proceedings of the 24th International Symposium on Theoretical
Aspects of Computer Science, volume 4393 of Lecture Notes in Computer Science,
pages 670–681, 2007. 4, 28, 39, 56, 57, 58, 70, 71

[17] J. Brenner and G. Schäfer. Group-strategyproof cost sharing mechanisms for
makespan and other scheduling problems. Theoretical Computer Science, 401(1–
3):96–106, 2008. 39

[18] J. Brenner and G. Schäfer. Singleton acyclic mechanisms and their applications to
scheduling problems. In Proceedings of the 1st International Symposium on Algo-
rithmic Game Theory, volume 4997 of Lecture Notes in Computer Science, pages
315–326, 2008. 55, 59, 82, 99

[19] J. Brenner and G. Schäfer. Online cooperative cost sharing. In Proceedings of the
7th International Conference on Algorithms and Complexity, volume 6078 of Lecture
Notes in Computer Science, pages 252–263, 2010. 87

[20] I. Brocas. Auctions with type dependent and negative externalities: the optimal
mechanism, November 2007. IEPR working paper. 103

[21] P. Brucker. Scheduling Algorithms. Springer, New York, USA, 2004. 33

[22] D. Bunde. Scheduling on a single machine to minimize total flow time with job
rejections. In Proceedings of the 2nd Multidisciplinary International Conference on
Scheduling: Theory & Applications, pages 562–572, 2005. 34

Bibliography 123

[23] C. Busch and M. Magdon-Ismail. Atomic routing games on maximum congestion.
In Proceedings of the 2nd International Conference on Algorithmic Aspects in In-
formation and Management, volume 4041 of Lecture Notes in Computer Science,
pages 79–91, 2006. 37

[24] D. Chakrabarty, A. Mehta, V. Nagarajan, and V. Vazirani. Fairness and optimality
in congestion games. In Proceedings of the ACM Conference on Electronic Com-
merce, 2005. 103

[25] S. Chawla, T. Roughgarden, and M. Sundararajan. Optimal cost-sharing mecha-
nisms for Steiner forest problems. In Proceedings of the 2nd International Workshop
on Internet and Network Economics, pages 112–123, 2006. 4, 28, 53, 56

[26] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971. 14

[27] R. Cole, Y. Dodis, and T. Roughgarden. Bottleneck links, variable demand and
the tragedy of the commons. In Proceedings of the 17th ACM-SIAM Symposium on
Discrete Algorithms, pages 668–677, 2006. 35, 36

[28] N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost-sharing mechanisms
for set cover and facility location games. In Proceedings of the ACM Conference on
Electronic Commerce, 2003. 4, 21

[29] N. Devanur, M. Mihail, and V. Vazirani. Strategyproof cost-sharing mechanisms for
set cover and facility location games. Decision Support Systems, 39(1):11–22, 2005.
22, 88

[30] S. Dobzinski, A. Mehta, T. Roughgarden, and M. Sundararajan. Is Shapley cost
sharing optimal? In Proceedings of the 1st International Symposium on Algorithmic
Game Theory, volume 4997 of Lecture Notes in Computer Science, pages 327–336,
2008. 22, 71

[31] L. Engebretsen and J. Holmerin. Clique is hard to approximate within n1−o(1).
In Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, pages 2–12. Springer-Verlag, 2000. 118

[32] D. Engels, D. Karger, S. Kolliopoulos, S. Sengupta, R. Uma, and J. Wein. Tech-
niques for scheduling with rejection. Journal of Algorithms, 49:175–191, 2003. 33

[33] J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost-sharing. Theoretical Computer Science, 304:215–236, 2003. 21, 27

[34] J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. Journal of Computer and System Sciences, 63(1):21–41, 2001. 21, 27

[35] M. Gairing and F. Schoppmann. Total latency in singleton congestion games. In
Proceedings of the 3rd International Workshop on Internet and Network Economics,
volume 4858 of Lecture Notes in Computer Science, pages 381–387, 2007. 36

[36] M. R. Garey and D. S. Johnson. Strong NP-completeness results: Motivation,
examples and implications. Journal of the ACM, 25(3):499–508, 1978. 33, 69

[37] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.
34, 35, 117, 118

124 Bibliography

[38] A. Ghosh and M. Mahdian. Externalities in online advertising. In 17th international
World Wide Web Conference, 2008. 103

[39] A. Gibbard. Manipulation of voting schemes: A general result. Econometrica,
41(4):587–601, 1973. 12

[40] R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287–326, 1979. 32

[41] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17(2):416–429, 1969. 33, 69

[42] J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free
rider problem. Journal of Public Economics, 6:375–394, 1976. 21

[43] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973. 14

[44] A. Gupta, M. Hajiaghayi, and H. Räcke. Oblivious network design. In Proceedings
of the 17th ACM-SIAM Symposium on Discrete Algorithms, pages 970–979, 2006.
97

[45] A. Gupta, J. Könemann, S. Leonardi, R. Ravi, and G. Schäfer. An efficient cost-
sharing mechanism for the prize-collecting Steiner forest problem. In Proceedings of
the 18th ACM-SIAM Symposium on Discrete Algorithms, pages 1153–1162, 2007.
4, 27, 28, 53

[46] A. Gupta, A. Srinivasan, and É. Tardos. Cost-sharing mechanisms for network
design. In Proceedings of the 7th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems, 2004. 4, 27

[47] T. Harks, S. Heinz, and M. Pfetsch. Competitive online multicommodity routing.
Theory of Computing Systems, 2008. 99

[48] B. Heydenreich, R. Müller, and M. Uetz. Decentralization and mechanism design
for online machine scheduling. In Proceedings of the 1st International Workshop on
Computational Social Choice, pages 136–147. Springer, 2006. 40

[49] D. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, 1997. 47

[50] D. Hochbaum and D. Shmoys. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. Journal of the ACM, 34(1):144–162,
1987. 33

[51] M. Imase and B. Waxman. Dynamic Steiner tree problems. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991. 97

[52] N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic cost
sharing schemes. In Proceedings of the 16th ACM-SIAM Symposium on Discrete
Algorithms, pages 602–611, 2005. 4, 27, 28, 56

[53] N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic
cost-sharing schemes. ACM Transactions on Algorithms, 4(2):1–25, 2008. 89

Bibliography 125

[54] K. Jain and V. Vazirani. Applications of approximation algorithms to cooperative
games. In Proceedings of the 33rd ACM Symposium on Theory of Computing, pages
364–372, 2001. 4, 26, 27, 69

[55] P. Jehiel and B. Moldovanu. Efficient design with interdependent valuations. Econo-
metrica, 69(5):1237–59, 2001. 103

[56] R. Juarez. Group strategyproof cost sharing. In Unpublished, 2008. 24, 28, 30, 31,
89, 90

[57] M. Kamien, S. Oren, and Y. Tauman. Optimal licensing of cost reducing innovation.
Journal of Mathematical Economics 21, pages 483–508, 1992. 103

[58] T. Kawaguchi and S. Kyan. Worst case bound of an LRF schedule for the mean
weighted flow time problem. SIAM Journal on Computing, 15(4):1119–1129, 1986.
70

[59] K. Kent and D. Skorin-Kapov. Population monotonic cost allocations on MSTs.
In Proceedings of the 6th International Conference on Operational Research, pages
43–48. Croatian Operations Research Society, Zagreb, 1996. 27, 69

[60] J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam. From primal-dual to
cost shares and back: a stronger LP relaxation for the Steiner forest problem. In
Automata, Languages and Programming, volume 3580 of Lecture Notes in Computer
Science, pages 930–942. Springer, 2005. 4, 27, 28, 56

[61] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer, 2000. 34, 35, 37, 115

[62] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the
16th Annual Symposium on Theoretical Aspects of Computer Science, pages 404–
413, 1999. 36, 37

[63] A. Kovacs. Fast monotone 3-approximation algorithm for scheduling related ma-
chines. In Proceedings of the 13th Annual European Symposium on Algorithms,
Lecture Notes in Computer Science, pages 616–627. Springer, 2005. 40

[64] S. Leonardi and G. Schäfer. Cross-monotonic cost sharing methods for connected
facility location games. Theoretical Computer Science, 326(1-3):431–442, 2004. 4,
27

[65] A. Mas-Colell, M.D. Whinston, and J.R. Green. Microeconomic theory. Oxford
University Press, 1995. 8, 12

[66] V. Mazalov, B. Monien, F. Schoppmann, and K. Tiemann. Wardrop equilibria and
price of stability for bottleneck games with splittable traffic. In Proceedings of the
2nd International Workshop on Internet and Network Economics, volume 4286 of
Lecture Notes in Computer Science, pages 331–342, 2006. 37

[67] R. McNaughton. Scheduling with deadlines and loss functions. Management Sci-
ences, 6:1–12, 1959. 33

[68] A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms. In
Proceedings of the 8th ACM Conference on Electronic Commerce, 2007. 21, 69, 83

126 Bibliography

[69] A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms.
Games and Economic Behavior, 67(1):125–155, 2009. 4, 22, 24, 28, 29, 30, 55, 81,
88, 92

[70] C. Meyers. Network Flow Problems and Congestion Games: Complexity and Ap-
proximation Results. PhD thesis, Massachusetts Institute of Technology, 2006. 103

[71] I. Milchtaich. Congestion games with player-specific payoff functions. Games and
Economic Behavior, 13:111–124, 1996. 36

[72] D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior,
14:124–143, 1996. 36, 104

[73] H. Moulin. Incremental cost sharing: Characterization by coalition strategy-
proofness. Social Choice and Welfare, 16:279–320, 1999. 3, 22, 24, 28, 30, 55,
59, 88, 89, 94

[74] H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: budget
balance versus efficiency. Economic Theory, 18(3):511–533, 2001. 25, 26, 27, 40

[75] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6(1):58–
73, 1981. 13

[76] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proceedings of the 31st
ACM Symposium on Theory of Computing, pages 129–140, 1999. 102

[77] N. Nisan and A. Ronen. Algorithmic mechanism design. Games Economic Behavior,
35(1-2):166–196, 2001. 40

[78] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, editors. Algorithmic Game
Theory. Cambridge University Press, 2007. 8, 10, 11, 17

[79] M. Osborne and A. Rubinstein, editors. A course in game theory. MIT Press, 1994.
17, 18, 35

[80] M. Pál and É. Tardos. Group strategyproof mechanisms via primal-dual algorithms.
In Proceedings of the 44th Symposium on Foundations of Computer Science, pages
584–593, 2003. 4, 27

[81] C. Papadimitriou. Algorithms, games and the internet. In Proceedings of the 33rd
ACM Symposium on Theory of Computing, pages 749–752, 2001. 102

[82] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the
presence of release dates. Mathematical Programming, 82:199–223, 1998. 33, 77

[83] R. Porter. Mechanism design for online real-time scheduling. In Proceedings of the
ACM Conference on Electronic Commerce. ACM Press, 2004. 40

[84] E. Pountourakis and A. Vidali. A complete characterization of group-strategyproof
mechanisms of cost-sharing. In Unpublished, 2010. 28

[85] R. Prim. Shortest connection networks and some generalizations. Bell System
Technical Journal, 36:1389–1401, 1957. 64

[86] K. Roberts. The characterization of implementable choice rules. In J. J. Laffont,
editor, Aggregation and Revelation of Preferences. North-Holland, 1979. 15, 21

Bibliography 127

[87] R. Rosenthal. A class of games possessing pure-strategy nash equilibria. Interna-
tional Journal of Game Theory, 2(1):65–67, 1973. 35, 104

[88] T. Roughgarden and M. Sundararajan. New trade-offs in cost-sharing mechanisms.
In Proceedings of the 38th ACM Symposium on Theory of Computing, pages 79–88,
2006. 4, 21, 22, 27, 28, 40, 41, 42, 43, 53, 56

[89] T. Roughgarden and M. Sundararajan. Optimal efficiency guarantees for network
design mechanisms. In Proceedings of the 12th International Conference on Integer
Programming and Combinatorial Optimization, pages 469–483, 2007. 4, 28, 43, 53,
56, 69

[90] T. Roughgarden and E. Tardos. How bad is selfish routing? In Proceedings of the
41st Symposium on Foundations of Computer Science, 2000. 37, 102

[91] M. Saks and L. Yu. Weak monotonicity suffices for truthfulness on convex domains.
In Proceedings of the 6th ACM conference on Electronic commerce, pages 286–293,
New York, NY, USA, 2005. ACM. 13

[92] M. Salek and D. Kempe. Auctions for share-averse bidders. In Procedings of the
4th International Workshop on Internet and Network Economics, volume 5385 of
Lecture Notes in Computer Science, pages 609–620, 2008. 104

[93] L. Schrage. A proof of the optimality of the shortest remaining processing time
discipline. Operations Research, 16(3):687–690, 1968. 33, 71, 76, 98

[94] B. Simons. Multiprocessor scheduling of unit-time jobs with arbitrary release times
and deadlines. SIAM Journal on Computing, 12(2):294–299, 1983. 33

[95] R. Sitters. Efficient algorithms for average completion time scheduling. In Pro-
ceedings of the 14th International Conference on Integer Programming and Com-
binatorial Optimization, volume 6080 of Lecture Notes in Computer Science, pages
411–423, 2010. 33, 71, 81, 98

[96] W. Smith. Various optimizers for single-stage production. In Naval Research Logis-
tics Quarterly, volume 3, pages 59–66, 1956. 33, 50, 70

[97] L. Trevisan. Non-approximability results for optimization problems on bounded de-
gree instances. In Proceedings of the 33rd ACM Symposium on Theory of Computing,
pages 453–461, 2001. 118

[98] V. Vazirani. Approximation Algorithms. Springer, 2004. 68

[99] W. Vickrey. Counterspeculations, auctions, and competitive sealed tenders. Journal
of Finance, 16(1):8–37, 1961. 14

[100] T. Voice, M. Polukarov, A. Byde, and N. R. Jennings. On the impact of strategy and
utility structures on congestion-averse games. In Procedings of the 5th International
Workshop on Internet and Network Economics, pages 600–607, 2009. 37

	Contents
	Introduction
	Preliminaries
	Notation
	Mechanism Design
	General Setting
	Equilibria and the Revelation Principle
	Implementable Social Choice Functions
	Maximizing Social Welfare – VCG Mechanisms
	Single Parameter Domains
	Cooperative Games

	Cost Sharing Games
	Binary Demand Model
	Strategic Behavior
	Social Welfare vs. Social Cost
	General Demand Model
	Classes of Cost Functions

	Design Techniques and Classes of Cost Sharing Mechanisms
	Cost Sharing Methods
	Moulin Mechanisms
	Characterizing Group-Strategyproof Mechanisms
	Acyclic Mechanisms
	Sequential Mechanisms

	Combinatorial Optimization Problems
	Parallel Machine Scheduling
	Network Design

	Congestion Games

	Group-Strategyproof Cost Sharing
	Introduction
	A Lower Bound for Social Cost Approximation
	Optimal Cost Sharing Method for Makespan Scheduling
	Cross-Monotonic Cost Shares
	Approximate Cost Shares

	A General Lower Bound on Budget Balance
	Weighted Completion Time Scheduling
	Average Completion Time Scheduling

	Conclusion

	Weakly Group-Strategyproof Cost Sharing
	Introduction
	Generalized Incremental Mechanisms
	Construction and Basic Properties
	No Positive Transfer
	Consistency

	Applications
	Network Design Applications
	Scheduling Applications

	Bounding Social Cost
	Completion Time Scheduling
	Weighted Completion Time
	Completion Time with Release Dates and Preemption

	Connections to Other Frameworks
	Acyclic Mechanisms
	Scheduling with Rejection

	Makespan Scheduling with Unit Processing Times
	Conclusion

	Online Cost Sharing
	Introduction
	Online General Demand Cost Sharing
	Incentive Compatibility
	Strategyproofness
	Weak Group-Strategyproofness
	Group-Strategyproofness

	Incremental Online Mechanisms
	Binary Demand Examples
	General Demand Examples

	Conclusion

	Mechanism Design with Congestion
	Introduction
	Model
	Conditions for Truthfulness
	Approximation via Disjoint Strategies
	Reduction
	Optimal Mechanism for Singleton Congestion Games

	Implications and Applications
	Network Congestion Games
	Hypergraph Models

	Hardness Results
	Symmetric Bottleneck Congestion Games
	Matroid Bottleneck Congestion Games

	Conclusion

