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The splashing of a drop impacting onto a liquid pool produces a range of different sized microdroplets.

At high impact velocities, the most significant source of these droplets is a thin liquid jet emerging at the

start of the impact from the neck that connects the drop to the pool. We use ultrahigh-speed video imaging

in combination with high-resolution numerical simulations to show how this ejecta gives way to irregular

splashing. At higher Reynolds numbers, its base becomes unstable, shedding vortex rings into the liquid

from the free surface in an axisymmetric von Kármán vortex street, thus breaking the ejecta sheet as it

forms.
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Liquid drop splashing is part of our daily lives, from the

morning shower to natural rain [1,2]. While it has been

studied for more than one hundred years [3], it is only

recently that advances in high-speed imaging techniques

[4,5] have revealed its early dynamics [6,7]. Splashing

refers herein to the breakup of a drop into smaller droplets

during impact. Understanding the underlying mechanism

that produces the smallest droplets is important, for ex-

ample, for the number of microscopic aerosols which

remain when those satellite droplets evaporate. Such aero-

sols affect human health and can act as nucleation sites

during cloud formation.

For high-speed drop impact on a liquid pool, the ejecta

sheet is the first stage leading to splashing. It was first

observed in the inviscid numerical simulations of Weiss

and Yarin [8] and in the experiments of Thoroddsen [9].

When the drop impacts at higher velocity, the speed of

these ejecta sheets increases and they become thinner. The

radial stretching of the sheets reduces their thickness even

further, and they can remain intact even at thicknesses well

under a micron [6]. When they eventually rupture, they can

produce a myriad of very fine spray droplets. However, this

mechanism does not continue for ever; at a critical

Reynolds number, the smooth ejecta gives way to a more

random splashing, which counterintuitively may produce

fewer small droplets.

To understand the mechanisms leading from continuous

ejecta sheets to irregular splashing, a systematic study of

the early dynamics was conducted with ultrahigh-speed

video imaging, over a range of impact velocities U, liquid

viscosities�, and droplet diametersD [10]. Figure 1 shows

a classification of the results in terms of Reynolds number

Re ¼ �DU=�, where � is the liquid density, and splashing

parameter K, which relates to the Weber number We ¼
�DU2=�, where � is the surface tension, as K ¼ We
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FIG. 1 (color). Characterization of the ejecta regimes. (d) Smooth

ejecta sheet (t ¼ 145 �s, Re ¼ 1410, K ¼ 5:62� 104). (j)

Irregular splashing (t ¼ 360 �s, Re ¼ 1250, K ¼ 7:11� 104).

(.) Bumping (t ¼ 180 �s, Re ¼ 3550, K ¼ 7:44� 104).

(m) Quartering (t ¼ 630 �s, Re ¼ 2810, K ¼ 3:86� 104).

(r) Protrusions rising up along the side of the drop (t ¼
630 �s, Re ¼ 2410, K ¼ 1:48� 104). The scale bars are all

500 �m long.
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We are interested here in the higher K regime, where

splashing occurs [11–13].

The classification in Fig. 1 focuses on the ejecta shapes.

In the lower range of Re (more viscous liquids), a smooth

ejecta sheet emerges between the drop and the pool (d).

However, in the highest range of Re, isolated droplets

emerge from the neck, followed by a disturbed liquid

surface, and no coherent ejecta can be identified; i.e.,

irregular splashing occurs (j). In the intermediate regime

(Re � 2000–6000), the ejecta sheets show a large variety

of repeatable shapes. We have grouped them into 3 classes.

At lower K (lower impact velocities, r), surface tension

prevents the formation of an ejecta sheet. However, we

observe some protrusions traveling up along the side of the

drop, without ejection of droplets outwards [7]. At higher

K (m), the ejecta sheet is more developed; however, it stays

attached to the drop, stretching the ejecting sheet between

the expanding tip of ejecta and the drop entering the pool.

This regime is called quartering. This stretching can lead to

the explosive rupturing of the sheet, which generates fast

droplets of a large range of sizes through slingshot [6], by

surface tension pulling on a free liquid sheet. In the upper

range of K (.) we observe an intriguing phenomenon

where the freestanding sheet interacts strongly with

the downward-moving drop surface. This is shown in the

sequence of Fig. 2(a), referred to as the bumping of the

ejecta. The ejecta is strongly bent by the drop, and then

folds at its apex. Overall snapshot of a bumping ejecta was

included in Ref. [5] [their Fig. 8(c)].

Those experimental results clearly show the effect of the

Reynolds number on the transition toward irregular splash-

ing. Moreover, the results show new dynamics of the ejecta

sheet interacting with the drop. This suggests that those

interactions could underlie the irregular splashing.

To test this idea, we have chosen to reproduce the impact

by numerical simulations. It is only recently that numerical

simulations managed to identify the ejecta sheet [8,14,15],

because of the extreme range of scales involved and the

challenges of interfacial flow simulations [16]. The intri-

cate shapes observed herein were beyond reach in previous

studies. We use the freely available code GERRIS [17–19]

for its high parallelization and dynamic adaptive grid

refinement, which allow us for the first time to reach

enough precision to fully resolve the dynamics of the

ejecta. This code uses the volume-of-fluid method to solve

the incompressible Navier-Stokes equations. Furthermore,

we start the simulation before impact, thus capturing the

air-cushioning effect (see Ref. [10,20–25]).

Axisymmetric simulations faithfully reproduced all of

the experimentally observed features, as we demonstrate in

Fig. 2 for the bumping case. The shape of the drop in the

simulation is perfectly spherical, ruling out the hypothesis

that small deviations from spherical drop shapes in the

experiments could be responsible for the drop interaction

with the ejecta sheet.

To study this transition to irregular splashing we in-

crease Re, while keeping K constant, from a smooth ejecta

sheet [Fig. 1(d)] to irregular splashing (j). This was done

for two different K values, corresponding to the bumping

(.) and quartering (m) regimes.

The position of the base of the ejecta rK [Figs. 3(a) and

3(b)] follows very closely the geometric relation predicted

by Josserand and Zaleski [14] rK ¼ CrJ, independent of
Re, where rJ is the radius where an unperturbed drop

would meet the original pool surface. A simple geometric

model [6] suggested that � increases as ��
ffiffiffiffi

t�
p

, where t�

is the time nondimensionalized by � ¼ D=U, whereas the

simulations show that � grows linearly before bumping

[Fig. 3(c)]. However, the ejecta rises faster for higher Re.

The collapse of the curves in Fig. 3(d) shows that � grows

at a rate proportional to
ffiffiffiffiffiffi

Re
p

. The angle of the ejection-

velocity vector at the middle of the base also follows a

similar trend, and increases proportionally to
ffiffiffiffiffiffi

Re
p

.

At lower Re, � increases slowly enough for the ejecta to

escape the drop. However, from Re * 3000, the ejecta

FIG. 2 (color). Comparison between experiment and axisym-

metric numerical simulation for a bumping case. U ¼ 4:04 m=s,
D ¼ 4:6 mm, Re ¼ 3:55� 103, K ¼ 7:44� 104. From top to

bottom, observations at time 30, 80, 130, 180, and 230 �s

after contact. (a) Experimental observation. The static dark

points correspond to dust on the camera sensor. The video was

taken at 200 000 frames per second. (b) Numerical simulation of

the drop impact for exactly the same times after impact, same

scale and same field of view as in the experiment presented

in (a). In the last image, the leading part of the ejecta sheet

becomes smaller than the grid size by stretching between the

apex and the tip and thus breaks into nonphysical droplets.

The axisymmetric simulations cannot include the three-

dimensional effects, such as the breakup of the tip observed in

(a). The scale bar is 500 �m long. Supplemental videos show

the two evolutions [10].
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sheet rises too fast, thus impacting the drop surface. The

resulting bumping sharply decreases �. This interaction of

the drop and the ejecta sheet observed experimentally

occurs earlier at higher Reynolds numbers, eventually

breaking the ejecta sheet. This is consistent with the inter-

pretation that this interaction is responsible for the irregu-

lar splashing observed at higher Re.

Vorticity also plays an important role in the dynamics of

the ejecta sheet [Figs. 3(e) and 3(f)]. For a stationary two-

dimensional free surface, vorticity is generated at the free

surface proportionally to the interface curvature � and the

tangential flow velocity q: ! ¼ 2�q (see for instance

Ref. [26] 5.14, and [27,28] for low We drop impacts).

This vorticity is then diffused into a thin boundary layer,

which can separate to enter the liquid. Numerical simula-

tions indeed show concentrated vorticity near points T and

B at the base of the ejecta as the flow moves faster around

the highly curved base to enter the ejecta (Fig. 4). At the

early stage of the ejecta formation, both sides of the base

produce a similar strength of vorticity. This initial vorticity

scales as
ffiffiffiffiffiffi

Re
p

as observed previously [14]. However, the

difference in vorticity (absolute values) between the two

sides increases initially linearly with time, before decreas-

ing again. Moreover, this difference is higher for larger Re

[Fig. 3(f)].

By looking closely at the neck region during the impact,

we can identify fundamental changes in the vorticity struc-

ture as Re is increased (Fig. 4). Note that in Fig. 4(a) most

of the liquid in the sheet originates from the pool, in

agreement with dye visualizations [9]. For the lower range

of Re [Figs. 4(a) and 4(d)], the vorticity stays concentrated

near the free surface at the neck of the ejecta sheet. As

there is stronger vorticity generated at the top of the ejecta

base, a vorticity layer of one sign separates the drop and the

pool liquids but it remains stable. K affects the shape of the

outer part of the ejecta sheet, as we observe by comparing

Figs. 4(a) and 4(d), consistently with experimental obser-

vations [6]. For intermediate Re, the interface remains

stable in its early evolution. In the bumping case (b), the

rising ejecta sheet contacts the downward-moving drop

surface. This creates a shear instability, generating a toroi-

dal vortex structure around the entrapped bubble. In the

quartering case (e), the ejecta sheet leaves the neck region

to climb up the drop, pulled by higher surface tension. This

also creates a shear instability between the climbing liquid

from the pool and the drop liquid moving down, forming a

row of vortex rings of the same sign. These vortices near

the free surface leave their signature [29] by creating

waves below the rising sheet, a feature also observed

experimentally (Fig. 1) [7]. However, all such vortical

effects are absent from inviscid theory and simulations

[8,30].

At even higher Re [Figs. 4(c) and 4(f)], vorticity is shed

behind the base of the ejecta sheet, in a way reminiscent of

the von Kármán vortex street, here forming alternating-

sign vortex rings. For the first 7 shedding cycles, the local

Reynolds number based on the radial speed and width of

the neck takes value around 70 and the Strouhal number

St ¼ fD=U is around 0:11� 0:05, in good agreement with

related Kármán streets. This analogy with the vortex shed-

ding of a cylinder suggests that vorticity can be responsible

for the oscillations of the base [31] and would be present

even without them. However, those oscillations will am-

plify the vorticity difference between the two sides of the

base through surface curvature, reinforcing the oscillations

and the separation of individual vortices. Therefore, we
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FIG. 3 (color). Evolution of the base of the ejecta sheet

with Re at K ¼ 7:44� 104. Quantities are nondimensionalized

by the drop diameter D, the drop impact velocity U, and the

drop entry time � ¼ D=U. (a) Definition sketch. The base

of the ejecta sheet is defined as the segment between the two

points of maximum curvature of the interface (T on the drop

side and B on the side of the pool). The angle of the ejecta

sheet � is the angle between the horizontal and the normal

to the base. (b) Evolution of the ejecta base radial position

rK , defined as the distance from the axis of symmetry to the

middle of TB in (a), vs the nondimensional time t� ¼ t=�,
for Re from 1000 to 6000. The solid curve is 1:23rJ, where

rJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t�ð1� t�Þ
p

is the radius where an undisturbed drop

would meet the pool. (c) Evolution of � (in degrees) for Re

from 1000 to 6000. The sharp drops correspond to bumping

events, as the position of T suddenly moves up along the

drop side. (d) Same curves as (c), where the angle is scaled by
ffiffiffiffiffiffi

Re
p

. (e),(f) Evolution of the maximum positive vorticity (red)

and maximum absolute negative vorticity (blue) in the liquid

near the ejecta base for Re ¼ 1000 (e) and Re ¼ 4000 (f). The

positive maximum is located near T, and the negative maximum

near B.
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observe an unstable mode that involves both the jet and the

vortex street [10]. During the early shedding [Fig. 4(g)],

surface tension effects are higher because of the sharper

surface geometry. As the angle of the neck increases, the

amplitude of the oscillations increases. The ejecta can then

climb on the drop at lower K (f) or impact alternatively on

the drop and the pool (c) in a similar way to the bumping,

entrapping a row of bubble rings [8,32]. Four bubble rings

can be clearly identified in Fig. 4(c), with a fifth one being

created. Only well-resolved bubbles and droplets (larger

area than 30 cells) are kept in the numerics, suggesting that

smaller bubbles could be entrapped earlier.

From systematic experimental observations, reproduced

with axisymmetric simulations, we have detailed a new

mechanism explaining the irregular splashing of a water

drop. Previously studied mechanisms have described the

droplet separation from the rim of the ejecta [8,33,34], or

the destabilization of a liquid sheet [35,36]. Our mecha-

nism, however, explains the breakup of the ejecta sheet by

the destabilization of its base, through vortex shedding

from the free surface.
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