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VON NEUMANN’S COMMENTS

ABOUT EXISTENCE AND UNIQUENESS

FOR THE INITIAL-BOUNDARY VALUE PROBLEM

IN GAS DYNAMICS

DENIS SERRE

The context is that of a conference, Problems of Cosmical Aerodynamics, held in
Paris, France, on August 16–19, 1949. It was organized at the initiative of the newly
founded IUTAM1 and of the IAU2. It gathered fifty-two scientists, among which
there were thirty-four astronomers and eighteen physicists or fluid mechanicists.
The chairs were J. M. Burgers for IUTAM and H. C. van de Hulst for IAU.
Among the participants were W. Heisenberg, J. H. Oort, E. Schatzman, T.

von Kármán, C. F. von Weizsäcker and, of course, J. von Neumann. G. I.

Taylor could not attend the conference because of sickness.
The conference was managed in a rather informal style, the program being de-

cided during the first day, a little bit like our Oberwolfach workshops. Discussion
sessions happened every day in the afternoon. I wish to comment here on the session
chaired by von Neumann, devoted to the Existence and uniqueness or multiplic-
ity of solutions of the aerodynamical equations. The records of the discussion are
reprinted in this issue after these comments. They are taken from pp. 75–85 of the
conference proceedings, published by the Central Air Documents Office, Dayton
(Ohio), 1951.

Instead of a discussion, the session was actually a long monologue by von Neu-

mann, after which he apologize(s) for having taken up so much of the limited time.3

He then answers the questions of a handful of scientists. The session ends with a
comment by Burgers about the consequences of this discussion for astronomical
problems.

In order to make the context as clear as possible, it is necessary to recall that
during WWII, von Neumann had been involved in the Manhattan Project, ded-
icated to the construction of the American nuclear bomb, while Heisenberg led
the German nuclear weapon program, to which Weizsäcker collaborated. This
was the origin of their common, though independent, interest in fluid mechanics
and shock waves. However, the 1949 conference had a peaceful target, and the
conversations remained courteous. In addition, Germany was no longer a threat,
thus it became meaningful to involve German scientists in such a conference. The
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140 DENIS SERRE

situation was the opposite with the USSR, as the Cold War had begun immedi-
ately after victory. This must be the reason for the lack of Eastern scientists in
this meeting, despite the quality of the Soviet research, especially in physics and
astrophysics.

The discussion is about models for fluid mechanics, mostly the Euler system.
Since the latter does not appear explicitly in the records, I recall it for the comfort
of the readers. It governs the evolution of the mass density ρ, the fluid velocity
�u = (u1, . . . , ud) and the specific internal energy e. These unknowns are functions
of the time t and the space variables (x1, . . . , xd). The space dimension d equals 3 in
practical applications. The equations express the conservation of mass, momentum
and total energy:

∂ρ

∂t
+ divx(ρ�u) = 0,(1)

∂ρuj

∂t
+ divx(ρuj�u) +

∂p

∂xj
= 0, ∀j = 1, . . . , d,(2)

∂

∂t

(
1

2
ρ|�u|2 + ρe

)
+ divx

(
1

2
ρ|�u|2 + ρe+ p

)
�u = 0.(3)

The auxiliary quantity p, the pressure of the fluid, is a given function of the internal
variables (ρ, e). With the chain rule, a combination of the equations above yields a
transport equation

(4)

(
∂

∂t
+ �u · ∇x

)
s = 0,

where s = s(ρ, e), the entropy of the fluid, is a state function obeying the differential
equation (

p
∂

∂e
+ ρ2

∂

∂ρ

)
s = 0.

Equation (4) suggests that if

x �→ s(ρ(x, 0), e(x, 0))

is a constant, then s(ρ(x, t), e(x, t)) is a constant too. This thought was known to
be too näıve in 1949, as we shall see below. When s is taken as a constant, then
(3) is formally a consequence of (1,2); we speak of an “isentropic flow”.

The equations (1)–(3) have the general form of “conservation laws” div(x,t)Qα =
0 for α = 1, . . . , d+2. It is easy to consider discontinuous solutions, using the inte-
gral form (Green’s formula). Discontinuities obey to jump conditions: the normal
component of the vector field Qα is continuous. We remark that a combination of
(1) and (4) yields another conservation law,

(5)
∂ρs

∂t
+ divx(ρs�u) = 0.

The main concern of von Neumann derives from the lack of existence and
uniqueness theorems to either the Cauchy problem or the initial-boundary value
problem (IVBP) for (1)–(3). They have never been demonstrated and are probably
not true in their obvious form.

His second paragraph begins with an homage to B. Riemann, through a sen-
tence that deserves an explanation: In this case [namely an isentropic flow in one
space dimension] . . .Riemann proved that there are no discontinuities. Twenty-first
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century scientists would disagree at first sight, since we know that for a differen-
tiable initial data, a differentiable solution exists in a certain time interval, but
that discontinuities develop in finite time, in general. What von Neumann actu-
ally means is that Riemann proved that, although for a classical solution of the
full Euler equations the entropy may be a constant, the latter cannot be so if this
solution experiences a discontinuity. The reason is that the jump conditions for
(1)–(3) across the discontinuity locus are not compatible if s is constant. In other
words, the jump conditions for (1)–(3) and (5) are not compatible.

Von Neumann recalls the lack of a solution in general. Again, this is a little bit
difficult to understand for us, as we immediately think of “weak entropy solution”
when hearing the word “solution”. But von Neumann has in mind a global-in-
time classical solution. This becomes clear in the last two sentences. Because
the audience consisted mostly of astronomers who were not acquainted with shock
theory, he recalls the impossibility for the entropy to decay in a classical solution.
This, together with the apparent reversibility4 of the system, would imply the
constancy of the entropy along the particle path, raising ultimately an obstruction
to the continuation of the classical solution. Whence the necessity of considering
discontinuous ones.

Next, von Neumann recalls the other astonishing facet of gas dynamics: if we
permit discontinuities in an attempt to recover the global existence of solutions,
then the nonexistence is turned into a nonuniqueness. This motivates the second
principle of thermodynamics, according to which the entropy may not decrease
along a particle path. Its role is to select the physically admissible discontinuities
or, equivalently, to put a small amount of irreversibility in the Euler system. This
is a beautiful example of how the reversible system of mechanics can yield a de-
scription of an irreversible piece of nature. The first works making this sentence a
theory came a few years later, with the celebrated papers by P. Lax (1954) and S.

Kruzkhov (1970). With a certain amount of optimism, which is the mark of great
minds, von Neumann anticipates There probably exists a set of conditions under
which one and only one solution exists [. . . ] However [. . . ], we have to be guided
almost entirely by physical intuition in searching for it. The first part of this quo-
tation is still the subject of intensive research, the case of one space variable being
now well understood. The existence part was proved by J. Glimm (1965), precisely
by a deep use of physical intuition,5 while the uniqueness and continuous depen-
dence upon the data are due to A. Bressan and his coworkers (1995–2000). These
great achievements leave however a bitter taste in the mouth, as they are limited to
solutions and data of bounded variations in one space dimension. J. Rauch (1986)
showed that this functional framework is not adapted to the multidimensional con-
text. In addition, existence is known only when the total variation of the initial
data is “small”. An alternate existence result, valid for arbitrarily large initial data,
was obtained by R. DiPerna (1983), still in one dimension, with perhaps more
mathematical insight, but the lack of regularity of such solutions has not permitted
yet the establishment of a uniqueness theorem6 in the same functional framework.

4Invariance under the transformation (x, t, ρ, �u, e) �→ (x,−t, ρ,−�u, e).
5The so-called “potential of interaction”, crucial in the a priori estimates, is primarily a physical

concept.
6To paraphrase von Neumann, such a uniqueness result is probably not true.
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In addition, it applies to isentropic flows only, which are unphysical in the presence
of shock waves, as mentioned above.

Mathematically, the second principle of thermodynamics amounts to replacing
(5) by an inequality in the sense of distributions:

(6)
∂ρs

∂t
+ divx(ρs�u) ≥ 0.

This is possible because, when dropping the differentiability, (5) is no longer a con-
sequence7 of (1)–(3). This formulation was unclear at the time of the conference,8

and von Neumann said (on page 77 of the original), There is no mathematical
reason at all why you should not use a solution of that type [with an expansive
discontinuity], but it will lead to a decrease of entropy. Condition (6) is a case of
the so-called “Lax entropy inequality”, which occurs in the more general context
of hyperbolic systems of conservation laws.

The next paragraph is a very interesting discussion about the relevance of shock
waves, which are admissible discontinuities. First of all, von Neumann recalls
the works by Rayleigh and G. I. Taylor (1910) and others about their internal
structure when viscosity and heat conductivity are taken in account.9 The existence
of such a structure, now called a “shock profile”, has become in the past few decades
an efficient admissibility criterion; it is in general more restrictive than the Lax
entropy inequality. At a smaller scale, the gas is even not at thermodynamical
equilibrium, and von Neumann observes accurately, in the first few mean free
paths, [. . . ] there is not a discontinuity at all, but a region where deviations from
the classical Maxwell–Boltzmann velocity distribution of the kinetic theory of gases
occur. The mathematical justification of this assertion is still incomplete.

The last question raised by von Neumann concerns the validity of the Euler
system in the presence of a vacuum (top of page 78). If we are in the expanding gas
[advancing into a vacuum] and approach the (theoretical) front, we will necessarily
come to regions where the mean free path is larger than the distance from the front.
In such regions one cannot use the hydrodynamical equations. This statement is the
matter of subsequent exchanges between von Neumann and several participants,
including Heisenberg.

To finish his long introduction, von Neumann mentions physical experiments
which confirm the exact solutions that can be derived analytically from the equa-
tions: the Riemann solution of the piston problem and the Prandtl–Meyer

expansion fan around a convex corner.

The discussion. The contributors have been H. W. Liepmann, G. Temple,

von Kármán, Heisenberg, Burgers and, of course, von Neumann himself.
Personally, I like von Kármán’s assessment: I don’t think that there is any

reason that if you put a problem in a form which has no physical meaning, there
shall not be two solutions. Somehow, it is a contraposition of E. Wigner’s com-
ment about the “unreasonable effectiveness of mathematics in the natural sciences”.
Applied mathematicians—including specialists of partial differential equations, of
probability, or of many other fields—should keep it in mind. von Kármán raises
doubts about the relevance of some mathematical problems, like shock reflection

7Because the chain rule is not available.
8Before the theory of distributions was popularized by L. Schwartz.
9With this completion, the Euler system becomes the Navier-Stokes-Fourier system.
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against an infinite wall or against a corner bounded by semi-infinite walls. von

Neumann insists about the nonuniqueness in shock reflection problems. He pre-
sumably thought of the regular reflection, where algebraic calculations provide a
weak reflection as well as a strong one; the former case only is observed in physical
experiments, whereas this selection has never been explained at an analytical level.
In the reviewer’s opinion, this is not really a nonuniqueness phenomenon for an
IBVP, since the strong reflection is only a local-in-space and time solution. In an
answer to Burgers’ suggestion to consider the shock reflection against a corner,
von Neumann is more cautious: In that case you assume that the state at the
time t = 0 is given and you ask whether there is or is not a unique continuation of
the solution at later times. The answer to this question in its full generality is not
known; there seem to be great many mathematical difficulties. The countless works
on this problem, while we still lack an answer, confirm von Neumann’s impression.
So far, the only existence result (G.-Q. Chen and M. Feldman, 2005) concerns
the interesting but unphysical irrotational case.

Another important comment is made by Heisenberg about the role played by
the boundary conditions in the selection process. This is reminiscent of the bound-
ary layer phenomenon, which is still poorly understood. von Neumann answers:
The boundary layer theory for a fluid of low viscosity certainly furnishes a mon-
umental warning. The naive and yet prima facie seemingly reasonable procedure
would be to apply the ordinary equations of the ideal fluid and then to expect that
viscosity will somehow take care of itself in a narrow region along the wall. We
have learned that this procedure may lead to great errors; a complete theory of the
boundary layer may give you completely different conditions also for the flow in the
bulk of the field. It is possible that the same discipline will be necessary for the
boundary with a vacuum.

As a conclusion, Burgers, who I recall was one of the organizers, observes: the
discussion of this morning [...] has centered about the properties of certain hydro-
or aerodynamical equations and about certain solutions. It may be useful to ask
ourselves what does this mean for astronomy.

Conclusion. Sixty years after, we read these records as if they had been written
a decade ago. In a few pages, all the important questions are raised and examples
are given, which still serve as paradigms. The main conclusion is still valid: what is
important is the real world, that is physics, but it can be explained only in mathe-
matical terms. We need a rigorous mathematical theory of aerodynamical flows, in
agreement with physical experiments. While flows with a reasonable regularity are
well described by continuum equations (Euler or Navier-Stokes-Fourier, depending
on scale), we need to incorporate additional ingredients to render a correct account
of shock waves, boundary layers and vaccum, at least. It is fascinating that these
questions are still widely open, even if our understanding is much better now than
60 years ago.
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