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Abstract

In this paper we propose a von Mises approximation of the critical value of a
test and a saddlepoint approximation of it. They are specially useful to compute
quantiles of complicated test statistics with a complicated distribution function,
which is a very common situation in robustness studies. We also obtain the influence
function of the critical value as an alternative way to analyse the robustness of a
test.
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1 Introduction

The von Mises expansion of a functional has been used for several purposes
since its introduction by von Mises (1947). Fernholz (1983), Filippova
(1961) or Reeds (1976) used it to analyse the asymptotic behaviour of
some statistics; Sen (1988) in relation with the jackknife; Hampel (1968,
1974) to define his influence function, one of the central concepts of robust
statistics, and recently Fernholz (2001) in a multivariate setting.

In this paper we propose a general method to obtain an approximation
of kF

n , the critical value of a test based on a sample of size n of a random
variable with distribution function F , which consists in considering kF

n as
a functional of the model distribution function F and using the first terms
of its von Mises expansion.
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This von Mises expansion depends on the critical value of the test under
another model, G, that we choose so that kG

n is known, plus some other

terms that essentially depend on
•

kG
n , the influence function of the critical

value under G.

We obtain a von Mises approximation of kF
n truncating its von Mises

expansion at a convenient point (usually up to the first or second order).

The von Mises approximation, obtained in this way, is more accurate
when the distributions F and G are closer. This is specially useful in
robustness studies where distribution F is frequently a slight deviation
from a known model G, but complicated enough to render impossible an
exact calculation of kF

n .

Moreover, in most of the cases, distribution G will be the normal dis-
tribution, under which the critical value kG

n is known from the classical
statistics, being in this case the rest of the terms of the von Mises approx-
imation easy to manage.

With these aims, in Section 2, we establish the preliminaries of the
problem, obtaining in Section 3 the von Mises expansion of the critical
value, which depends on its influence function.

For this reason, in Section 4 we study the influence function of the

critical value,
•

kG
n , that can be considered, also, as an alternative way to

analyse the robustness of a test. With
•

kG
n we can see the influence of the

contamination on the critical value of a test, with a fixed significance level,
instead of fixing the critical value of the test and seeing the influence of
contamination on the level and on the power. We obtain an expression for
•

kG
n that involves the Tail Area Influence Function, defined by Field and

Ronchetti (1985).

In Section 5 we finally obtain an explicit von Mises approximation of
the critical value of a test and some applications to the location problem.

Since in some situations it is difficult to obtain a manageable expres-
sion for the tail probability of the test, in Section 6 we use the Lugannani
and Rice (1980) formula to obtain a saddlepoint approximation to the von
Mises approximation of the critical value of a M -test, including some ex-
amples and a simulation study which confirms the accuracy of the proposed
method. (For a general review of the saddlepoint approximation techniques
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see, for instance, Field and Ronchetti, 1990; Jensen, 1995)

With the approximations that we propose in this paper, we give a
straightforward solution to the computation of the quantiles of the, usually
complicated, distribution function of a robust test statistic. This distri-
bution function is very hard to obtain (and so, to invert) firstly, because
the test statistic often has an odd form and, secondly, because the distri-
bution model (although it is a slight deviation of a classical model) makes
very hard the exact computation of the distribution function of the test
statistic, two situations which are very common in robustness studies.

2 Preliminaries

Although the method that we are going to expose in this paper can be
extended to a more general setting, we shall consider here the one param-
eter situation, in which, the model distribution of the observable random
variable X (with values on a sample space X ) belongs to a family of distri-
butions F = {Fθ; θ ∈ Θ}, where Θ is a real interval.

Using a random sample X1, ..., Xn of X we are interested in testing the
null hypothesis H0 : θ = θ0 using a test statistic Tn = Tn(X1, ..., Xn) that
rejects H0 when Tn is larger than the critical value kF

n .

If we represent by Fn;θ the cumulative distribution function of the test
statistic Tn when the model distribution of X is Fθ, we shall consider the
critical value for the previous level-α test,

kF
n = F−1

n;θ0
(1− α)

as a functional of the model Fθ0 where, throughout this paper, the inverse of
any distribution function G is defined, as usual, by G−1(s) = inf{y|G(y) ≥
s} , 0 < s < 1.

For instance, if Tn = M is the sample median, then

kF
n = F−1

θ0
(B−1(1− α)),

where B is the cumulative distribution function of a beta β( (n+1)/2 , (n+
1)/2 ) .

If Tn = x is the sample mean and Fθ0 ≡ Φθ0 the normal distribution
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N(θ0, σ), it will be

kF
n =

1√
n

(
Φ−1

θ0
(1− α) + θ0 (

√
n− 1)

)
.

We shall usually drop off the subscript θ0 to simplify the notation, but
obviously, in the functional k

(·)
n all the parametric models, F , G,. . . are

considered under the null hypothesis θ0.

Let us observe that it does not matter that the functional kF
n depends

on n because we are not interested in the asymptotic (in n) distribution
properties of kF

n , except perhaps in Section 4.2 which is not in the main
line of reasoning of the paper. n is in kF

n what Reeds (1976, p. 39), calls
an auxiliary parameter.

3 A von Mises expansion of the critical value

In this section we shall obtain an approximation of the critical value of the
test considered before, using the von Mises expansion of a functional.

3.1 von Mises expansion of a functional

Let T be a functional defined on a convex set F of distribution functions and
with range the set of the real numbers. For the situation we are considering
in this paper this framework is enough; nevertheless in a general setting we
should require the mathematical conditions for the Hadamard (or compact)
differentiability of T (see Fernholz, 1983 or Sen, 1988).

If F and G are two members of F and t ∈ [0, 1] is a real number, let us
define the function A of the real variable t by

A(t) = T ((1− t)G + tF ) = T (G + t(F −G)) .

For our purpose, we shall consider the viewpoint adopted by Filippova
(1961) and that Reeds (1976, p. 29) calls the low-brow way of the von Mises
expansion of a functional T , which is just the ordinary Taylor expansion of
the real function A(t), assuming that A satisfies the usual conditions for a
Taylor expansion to be valid if t ∈ [0, 1] (see, for instance, Serfling, 1980,
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pp. 43, theorem 1.12.1A). See also Fernholz (2001) for a good review of the
von Mises calculations of higher order for statistical functionals.

If A(t) can be expanded about t = 0, it will be

A(t) = A(0) +
m∑

k=1

Ak)(0)
k!

tk + Remm, (3.1)

where Ak)(0) is the ordinary kth derivative of A at the point 0, with respect
to t, with k = 1, . . . , m, and where the remainder term Remm depends on
F and G, and on the (m + 1)th derivative of A.

Evaluated at t = 1, (3.1) gives

T (F ) = T (G) +
m∑

k=1

Ak)(0)
k!

+ Remm,

because A(1) = T (G + F −G) = T (F ) and A(0) = T (G).

3.2 von Mises expansion of the critical value

Now, let us consider the functional T (Gθ0) = kG
n . If the corresponding

A(t) = T (G + t(F −G)) has a finite third derivative everywhere in the
interval (0, 1) and A2)(t) is continuous in [0, 1], we have the second-order
expansion

kF
n = kG

n + A1)(0) +
1
2

A2)(0) + Rem2, (3.2)

and the first-order expansion

kF
n = kG

n + A1)(0) + Rem1 (3.3)

of the functional kF
n , having the first one a higher degree of accuracy than

the second one. (Obviously, for the first-order expansion to exist we need
only to assume that A2)(t) is finite everywhere in (0, 1) and that A1)(t) is
continuous in [0, 1].)

If there exist two kernels functions aG
1 and aG

2 (also called first- and
second-order compact derivatives of the functional k

(·)
n at G), such that

A1)(0) =
∫

aG
1 (x) d(Fθ0 −Gθ0)(x) (3.4)
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and
A2)(0) =

∫ ∫
aG

2 (x, y) d(Fθ0 −Gθ0)(x) d(Fθ0 −Gθ0)(y),

where aG
2 (x, y) = aG

2 (y, x) ∀x, y , kG
n is said to be a von Mises functional

(Reeds, 1976).

When these kernels exist, they are only defined up to additive constants.
We shall make them unique by imposing the usual conditions (constraint
(2.3) of Withers, 1983, or (2.4) and (2.5) of Sen, 1988)

∫
aG

1 (x) dGθ0(x) = 0, (3.5)

∫
aG

2 (x, y) dGθ0(x) = 0,

and ∫
aG

2 (x, y) dGθ0(y) = 0.

Then, the expansions (3.2) and (3.3) will be,

kF
n = kG

n +
∫

aG
1 (x) dFθ0(x) +

1
2

∫ ∫
aG

2 (x, y) dFθ0(x) dFθ0(y) + Rem2

and
kF

n = kG
n +

∫
aG

1 (x) dFθ0(x) + Rem1.

Moreover, aG
1 (x) is then, the Hampel’s influence function of the func-

tional kG
n , which we shall represent throughout this paper by

•
kG

n (x) or
just by IF (x; kG

n , Gθ0), and the kernel aG
2 (x, y) is related with the influence

function
•

kG
n (x) through the expression (see Withers, 1983 Theorem 2.1,

pag. 578, or Gatto and Ronchetti, 1996, pag. 667)

aG
2 (x, y) =

∂

∂ε
IF (x; kG

n , Gε,y;θ0)
∣∣∣∣
ε=0

+ IF (y; kG
n , Gθ0),

where Gε,y;θ0 := (1 − ε)Gθ0 + εδy is the contaminated model, and δy the
distribution which puts mass 1 at y ∈ IR.
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Let us observe that kernels aG
1 and aG

2 exist when the influence function
IF (x; kG

n , Gθ0) and its derivative exist. In this case, the first- and second-
order expansions are, respectively,

kF
n = kG

n +
∫

IF (x; kG
n , Gθ0) dFθ0(x) + Rem1 (3.6)

and

kF
n = kG

n +
∫

IF (x; kG
n , Gθ0) dFθ0(x)

+
1
2

∫ ∫
∂

∂ε
IF (x; kG

n , Gε,y;θ0)
∣∣∣∣
ε=0

dFθ0(x) dFθ0(y)

+
1
2

∫
IF (y; kG

n , Gθ0) dFθ0(y) + Rem2. (3.7)

The remainder term in one of these r-order expansions is an integral of
the (r +1)-kernel (which is the element that depends on n) with respect to∏r+1

i=1 d(Fθ0 − Gθ0)(xi) , divided by (r + 1)! (see Withers, 1983, pag. 578).
Thus, the error term will be smaller when Fθ0 and Gθ0 are closer. More
exactly, Rem2 = o(||F −G||2) uniformly in F ∈ F where ||F −G|| refers
to the usual sup-norm (i.e., supx |Fθ0(x)−Gθ0(x)|).

Expressions (3.6) and (3.7) are important because, if the functional
kF

n depends on Fθ0 explicitly, we can use the usual Taylor expansion for
the function A(t) to obtain the desired approximations. Nevertheless, in
most of the situations, this will not be the case and we have to use these
expressions to obtain the first- and second-order expansions.

4 The influence function of the critical value

To obtain more explicit expressions for the von Mises expansions, we need
to study the influence function of the critical value, obtaining also an al-
ternative way to analyse the robustness of a test: To fix the level of the
test and see how the critical value changes when the underlying distribu-
tion of the observations does not belong to the model but coincides with
a distribution in a neighborhood of it. This is a different viewpoint of the
usual robust approach to testing, which fixes the critical value under the
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model and then, investigates the change of the level and the power of the
test under contamination.

For these purposes, we shall use the Tail Area Influence Function (TAIF)
of Tn at Gθ, defined by Field and Ronchetti (1985) as

TAIF(x; t; Tn, Gθ) =
∂

∂ε
PGε,x;θ

{Tn > t}
∣∣∣∣
ε=0

,

for all x ∈ IR where the right hand side exists, being Gε,x;θ := (1−ε)Gθ+εδx

the contaminated model, and δx the distribution which puts mass 1 at
x ∈ IR.

4.1 Influence function of the critical value

Let us suppose that Gn;θ0 has a density gn;θ0 with respect to the Lebesgue
measure. Let us represent by

kG
n;ε = G−1

n;ε,x;θ0
(1− α)

the contaminated critical value, i.e., the critical value when we suppose, as
model for X, the contaminated distribution Gε,x;θ0 := (1 − ε)Gθ0 + εδx ,
0 ≤ ε ≤ 1.

Let us consider, as level α, a level which is achieved by the test, at least
for all ε small enough, i.e., let us suppose that it is Gn;ε,x;θ0(k

G
n;ε) = 1− α ,

or, equivalently, that it is

PGε,x;θ0
{Tn > kG

n;ε} = α. (4.1)

This is not a serious restriction since the set of levels which satisfy that

Gn;ε,x;θ0(k
G
n;ε−) < 1− α < Gn;ε,x;θ0(k

G
n;ε)

will be the empty set when ε ↓ 0 because of the continuity of Gn;θ0 (which
is the limit of ε at which we shall calculate the derivatives).

Then, using the chain rule in (4.1) to obtain the derivative with respect
to ε at ε = 0 , we have

TAIF(x; kG
n ;Tn, Gθ0)− gn;θ0(k

G
n )·

•
kG

n = 0,
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where •
kG

n =
∂

∂ε
kG

n;ε

∣∣∣∣
ε=0

is the influence function of the critical value.

Then, if gn;θ0(k
G
n ) 6= 0, it will be

•
kG

n =
TAIF(x; kG

n ;Tn, Gθ0)
gn;θ0(kG

n )
.

4.2 Asymptotic behaviour of the influence function

Although this section is not in the main line of the paper, we will analyse
here the robustness properties of the critical value. For this, we need first

to obtain the limit of
•

kG
n as n →∞.

We shall restrict our attention to M -tests, i.e., to tests based on the
statistic Tn solution of the equation

n∑

i=1

ψ(xi; Tn) = 0, (4.2)

where ψ : X ×Θ −→ IR is a given function and X is the sample space. In
this situation, Field and Ronchetti (1985) obtained the limit behaviour of
TAIF using three conditions that they call (A1), (A2) and (A3) and that
essentially correspond to the situation of an M -estimator (unique) solution
of (4.2), with ψ(x; θ) strictly monotonic in θ for all x ∈ X and such that
E[ψ(X; θ)] = 0; ∀θ ∈ Θ.

They proved that

lim
n→∞n−1/2 TAIF(x; kG

n ;Tn, Gθ0) = LIF(x; Tn, Gθ0),

where LIF(x;Tn, Gθ0) is the level influence function defined by Rousseeuw
and Ronchetti (1979, 1981).

Thus, from the asymptotic normality of the M -estimator Tn, we have

lim
n→∞n−1/2gn;θ0(k

G
n ) =

1
σ0

φ(zα)
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where φ is, throughout this paper, the standard normal density, zα

the (1 − α)-quantile of the standard normal distribution and σ2
0 =

Eθ0 [ψ
2]/(−Eθ0 [ψ

′])2.

Then,

lim
n→∞

•
kG

n = lim
n→∞

n−1/2 TAIF(x; kG
n ; Tn, Gθ0)

n−1/2 gn;θ0(kG
n )

=
φ(zα)/σ0 · IFtest (x; Tn, Gθ0)

φ(zα)/σ0

= IFtest (x;Tn, Gθ0),

because (see Hampel et al., 1986, pag. 199) it is

LIF(x; Tn, Gθ0) =
1
σ0
· φ(zα) · IFtest (x; Tn, Gθ0).

Thus, we can think of
•

kG
n as a finite sample version of the influence func-

tion of the statistical test and then, with the same robustness properties,
which can be used to evaluate finite sample behaviour of tests.

5 von Mises approximation of the critical value

From the first- and second-order von Mises expansions (3.6) and (3.7), and
the expression obtained in the previous section for the influence function
•

kG
n (x) = IF (x; kG

n , G), we can define the first-order von Mises (VOM)
approximation of kF

n by kG
n as any of the right hand side members in the

following equations

kF
n ' kG

n + A1)(0)

= kG
n +

∫ •
kG

n (x) dFθ0(x)

= kG
n +

1
gn;θ0(kG

n )

∫
TAIF(x; kG

n ; Tn, Gθ0) dFθ0(x),

where gn;θ0 is the density of Tn when distribution function for X is Gθ0 .
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Also we define the second-order VOM approximation of kF
n by kG

n as
any of the right handed side members in the following equations

kF
n ' kG

n + A1)(0) +
1
2
A2)(0)

= kG
n +

3
2

∫
IF (x; kG

n , Gθ0)dFθ0(x)

+
1
2

∫ ∫
∂

∂ε
IF (x; kG

n , Gε,y;θ0)
∣∣∣∣
ε=0

dFθ0(x) dFθ0(y).

The distribution Gθ0 is called a pivotal distribution and kG
n a pivotal

critical value.

As we mentioned before, these approximations will be more accurate
when Fθ0 and Gθ0 are closer.

If we choose as pivotal distribution the normal distribution Φθ0 we can
calculate the critical value of the test under other model F , using the
distribution of the statistic under the normal distribution, which is usually
known from the classical statistics. Then, for instance, the first-order VOM
approximation will be

kF
n ' kΦ

n +
1

φn;θ0(kΦ
n )

∫
TAIF(x; kΦ

n ; Tn, Φθ0) dFθ0(x), (5.1)

where φn;θ0 is the density function of Tn when Φθ0 is the model distribution
of X. Of course, it is possible to change in (5.1) the normal distribution by
another one, if we get a simplification in the computations, or if we improve
the approximation because this new distribution is closer than Φ to F .

The VOM approximation is specially useful if the distribution Fn;θ0 of
Tn is too complicated to obtain exactly kF

n , but the model F is smooth
enough to integrate the TAIF of Φθ0 .

Also, if the TAIF assumes only a small number of different values
(namely two) we shall obtain the VOM approximation in an straightforward
way.

Finally, let us observe that if Fθ0 and Gθ0 are not close enough and Hθ0 is
another distribution between them, we can use the VOM approximations
sequentially, approximating first kH

n by the known critical value kG
n and

then, kF
n by kH

n .
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5.1 The one sample median test

If we construct a test with a robust test statistic Tn, we shall usually arrive
at a situation in which the exact distribution of Tn is too complicated (not
allowing a direct computation of the critical value), but for which we can
easily integrate the TAIF.

We shall describe in this section one of these situations in which it is
also possible, for some models, to compare the exact results with the VOM
approximation.

Namely, let us consider the one sample median test (with n odd and
α < 0′5) for testing H0 : θ = θ0 against H1 : θ > θ0, using a sample of
the absolutely continuous random variable X with distribution function Fθ.
This test is defined by

ϕ(M) =
{

1 if M > kF
n

0 otherwise,

where M is the sample median and kF
n the critical value defined through

Fn;θ0(k
F
n ) = Pθ0

{
M ≤ kF

n

}
= 1− α,

where Fn;θ0 is the cumulative distribution of M under H0.

Because the contaminated tail probability for the sample median is

PGε,x;θ
{M > kG

n } =
n!

[(n−1
2 )!]2

∫ 1−Gε,x;θ(kG
n )

0
y(n−1)/2(1− y)(n−1)/2 dy

and the TAIF of this test will be

TAIF(x; kG
n ; M,Gθ0) =

∂

∂ε
PGε,x;θ0

{M > kG
n }

∣∣∣∣
ε=0

=
n!

[(n−1
2 )!]2

[1−Gθ0(k
G
n )](n−1)/2 [Gθ0(k

G
n )](n−1)/2

[Gθ0(k
G
n )− δx(kG

n )].

Since the density of M in kG
n is

gn;θ0(k
G
n ) =

n!
[(n−1

2 )!]2
[1−Gθ0(k

G
n )](n−1)/2 [Gθ0(k

G
n )](n−1)/2 gθ0(k

G
n ),
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the influence function of the critical value at Gθ0 will be

•
kG

n =
TAIF(x; kG

n ; M, Gθ0)
gn;θ0(kG

n )
=

Gθ0(k
G
n )− δx(kG

n )
gθ0(kG

n )
(5.2)

and we obtain the following first-order VOM approximation of kF
n

kF
n ' kG

n +
1

gn;θ0(kG
n )

∫
TAIF(x; kG

n ; Tn, Gθ0) dFθ0(x)

= kG
n +

Gθ0(k
G
n )− Fθ0(k

G
n )

gθ0(kG
n )

.

To stand out the other elements involved in this approximation, which
have been considered before, let us observe that the functional we are con-
sidering here (restricted to the absolutely continuous distributions) is

T (Gθ0) = kG
n = G−1

θ0

(
B−1(1− α)

)

and the function A(t) = T (Gθ0 + t(Fθ0 −Gθ0)) solves the equation

(Gθ0 + t(Fθ0 −Gθ0)) (A(t)) = B−1(1− α)

i.e.,
Gθ0(A(t)) + t Fθ0(A(t))− tGθ0(A(t)) = B−1(1− α),

thus, differentiating this equation with respect to t at t = 0, we obtain the
expression

gθ0(k
G
n ) ·A1)(0) + Fθ0(k

G
n )−Gθ0(k

G
n ) = 0,

because A(0) = T (Gθ0) = kG
n and gθ0 and fθ0 are the densities of Gθ0 and

Fθ0 .

Then, it will be

A1)(0) =
Gθ0(k

G
n )− Fθ0(k

G
n )

gθ0(kG
n )

.

Some easy computations prove that, if kG
n is given by (5.2), then

∫ •
kG

n (x) dGθ0(x) = 0,
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and

∫ •
kG

n (x) d(Fθ0 −Gθ0)(x) =
∫ •

kG
n (x) dFθ0(x)

=
Gθ0(k

G
n )− Fθ0(k

G
n )

gθ0(kG
n )

= A1)(0),

as it is required in (3.5) and (3.4).

5.2 Location-scale families

In some situations, the distribution of X depends not only on the parameter
θ being tested but also on certain additional nuisance parameter, as it
happens with the location and scale families.

In the context of robustness for hypotheses testing, Garćıa-Pérez (1993,
1996) analysed this problem considering the tail ordering <t defined by
Loh (1984) for which, if F <t G and we match the distributions at the
location parameter, i.e., fθ0(θ0) = gθ0(θ0), it is (if α < 0′5) kF

n ≤ kG
n and

Fθ0(k
G
n ) ≥ Gθ0(k

G
n ), so the first-order VOM approximation

kF
n ' kG

n −
(
Fθ0(k

G
n )−Gθ0(k

G
n )

)
/gθ0(k

G
n )

shows explicitly the quality of the approximation: As G approaches to F ,
the right term approaches to kF

n .

By this reason, when there exists an additional nuisance parameter, we
shall match the densities as before.

Example 5.1 (One sample median test). Let us test H0 : θ = θ0

against H1 : θ > θ0, using the one sample median test

ϕ(M) =
{

1 if M > kF
n

0 otherwise.

If we suppose a normal distribution Φθ ≡ N(θ, σ) as model for X, we
have, as exact critical value

kΦ
n = θ0 + σ Φ−1(B−1(1− α)),



Von Mises Approximation of theCritical Value of a Test 399

where Φ is, throughout this paper, the standard normal cumulative distri-
bution function and B the distribution function of a beta β((n+1)/2, (n+
1)/2).

Thus, using this normal distribution as the pivotal distribution, the
first-order VOM approximation for the critical value is

kF
n ' kΦ

n +
(
Φθ0(k

Φ
n )− Fθ0(k

Φ
n )

)
/φθ0(k

Φ
n )

= kΦ
n +

(
B−1(1− α)− Fθ0(k

Φ
n )

)
/φθ0(k

Φ
n ).

If Fθ0 is a distribution model for which it is possible to obtain the
quantiles, the exact critical value is

kF
n = F−1

θ0
(B−1(1− α)).

Finally, using the asymptotic normality of the M -estimator sample me-
dian M , i.e., the fact that

√
n(M − θ0) −→ N

(
0 ,

1
2 fθ0(θ0)

)
,

the normal approximation of the critical value will be

kF
n ' θ0 +

Φ−1(1− α)√
n

1
2 fθ0(θ0)

.

For instance, if Fθ0 is a logistic distribution L(θ0, 1), since the normal
distribution is close to it (with respect to the tail ordering <t) we shall
choose as pivotal distribution a N(θ0, σ) where σ is obtained from the side
condition

fθ0(θ0) =
1
4

= φθ0(θ0) =
1

σ
√

2π

i.e., σ =
√

2/π. Thus, for testing H0 : θ = 0 against H1 : θ > 0, the exact
critical value is

kF
n = F−1

0 (B−1(1− α)),

the asymptotic normal approximation gives

kF
n ' Φ−1(1− α)

2√
n
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and the first-order VOM approximation states that

kF
n ' kΦ

n +
B−1(1− α)− F0(kΦ

n )
φ0(kΦ

n )
,

where kΦ
n = 4Φ−1(B−1(1 − α))/

√
2π and φ0 is the density of a

N(0, 4/
√

2π). Table 1 shows, for different significance levels and a sam-
ple size n = 1, the critical values (exact, first-order VOM approximation
and asymptotic normal approximation), and the relative errors in percent-
age for the first-order VOM approximation and for the asymptotic normal
approximation.

critical values relative errors
α exact VOM normal VOM normal

0.005 5.2933 5.3394 5.1517 0.8709 2.6760
0.010 4.5951 4.5409 4.6527 1.1800 1.2530
0.025 3.6636 3.5913 3.9199 1.9726 6.9977
0.050 2.9444 2.8965 3.2897 1.6886 11.7261
0.100 2.1972 2.1774 2.5631 0.9030 16.6518
0.150 1.7346 1.7263 2.0729 0.4769 19.5011

Table 1: Critical values and relative errors of the first-order VOM approximation

and the usual asymptotic normal approximation. n = 1

Figure 1 shows these relative errors for 0 < α < 0′5. The dotted line is
for the first-order VOM approximation and the solid line for the asymptotic
normal approximation. We see that the first one is very low (almost zero)
and lower than the normal one except for some very low significance levels
where the difference between both approximations is negligible.

Table 2 and Figure 2 show the values and the same conclusions for
n = 3. As far as n increases, the first-order VOM approximation is even
better, converging, when n goes to ∞, to the exact value.

6 Saddlepoint approximation

In some situations, the tail probability of the test statistic is too compli-
cated to obtain the TAIF exactly. Here we shall use the Lugannani and Rice
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n=1
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Figure 1: Relative errors of the first-order VOM approximation (dotted line) and

the usual asymptotic normal approximation (solid line)

critical values relative errors
α exact VOM normal VOM normal

0.005 3.1422 3.0863 2.9743 1.7772 5.3427
0.010 2.7712 2.7302 2.6862 1.4760 3.0643
0.025 2.2622 2.2403 2.2632 0.9687 0.0414
0.050 1.8545 1.8437 1.8993 0.5777 2.4188
0.100 1.4128 1.4092 1.4798 0.2527 4.7464
0.150 1.1287 1.1274 1.1968 0.1186 6.0315

Table 2: Critical values and relative errors of the first-order VOM approximation

and the usual asymptotic normal approximation. n = 3

(1980) formula to obtain, first, a saddlepoint approximation to the TAIF
of the M -statistic and finally to the critical value kF

n this result except for
the paper by Maesono and Penev (1998), is one of the first saddlepoint
approximations to the critical value of a test (i.e., to the quantile of the
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n=3
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Figure 2: Relative errors of the first-order VOM approximation (dotted line) and

the usual asymptotic normal approximation (solid line)

distribution of a statistic).

Let us denote by K(λ, t) the function

K(λ, t) = log
∫ +∞

−∞
eλψ(y,t) dGθ0(y).

By the Lugannani and Rice (1980) formula (see Daniels, 1983) it is

PGθ0
{Tn > t} = 1− Φ(s) + φ(s)

[
1
r
− 1

s
+ O(n−3/2)

]
, (6.1)

where s and r are the functionals

s =
√
−2nK(z0, t) :=

√
n s1,

r = z0

√
nK ′′(z0, t) :=

√
n r1,

where K ′′(λ, t) denotes the second partial derivative of K(λ, t) with respect
to the first argument, and z0 is the saddlepoint, i.e., the solution of the
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equation

K ′(z0, t) =
∫ +∞

−∞
ez0ψ(y,t) ψ(y, t) dGθ0(y) = 0, (6.2)

which depends on Gθ0 ; the same happens with the functionals K, s and r.

Using a dot over a generic functional T to represent its influence func-
tion,

•
T=

∂

∂ε
T (Gε,x)

∣∣∣∣
ε=0

,

the saddlepoint approximation to the TAIF, from (6.1),

TAIF(x; t; Tn, Gθ0) =
∂

∂ε
PGε,x;θ0

{Tn > t}
∣∣∣∣
ε=0

=
φ(s)
r1

{
−s1

•
s1 n1/2 −

•
r1

r1
n−1/2 +

•
s1 r1

s2
1

n−1/2

}
+ O(n−1/2)

=
φ(s)
r1





•
K n1/2+


−

•
z0

z0
−

•
K ′′

2K ′′ −
•
K z0

√
K ′′

(−2K)3/2


n−1/2



+O(n−1/2). (6.3)

From (6.2) we have, after contaminating z0 and Gθ0 ,

•
z0= − ez0ψ(x,t)ψ(x, t)∫

ψ2(y, t) ez0ψ(y,t) dGθ0(y)

and
•
K =

∂

∂ε
log

∫
exp {z0(Gε,x;θ0) ψ(y, t)} dGε,x;θ0(y)

∣∣∣∣
ε=0

=
∂

∂ε
log

{
(1− ε)

∫
exp {z0(Gε,x;θ0) ψ(y, t)} dGθ0(y)

+ ε ez0(Gε,x;θ0
)ψ(x,t)

}∣∣∣
ε=0

=
ez0ψ(x,t)

∫
ez0ψ(y,t)dGθ0(y)

− 1.

Finally, since

K ′′(z0, t) =
∫

ψ2(y, t) ez0ψ(y,t) dGθ0(y)∫
ez0ψ(y,t) dGθ0(y)

,
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it will be
•

K ′′=

ez0ψ(x,t)

{
ψ2(x, t)∫
ez0ψdGθ0

− ψ(x, t)
∫

ψ3ez0ψdGθ0

[
∫

ez0ψdGθ0 ][
∫

ψ2ez0ψdGθ0 ]
−

∫
ψ2ez0ψdGθ0

[
∫

ez0ψdGθ0 ]2

}
.

Then, replacing
•
z0,

•
K and

•
K ′′ in (6.3) we obtain the saddlepoint ap-

proximation to the TAIF that, if we consider only the terms of order n1/2,
will be, at t = kG

n ,

TAIF(x; kG
n ;Tn, Gθ0) =

φ(s)
r1

n1/2

(
ez0ψ(x,kG

n )

∫
ez0ψ(y,kG

n ) dGθ0(y)
− 1

)
+ O(n−1/2).

Also in Daniels (1983) we find a saddlepoint approximation of the den-
sity function that, with the notation used here, is

gn;θ0(k
G
n ) =

(
n

2πK ′′(z0, kG
n )

)1/2
(
−K(1)(z0, k

G
n )

z0

)
exp{nK(z0, k

G
n )} (

1 + O(n−1)
)
,

where

K(1)(z0, k
G
n ) =

∂

∂t
K(z0, t)

∣∣∣∣
t=kG

n

.

Thus, after some simplifications, the saddlepoint approximation to the
influence function of the critical value is

•
kG

n (x) =
TAIF(x; kG

n ; Tn, Gθ0)
gn;θ0(kG

n )

' −ez0ψ(x,kG
n ) +

∫
ez0ψ(y,kG

n ) dGθ0(y)
z0

∫
ez0ψ(y,kG

n ) ψ′(y, kG
n ) dGθ0(y)

,

where

ψ′(y, kG
n ) =

∂

∂t
ψ(y, t)

∣∣∣∣
t=kG

n

.

Finally, the saddlepoint approximation of the VOM approximation
(VOM+SAD approximation in the sequel) of the critical value of a M -test
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will be (denoting the saddlepoint by zG
0 to remark that it is the solution

with respect the distribution Gθ0),

kF
n ' kG

n +
∫ •

kG
n (x)dFθ0(x)

' kG
n +

− ∫
ezG

0 ψ(x,kG
n ) dFθ0(x) +

∫
ezG

0 ψ(y,kG
n ) dGθ0(y)

zG
0

∫
ezG

0 ψ(y,kG
n ) ψ′(y, kG

n ) dGθ0(y)
, (6.4)

where Gθ0 is a distribution close to Fθ0 in order to obtain a better ap-
proximation. In robustness studies, the distribution G will usually be the
normal distribution (for which we know the critical value kG

n ) and F a slight
deviation from this classical model.

Example 6.1 (Mean test). Let us consider the mean test for testing
H0 : θ = θ0 against H1 : θ > θ0, using a sample from the random variable
X with distribution function Fθ, defined by

ϕ(x) =
{

1 if x > kF
n

0 otherwise,

where x is the sample mean and kF
n is defined through

Fn;θ0(k
F
n ) = Pθ0

{
x ≤ kF

n

}
= 1− α.

If we choose, as pivotal distribution G, a normal Φθ ≡ N(θ, σ) where σ
is known and θ unknown, the pivotal critical value is the usual

kG
n ≡ kΦ

n = θ0 + zα
σ√
n

.

Because x is an M -estimator with ψ-function ψ(y, t) = y − t, it is

ψ′(y, kΦ
n ) =

∂

∂t
ψ(y, t)

∣∣∣∣
t=kΦ

n

= −1,

and Equation (6.2), in this case is
∫ +∞

−∞
ezΦ

0 (y−kΦ
n ) (y − kΦ

n ) dΦθ0(y) = 0,
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from which we obtain the saddlepoint

zΦ
0 =

kΦ
n − θ0

σ2
=

zα

σ
√

n
.

Since it is
∫

ezΦ
0 ψ(y,kΦ

n ) dΦθ0(y) = exp
{
− 1

2σ2
(kΦ

n − θ0)2
}

,

from (6.4) we have

kF
n ' θ0 +

σzα√
n
− σ

√
n

zα

(
1− exp

{
− z2

α

2n
− zαθ0

σ
√

n

} ∫
ezαx/(σ

√
n) dFθ0(x)

)
.

(6.5)

The approximation (6.5) has numerous applications (even in goodness-
of-fit tests; see Garćıa-Pérez, 2000).

Let us suppose now that the distribution Fθ of X is the contaminated
normal

Fθ(y) = (1− ε)Φθ,σ(y) + εΦθ,
√

kσ(y).

The contaminated critical value, i.e., kF
n , can be calculated from (6.5)

obtaining

kF
n ' θ0 +

σzα√
n
− σ

√
n

zα
ε

(
1− ez2

α(k−1)/(2n)
)

, (6.6)

from which we see the effect (for finite sample sizes) on the traditional
critical value kΦ

n = θ0 + zασ/
√

n, of a proportion ε of contaminated data
in the sample coming from a normal distribution with variance k2σ2: If
k > 1, it is 1 − ez2

α(k−1)/(2n) < 0 and kF
n > kΦ

n , increasing the critical
value a contamination with bigger variance. On the contrary, if k < 1 ,
it is 1 − ez2

α(k−1)/(2n) > 0 and kF
n < kΦ

n , decreasing the critical value a
contamination with smaller variance.

This agrees with the known fact that, under the contaminated model
Fθ, the variance of x is

σ2

n
(1 + ε(k − 1)),

i.e., bigger (smaller) than the variance of x without contamination if k > 1
(k < 1).
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Example 6.2 (Variance test). For testing H0 : σ = σ0 against H1 :
σ > σ0 under a normal model, i.e., if X follows a normal distribution
Φµ,σ ≡ N(µ, σ) where µ is known and σ unknown, we use the test

ϕ(X1, ..., Xn) =





1 if
1
n

n∑

i=1

(Xi − µ)2 > kF
n

0 otherwise,

where the (pivotal) critical value is

nkF
n

σ2
0

= χ2
n;α.
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Figure 3: Simulation of the relative errors with a contaminated normal model and

n = 4

If we consider, again, a contaminated normal distribution,

Fθ(y) = (1− ε) Φµ,σ(y) + εΦµ,
√

kσ(y),
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the VOM+SAD approximation of the critical value is

nkF
n

σ2
0

' χ2
n;α +

2nχ2
n;α

χ2
n;α − n

ε

[√
n

χ2
n;α (1− k) + k n

− 1

]
,

from which we see the same effect as before, on the classical critical value,
of a proportion ε of contaminated data in the sample: if k > 1 it is

√
n/(χ2

n;α (1− k) + k n)− 1 > 0.

6.1 Simulation results

We conclude the section evaluating the accuracy of the VOM+SAD ap-
proximation of the critical value (6.6), computing the relative errors for
different significance levels (alfa in the figures), considering as model, first,
the contaminated normal 0.9N(2, 1) + 0.1N(2,

√
1.5) and a sample size

n = 4, (Figure 3), and then, the contaminated normal 0.95N(2, 1) +
0.05 N(2,

√
3) and a sample size n = 10 (Figure 4). In both situations the

exact critical value is simulated using 10.000 replications.

From these simulations we see the great accuracy of the approximations.
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