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Voronoi-Based Coverage Control of Pan/Tilt/Zoom Camera Networks

Omur Arslan, Hancheng Min, and Daniel E. Koditschek

Abstract— A challenge of pan/tilt/zoom (PTZ) camera net-
works for efficient and flexible visual monitoring is automated
active network reconfiguration in response to environmental
stimuli. In this paper, given an event/activity distribution over
a convex environment, we propose a new provably correct
reactive coverage control algorithm for PTZ camera networks
that continuously (re)configures camera orientations and zoom
levels (i.e., angles of view) in order to locally maximize their
total coverage quality. Our construction is based on careful
modeling of visual sensing quality that is consistent with the
physical nature of cameras, and we introduce a new notion of
conic Voronoi diagrams, based on our sensing quality measures,
to solve the camera network allocation problem: that is, to de-
termine where each camera should focus in its field of view given
all the other cameras’ configurations. Accordingly, we design
simple greedy gradient algorithms for both continuous- and
discrete-time first-order PTZ camera dynamics that asymptoti-
cally converge a locally optimal coverage configuration. Finally,
we provide numerical and experimental evidence demonstrating
the effectiveness of the proposed coverage algorithms.

I. INTRODUCTION

With decreasing hardware and setup costs, (controllable)

cameras have been used more than ever for situational aware-

ness, security, surveillance and environmental monitoring.

However, increasing camera network size and vast amount

of collected data make camera control and data interpretation

an impossibily difficult task for a human operator and thus

necessitates automated camera network reconfiguration and

data mining methods for increased efficiency, flexibility

and functionality [1], [2]. In this paper, assuming a given

event/activity distribution over a known convex environ-

ment, we consider the automatic reconfiguration problem

of pan/tilt/zoom (PTZ) camera networks, and we propose

a new simple greedy coverage control algorithm for a group

of PTZ cameras in order to increase their collective coverage

performance.

A. Motivation and Prior Literature

Finding a globally optimal coverage configuration of a

sensor network is usually very difficult. For example, the art

gallery problem [3] and many related facility localization

(e.g., p-center and p-median) problems [4] are known to

be NP hard. Hence, to mitigate this complexity, greedy

gradient methods, usually combined with an expectation-

maximization strategy, are utilized for finding a locally

optimal sensor network configuration.
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Fig. 1. Sensor allocation in camera networks via conic Voronoi diagrams,
which determines where each camera should focus in its field of view given
all the other cameras’ configurations: (left) a camera network configuration,
(middle) its sensor allocation based on perspective quality in (1), (right) its
sensor allocation based on a multiplicative combination of perspective and
resolution qualities in (4a) (with parameters R = 0, κ = 0 and σ = 5).

A widely used class of such gradient methods leverages

Voronoi diagrams to decouple the problems of optimal sen-

sory task assignment and sensor configuration optimization,

and finds a locally optimal coverage configuration by fol-

lowing a (continuous) expectation-maximization approach.

For example, consider a mobile sensor network consisting of

isotropic sensors whose sensing cost of an event is given by

the (squared) Euclidean distance between the sensor position

and the event location. For such a mobile isotropic sensor

network, a simple coverage strategy that continuously steers

each sensor towards its associated Voronoi centroid is known

to asymptotically converge to a locally optimal coverage

configuration [5]. Our construction is inspired by this “move-

to-centroid” coverage control law of mobile isotropic sensor

networks [5], and has similar qualitative properties and an

interpretation (i.e., we introduce new “move-to-centroidal-

perspective” and “move-to-centroidal-angle-of-view” laws)

for PTZ camera networks for controlling camera orientations

and angles of view.

Extensions of Voronoi-based coverage control algorithms

of mobile isotropic sensor networks for anisotropic sensors

have received significant attention in the past literature in

order to address the role of sensor orientation in sensing

performance, because many physical sensors, such as cam-

eras, radars, acoustic and ultrasonic sensors, have such a di-

rectional performance dependency [6]–[8]. A straightforward

extension is to limit the standard Voronoi cell (constructed

based on the Euclidean metric) of an anisotropic sensor

to its directional (e.g., bounded conic) sensory footprint

while still assuming an isotropic sensing performance within

the sensory footprint [6]. A more elegant extension is to

find a homeomorphism that maps a directional (ellipsoidal

or bounded conic) sensory footprint to a circular sensory

footprint and use the associated pull-back metric of the

Euclidean metric to construct generalized Voronoi diagrams,

such as anisotropic [7] or directional [8] Voronoi diagrams.



Although, these extensions take into account the effect of

sensory orientation on sensing performance, such generic

sensor models are not descriptive enough to model phys-

ical operation principles (e.g. resolution constraints, lens

distortion) of cameras and performance limitations of com-

puter vision algorithms, which usually don’t have a simple

(monotonic) functional relation with the Euclidean metric

[9], [10]. As an alternative, in this paper we introduce a

new form of generalized Voronoi diagrams, called conic

Voronoi diagrams, based on accurate camera sensing quality

measures, to solve the sensor allocation problem in camera

networks, as illustrated in Fig. 1.

Finally, it also bears mentioning that most existing work on

coverage control of mobile (e.g., flying) cameras [11]–[13]

mainly concerns with optimal active camera placement and

simplifies the directionality issues of camera sensors by as-

suming a certain (e.g., downward facing) camera orientation.

More accurate and descriptive camera models are usually

employed in the design of probabilistic coverage algorithms,

based on joint detection probability [9], [14], [15] and Gaus-

sian mixture models [16], [17]. However, these probabilistic

methods are inherently centralized whereas Voronoi-based

methods usually offer distributed computation. To best of

our knowledge, this is the first work that shows how to

leverage accurate camera spatial sensing models in Voronoi-

based visual coverage settings. Our ultimate future goal is to

enable optimal orientation and zoom control in mobile (e.g.,

flying) PTZ camera networks for active visual monitoring.

B. Contributions and Organization of the Paper

This paper proposes a new simple reactive coverage

control algorithm for PTZ camera networks that continu-

ously (re)configures camera orientations and zoom levels

(i.e., angles of view) in order to maximize their collective

coverage of a given event/activity distribution over a known

convex environment. Our construction is based on newly

introduced accurate camera spatial sensing quality measures

that conform to the physical sensing (e.g., directionality,

field of view, and resolution) constraints of camera sensors

and limitations of visual sensing algorithms. Based on these

sensing quality measures, we propose a new notion of conic

Voronoi diagrams to determine optimal resource allocation

in camera networks. We derive greedy gradient methods, for

both continuous- and discrete-time first-order PTZ camera

dynamics, that asymptotically bring cameras to an optimal

coverage configuration where the total coverage quality of

the cameras is locally maximized.

The rest of the paper is organized as follows. Section

II presents coverage optimization of PTZ camera networks

based on a new class of camera spatial sensing quality mea-

sures. Section III constructs and analyzes coverage control

algorithms for continuous- and discrete-time PTZ camera

dynamics. In Section IV and Section V, we illustrate the

effectiveness of the proposed coverage algorithms using

numerical simulations and experimental results, respectively.

Section VI concludes with a summary of our contributions

and a brief discussion of future directions.

II. COVERAGE OPTIMIZATION OF PTZ CAMERAS

In this section, we first introduce a new class of spatial

sensing quality measures for PTZ cameras and present their

use in coverage optimization of PTZ camera networks. In

particular, we show that optimal sensor allocation is given by

conic Voronoi diagrams constructed based on these quality

measures, and we provide an explicit characterization of

locally optimal coverage configurations.

A. Spatial Sensing Models for PTZ Cameras

For ease of exposition, we consider an ideal pan/tilt/zoom

(PTZ) camera model, with a conic field of view in n ≥ 2
dimensional Euclidean space, whose configuration is spec-

ified by its fixed position p ∈ R
n, variable optical-axis

direction1 v ∈ S
n−1 and adjustable angle of view 2α ∈ (0, π)

(corresponding to changeable zoom level). A nice feature of

PTZ cameras is that they offer variable fields of view for op-

timizing their visual sensing performance. Thus, in order to

model the effect of camera orientation and angle of view (i.e.,

zoom level) on the camera’s spatial sensing performance, we

consider the following two quality measures:

1) Perspective Quality: A key factor determining the per-

formance of many visual detection, tracking, and localization

algorithms is view perspective. Visual perception quality is

known to usually deteriorate away from the optical axis of a

camera towards the boundary of its field of view because of

increased lens distortion, incomplete and nonpersistent visual

data [10]. Accordingly, we define the camera’s perspective

sensing quality of an event at location x ∈ R
n to be2

qpers (x) :=
1

1− cosα

(
(x−p)Tv
‖x−p‖ − cosα

)
, (1)

where ‖.‖ denotes the standard Euclidean norm, and .T

denotes the transpose operator. Note that the perspective

quality measure is normalized to yield values in the interval

[−1, 1], where a negative value corresponds to an event

location not being in the angle of view of the camera.

2) Resolution Quality: Similar to view perspective, the
performance of many computer vision algorithms depends
on the pixel density at which an event is observed by a
camera. If our cameras have a circular image sensor with
N ∈ N pixels along the diameter, then the pixel density
(resolution) r, in pixel per unit length3, of a visible event at
location x ∈ R

d is given by r = N
2α‖x−p‖ . Hence, the pixel

density of an event increases with decreasing angle of view
(i.e., zooming-in) and with decreasing relative distance to the
camera position [10]. However, a large value of pixel density
does not necessarily improve visual sensing performance,
because the event can be very close to the camera or the
zoom level can be very high, which might cause the event to
occupy a significant fraction of the camera image [9]. Thus,
assuming a desired sensing resolution r∗ > 0, as natural

1 Sn :=
{

x ∈ Rn
∣

∣ ‖x‖ = 1
}

is the (n − 1)-dimensional unit sphere
embedded in n-dimensional Euclidean space Rn. Moreover, R≥0 and R>0

denote the sets of nonnegative and positive real numbers, respectively.
2To resolve the indeterminacy, we set x

‖x‖
= 0 for x = 0.

3If the camera has a circular image sensor with N2 pixels, then the pixel
density (resolution) r, in pixel per unit area, of a visible event at location

x ∈ Rn is given by r = N2

πα2‖x−p‖
.



Fig. 2. Resolution quality distribution models: (left) Gaussian function

g (x) = exp
(

− x2

2σ2

)

, (right) beta function f (x) = xλ (1− λ (x− 1)).

candidates in Gaussian and beta functional forms, illustrated
in Fig. 2, one might consider the following unlimited- and
limited-range resolution quality measures for quantifying
sensing performance of an event at location x ∈ R

n, with
respect to the desired sensing depth N

2r∗α ,

Qres(x):= exp

(
−
(‖x−p‖− N

2r∗α )
2

2σ2

)
, (2a)

Q̂res(x):=
‖x− p‖λ

(
N

2r∗α

)λ+1

(
N

2r∗α
− λ

(
‖x−p‖ −

N

2r∗α

))
, (2b)

where σ > 0 and λ ≥ 0 are fixed scalar terms determining

the spatial variance around the desired depth N
2r∗α . Note

that Qres and Q̂res both take their maximum value of unity

at the desired sensing depth, i.e., when ‖x− p‖ = N
2r∗α .

Also observe that while the unlimited-range quality measure

Qres always returns a nonegative value, the limited-range

quality measure Q̂res is nonnegative if and only if ‖x− p‖ ≤
λ+1
λ

N
2r∗α , which defines its effective range.

Although the quality measures in (2) are very natural se-

lections with standard (Gaussian and beta) functional forms,

their high nonlinearity complicates the design and analysis

of gradient coverage algorithms for continuous- and discrete-

time camera dynamics: in particular, it is not straightforward

to explicit determine locally optimal coverage configurations

(i.e., critical points) of the resulting gradient fields, and one

needs to select a proper step-size to follow the resulting

gradient dynamics while ensuring the positive invariance of

half the camera’s angle of view α in the interval
(
0, π

2

)
.

To mitigate such technical issues, using the similarity of

monotonic properties of 1
α

and cosα over the interval
(
0, π

2

)
,

we define the following simplified unlimited- and limited-

range resolution quality measures for an event at x ∈ R
n,

qres (x) := cosκα exp

(
− (‖x−p‖−R)2

2σ2

)
, (3a)

q̂res (x) :=
‖x−p‖λ
Rλ+1

(
R cosα− λ

(
‖x−p‖ −R cosα

))
, (3b)

where R > 0 a fixed desired sensing range, and σ > 0, κ > 0
and λ ≥ 0 are fixed scalar parameters that model spatial

resolution variability. Note that qres is nonnegative and has a

maximum value of (cosα)
κ

when ‖x− p‖ = R, whereas

q̂res is nonnegative iff ‖x− p‖ ≤ λ+1
λ

R cosα and has a

maximum value of (cosα)
λ+1

when ‖x− p‖ = R cosα.

Hence, it is important to remark that the depth at which q̂res is

maximized depends on the camera’s angle of view (i.e., zoom

level) as it is the case in practice, but qres lacks modeling

of such a dependency. This makes q̂res a more accurate

spatial sensing model over qres, especially for cameras with

adjustable angle of view (i.e., zoom level).

Therefore, as illustrated in Fig. 3, the overall spatial

sensing quality of a camera can be quantified by using

a multiplicative combination of perspective and resolution

quality measures, in (1) and (3), respectively, as follows,

q (x) := qpers (x) qres (x) , (4a)

q̂ (x) := qpers (x) q̂res (x) . (4b)

Note that both perspective and resolution quality measures

yield a nonnegative value at a visible point x ∈ R
d. Hence,

the associated unlimited- and limited-range conic fields of

view of a PTZ camera are, respectively, given by

C :=
{
x∈R

n
∣∣∣qpers(x)≥0

}
=
{
x∈R

n
∣∣∣ (x−p)Tv

‖x−p‖ ≥cosα
}
, (5a)

Ĉ :=
{
x∈Rn

∣∣∣qpers(x) ≥ 0, qres(x) ≥ 0
}
, (5b)

=
{
x ∈ R

n
∣∣∣ (x−p)Tv

‖x−p‖ ≥cosα, ‖x−p‖ ≤ λ+1
λ

R cosα
}
.

Note that quality measure q is strictly positive in the interior

C̊ of its field of view cone C, and is zero on the boundary

∂C of its field of view, i.e., q (x) > 0 for any x ∈ C̊ and

q (x) = 0 for all x ∈ ∂C, and this likewise holds for q̂ and Ĉ.

B. Optimal Sensor Allocation in PTZ Camera Networks

We now introduce a use of the proposed sensing quality

measures for coverage optimization of PTZ camera networks.

Let W be a convex bounded environment in R
n and

φ : W → R≥0 be a priori known time-invariant event

distribution function that describes the probability of some

event taking place in W . Suppose m ∈ N identical4

PTZ cameras (i.e., they share the same fixed quality

measure parameters R, σ, λ and κ) placed at locations

p := (p1, p2, . . . , pm) ∈ (Rn)
m

with optical-axis directions

v := (v1, v2, . . . , vm) ∈
(
S
n−1
)m

and (halves the) angles of

view α := (α1, α2, . . . , αm) ∈
(
0, π

2

)m
. Further, let qi and

Ci denote ith camera’s (unlimited- or limited-range) spatial

sensing quality measure and field of view, respectively,

defined as in (4) and (5).

1) Coverage Objective: Following a standard resource
allocation approach widely used in facility localization [18],
[19] and quantization [20], [21], we assume that each camera
is assigned to observe events, distributed according to φ over
W , based on a partition5

P := {P1, P2, . . . , Pm} of W .
Accordingly, for a given PTZ camera network configuration,
to determine the coverage quality of sensor allocation parti-
tion P, we use the total spatial sensing quality of cameras,
denoted by H (P), as our utility function, defined as

H (P) :=
m∑

i=1

∫

Pi∩Ci

qi (x)φ (x) dx, (6)

which is evidently tightly bounded above as

H (P) ≤

∫

W∩
m⋃

i=1
Ci

max
i

qi (x)φ (x) dx, (7)

4This is only assumed for ease of presentation, our results can be directly
applicable to both homogeneous and heterogeneous PTZ camera networks.

5By a slight abuse of terminology, we intend the term “partition” of a set
to denote a collection of its subsets whose union returns itself and whose
elements have mutually disjoint interiors.



(a) (b) (c) (d) (e)

Fig. 3. Spatial sensing quality measures. (top)-(bottom) 30-60 degree angle of view. (a) Perspective quality in (1), (b) Unlimited-range resolution quality
in (3a), (c) Unlimited-range spatial sensing quality in (4a), (d) Limited-range resolution quality in (3b), (e) Limited-range spatial sensing quality in (4b).
The figures are generated using R = 6, κ = 3, σ = 2, λ = 2. Please also refer to the accompanying video for an animated demonstration.

where W ∩
⋃m

i=1 Ci is the visible part of W by the cameras.

Here, it is important to keep in mind that the quality measure

qi (and so the coverage objective H) is also a function of

camera position pi, optimal direction vi and angle of view

αi, see (1)-(4), and we prefer to suppress them throughout

the paper for ease of presentation.

2) Sensor Allocation via Conic Voronoi Diagrams: Thus,

it directly follows from (7) that, for a given camera network

configuration, the optimal camera allocation strategy is to as-

sign each event location to the camera with maximal sensing

performance. This defines a partition V := (V1, V2, . . . , Vm)
of the visible subset W ∩ ⋃m

i=1 Ci of W , based on the

camera’s field of view and sensing quality measures, as

Vi :=
{
x ∈ W ∩ Ci

∣∣∣qi (x) ≥ qj (x) ∀j 6= i
}
, (8)

which we refer to as the conic Voronoi diagram of W ,

because it has the standard form of a generalized Voronoi

diagram [18] whose generating objects are conic camera

fields of view and the associated quality measures. Note that,

since the quality measure qi in (4) is a continuous and smooth

function of event location x almost everywhere (the only

exception is for the events happening at the camera positions,

where the sensing quality is zero), the conic Voronoi cells

have continuous and piecewise smooth boundaries.
Consequently, given optimal camera allocation, our utility

function in (6) takes the following form

HV =
m∑

i=1

∫

Vi

qi (x)φ (x) dx. (9)

In the following subsection, assuming optimal sensor alloca-

tion, we continue with important characteristic properties of

locally optimal PTZ camera network configurations of HV.

C. Locally Optimal Coverage Configurations

Since the quality measures in (3) are zero at the boundary

of their respective fields of view in (5), i.e., qi (x) = 0 for

all x ∈ ∂Ci, we have:

Lemma 1 The partial derivatives of the utility function HV

in (9) with respect to the PTZ camera configuration variables
are given by

∂HV

∂vi

=

∫

Vi

∂qi (x)

∂vi

φ (x) dx,
∂HV

∂αi

=

∫

Vi

∂qi (x)

∂αi

φ (x) dx. (10)

Proof. It follows from the differentiation under the integral
sign [22] (also see [21][Lemma 6.1]) that

∂HV

∂vi

=

∫

Vi

∂qi(x)

∂vi

φ(x)dx +

m∑

j=1

∫

∂Vj

qj(x)φ(x) ẋ
Tnj(x)dx

︸ ︷︷ ︸
=0

, (11)

where ẋ denotes the change in the boundary point x∈ ∂Vj

due to the change in vi, and nj (x) is the unit outward normal

of ∂Vj at point x. Here, the second term is always zero,

because either x∈∂W where ẋ=0 or one of the following

cases holds at each boundary point x ∈
⋃m

j=1 ∂Vj \ ∂W :

i) if x 6∈ ∂Vi, then ẋ = 0.

ii) if x ∈ ∂Vi and x 6∈ ∂Vj for all j 6= i, then qi (x) = 0.

iii) if x ∈ ∂Vi ∩ ∂Vj for some j 6= i and x 6∈ ∂Vk for all

k 6= i and k 6=j, then qi(x)=qj(x) and ni(x)=−nj(x).
iv) Otherwise, x ∈ (∂Vi ∩ ∂Vj ∩ ∂Vk) \ ∂W for some i 6=

j 6= k and (∂Vi ∩ ∂Vj ∩ ∂Vk) \ ∂W has measure zero.

Using a similar argument, one can also verify (10) for ∂HV

∂αi
.

Thus, the result follows. �

1) Optimal PTZ Camera Configurations for Unlimited-

Range Visual Sensing: In the case of unlimited-range visual

sensing, defined as in (4a),

qi(x)=
cosκαi

1−cosαi

(
(x−pi)

Tv
‖x−pi‖

−cosαi

)
e−

(‖x−pi‖−R)2

2σ2 . (12)

the optimality of a PTZ camera configuration, as expressed
by the gradients in (10), is strongly influenced by cer-
tain key terms, derived from the mass density function

exp
(
− (‖x−pi‖−R)2

2σ2

)
φ (x), that we will now call out in

isolation and refer to henceforth by the terms, respectively,
mass, centroidal perspective and centroidal aperture of the
camera’s Voronoi cell, Vi, as follows:

µVi
:=

∫

Vi

e
− (‖x−pi‖−R)2

2σ2 φ (x) dx, (13a)

vVi
:=

1

µVi

∫

Vi

x−pi

‖x−pi‖
e
− (‖x−pi‖−R)2

2σ2 φ (x) dx, (13b)

δVi
:= 1− vVi

Tvi. (13c)

If V̊i = ∅ (which corresponds to a redundant camera), then

we set µVi
= 0, vVi

= (1 − ǫ)vi and so δVi
= ǫ, where

ǫ ∈ (0, 1) is a small fixed value that defines a small angle



of view below in (15), corresponding to zooming-in to some

default view angle. Otherwise (i.e., V̊i 6=∅), we always have

‖vVi
‖∈(0, 1) and δVi

∈(0, 1) for αi ∈
(
0, π

2

)
.

With these observations and the cell-specific parameters
now in hand in (13), we can rewrite closed form expressions
for the gradients in (10) as,

∂HV

∂vi

= µVi

cosκ αi

1− cosαi

vVi
, (14a)

∂HV

∂αi

= −µVi

tanαi cos
κ αi

(1−cosαi)
2

(
κ (1−cosαi)

2

−
(
(κ−1)(1−cosαi) + 1

)
δVi

)
. (14b)

We also find it convenient to define the camera’s centroidal

angle of view to be

αVi
:= arccos

(
1− (κ−1)δVi

+
√
(κ−1)2δVi

2+4κδVi

2κ

)
, (15)

which is the only relevant zero of (14b) for αi ∈
(
0, π

2

)
.

Note that αVi
∈
(
0, π

2

)
, because the argument of arccos in

(15) is in (0, 1) for δVi
∈ (0, 1).

Thus, it follows from (14a) and (14b) that a locally optimal

PTZ camera network configuration satisfies:

Theorem 1 For unlimited-range visual sensing (12), a PTZ

camera network configuration is locally optimal in the sense

of HV in (9) if and only if all cameras look towards their

centroidal perspectives with centroidal angles of view, i.e.,

vi = vVi
/‖vVi

‖, and αi = αVi
, ∀i = 1, 2, . . . ,m (16)

Proof. The result trivially holds for redundant cameras with

V̊i = ∅. Otherwise (i.e., V̊i 6= ∅), since vi ∈ S
n−1, a

valid infinitesimal change in the camera’s optical direction

vi is specified by a tangent vector u ∈ Tvi
S
n−1 from

the tangent space Tvi
S
n−1 of S

n−1 at point vi, and the

associated directional change of HV along direction u is

given by ∂HV

∂vi
u. Hence, since vi

Tu = 0 for all u ∈ Tvi
S
n−1,

it follows from (14a) that at a locally optimal configuration

one should have vi =
vVi

‖vVi‖ for αi ∈
(
0, π

2

)
. Similarly,

for a given camera perspective vi, by construction (15), the

centroidal angle of view αVi
is the only relevant zero of

(14b) for αi ∈
(
0, π

2

)
where HV is locally maximal. Thus,

the result follows. �

2) Optimal PTZ Camera Configurations for Limited-

Range Visual Sensing: In the case of limited-range visual

sensing, as defined in (4b), i.e.,

qi(x)=
λ+1

1−cosαi

(
(x−pi)

Tvi

‖x−pi‖
−cosαi

)(
cosαi− λ‖x−pi‖

(λ+1)R

)
‖x−pi‖

λ

Rλ

(17)

we redefine the mass, centroidal perspective and centroidal
aperture of a camera’s Voronoi cell, Vi, respectively, as

µ̂Vi
:=

∫

Vi

‖x− pi‖
λ

Rλ
φ (x) dx , (18a)

v̂Vi
:= 1

µ̂Vi

∫

Vi

x−pi

‖x−pi‖

(
cosαi−

λ‖x−pi‖
(λ+1)R

)
‖x−pi‖

λ

Rλ φ(x) dx , (18b)

δ̂Vi
:= 1

µ̂Vi

∫

Vi

(
1−

(x−pi)
Tvi

‖x−pi‖

)(
1−

λ‖x−pi‖
(λ+1)R

)
‖x−pi‖

λ

Rλ φ(x)dx.(18c)

If V̊i = ∅, then we set µ̂Vi
= 0, v̂Vi

= (1− ǫ)vi and δ̂Vi
=

ǫ, where ǫ ∈ (0, 1) is a small fixed scalar. Otherwise (i.e.,

V̊i 6= ∅), we have 0 < ‖v̂Vi
‖ < 1 and 0 < δ̂Vi

< 1, because
of the effective sensing range limit, i.e., ‖x− pi‖ ≤ λ+1

λ
R

for any x ∈ Vi ⊆ Ĉi, where Ĉi is the camera’s field of view
defined as in (5b). Accordingly, the partial derivatives of HV

with respect to camera direction and angle of view, in (10),
can be rewritten as

∂HV

∂vi

= µ̂Vi

λ+ 1

1− cosαi

v̂Vi
, (19a)

∂HV

∂αi

=−µ̂Vi

sinαi

(1− cosαi)
2

(
(1− cosαi)

2 − δ̂Vi

)
, (19b)

and so the associated centroidal angle of view is redefined as

α̂Vi
:= arccos

(
1−

√
δ̂Vi

)
. (20)

Therefore, similar to Theorem 1, one can conclude that:

Theorem 2 For limited-range visual sensing in (17), at a

locally optimal PTZ camera coverage configuration of HV in

(9), all cameras are directed at the centroidal perspectives of

their respective Voronoi cells with the associated centroidal-

angles-of-views, i.e.,

vi = v̂Vi
/‖v̂Vi

‖, and αi = α̂Vi
, ∀i = 1, 2, . . . ,m (21)

Proof. The proof follows the same pattern as of Theorem 1,

and so it is omitted for the sake of brevity. �

III. COVERAGE CONTROL OF PTZ CAMERAS

In this section, we consider a set of PTZ cameras placed at

fixed locations p = (p1, p2, . . . , pm) ∈ (Rn)
m

with variable

optical directions v = (v1, v2, . . . , vm)∈
(
S
n−1
)m

and vari-

able angles of view α = (α1, α2, . . . , αm) ∈
(
0, π

2

)m
, and

propose a simple reactive coverage control algorithm for

maximizing the total coverage quality of the cameras. Here,

one can freely choose unlimited- or limited-range visual

sensing for modeling sensing performance of a PTZ camera.

A. Continuous-Time Camera Dynamics

Assuming continuous-time first-order PTZ camera dy-

namics, we propose greedy coverage control policies, re-

spectively, called the “move-to-centroidal-perspective” and

“move-to-centroidal-angle-of-view” laws, that continuously

(re)configure camera orientations and angles of view to

asymptotically reach a locally optimal coverage configura-

tions of HV in (9), as follows

v̇i = Kv

(
I− vivi

T
)
vVi

, (22a)

α̇i = −Kα (αi − αVi
) , (22b)

where Kv > 0 and Kα > 0 are fixed control gains, and

I denotes the identity matrix of appropriate size. Here, vVi

and αVi
, respectively, denote the centroidal perspective and

centroidal angle of view of the Voronoi cell Vi of ith camera,

which are explicitly defined for unlimited- and limited-range

sensing models in Section II-C. Also note that I − vivi
T

defines the projection matrix onto the tangent space Tvi
S
n−1,

which ensures the positive invariance of vi in S
n−1 .

In brief, the coverage control strategy in (22) aim to

asymptotically have each camera looking at its centroidal



perspective vVi
with centroidal angle of view αi where its

coverage quality is locally maximized, see Theorem 1 and

Theorem 2. Thus, some important qualitative properties of

the proposed coverage laws can be summarized as:

Theorem 3 The continuously differentiable “move-to-

centroidal-perspective” and “move-to-centroidal-angle-of-

view” laws in (22) leave camera’s angles of view, 2αi,

positively invariant in (0, π), and asymptotically bring a PTZ

camera network to a locally optimal coverage configuration

of HV in (9) while strictly increasing the total coverage

quality HV along the way.

Proof. The continuous differentability of the proposed cov-
erage policies directly follows from the integral forms of
Voronoi parameters in (13) and (18). The positive invariance
of
(
0, π

2

)
for αi is guaranteed by construction, in (15) and

(20), because we always have αVi
∈
(
0, π

2

)
. Finally, for

the stability analysis, one can naturally consider the utility
function HV in (9) as a Lyapunov candidate function and
verify from (14) and (19) that

ḢV =
m∑

i=1

∂HV

∂vi

v̇i

︸ ︷︷ ︸
≥0

+
∂HV

∂αi

α̇i

︸ ︷︷ ︸
≥0

≥ 0, (23)

where the equality only holds at a locally optimal coverage

configuration specified by Theorem 1 and Theorem 2. Thus,

since HV is bounded above for a bounded environment

W , we have from LaSalle’s Invariance Principle [23] that

all cameras asymptotically converge an optimal coverage

configuration where HV is locally maximized. �

B. Discrete-time Camera Dynamics

Denote by V(v,α)=(V1(v,α) , V2(v,α) , . . . , Vm(v,α))
the conic Voronoi diagram of W , defined in (8), associated

with PTZ camera network configuration (v,α), where

fixed camera positions p are suppress for ease of notation.

Accordingly, we propose an extension of the “move-to-

centroid-perspective” and “move-to-centroidal-angle-of-

view” laws in (22) for discrete-time first-order PTZ camera

dynamics as follows:

vi[k + 1] =
vVi(v[k],α[k])∥∥vVi(v[k],α[k])

∥∥ , (24a)

αi[k + 1] = αVi(v[k+1],α[k]), (24b)

which sequentially optimize camera orientations and angles

of view in order to asymptotically reach a locally optimal

coverage configuration of HV, specified by Theorem 1 and

Theorem 2 for unlimited- and limited-range sensing models,

respectively. Therefore, we have:

Theorem 4 The total coverage quality HV in (9) of a

PTZ camera network increases at each iteration of the

“move-to-centroidal-perspective” and “move-to-centroidal-

angle-of-view” laws in (24) until asymptotically reaching a

locally optimal coverage configuration. Further, each itera-

tion yields a valid camera angle of view, 2αi, in (0, π).

Proof. By definition, in (15) and (20), the centroidal angle of

view αVi(v,α) is always in
(
0, π

2

)
for any αi ∈

(
0, π

2

)
. Also

recall from (13) and (18) that 0 <
∥∥vVi(v,α)

∥∥ < 1 for any

αi ∈
(
0, π

2

)
. Thus, the iterations of our coverage optimiza-

tion strategy in (24) yield valid PTZ camera configurations.
In the rest of the proof, we will continue with the generic

form of the coverage object H in (6) defined for a partition
of P = (P1, P2, . . . , Pm) of W , and it is convenient to
explicitly write its parametric dependency on variable PTZ
camera configurations as

H = H (v,α,P) =
m∑

i=1

∫

Pi∩Ci(vi,αi)

qi (x; vi, αi)φ (x) dx , (25)

where qi and Ci denote the ith camera’s sensing quality
measure and field of view cone, respectively, defined in (4)
and (5). Further, it follows from 9 that

HV = H (v,α,V (v,α)) . (26)

We now show that HV is strictly increasing at each iteration

of (24) away from optimal coverage configurations.

First, since vVi(v[k],α[k]) is the only optimal critical point

of HV for given αi[k] and Vi (v[k],α[k]), as discussed in

the proofs of Theorem 1 and Theorem 2, we have

H(v[k],α[k],V(v[k],α[k])) ≤ H(v[k+1],α[k],V(v[k],α[k])), (27)

where the equality only holds if αi[k] = vVi(v[k],α[k]) for all

i. Further, since qi (x; vi[k+1], αi[k]) < 0 for all points x ∈
Ci (vi[k], αi[k]) \ Ci (vi[k+1], αi[k]) and an event location

is assigned to the camera with the maximal sensing quality

via conic Voronoi diagrams in (8), we also have,

H(v[k+1],α[k],V(v[k],α[k]))≤H(v[k+1],α[k],V(v[k+1],α[k])),(28)

where the quality holds only if all the cameras are already

directed at their respective centroidal perspective.

Similarly, due to the optimality of centroidal angle of view

αVi
(see Theorem 1 and Theorem 2) and the role of conic

Voronoi diagrams in optimal camera allocation (see Section

II-B), one can verify that:

H(v[k+1],α[k],V(v[k+1],α[k]))≤H(v[k+1],α[k+1],V(v[k+1],α[k]))

≤H(v[k+1],α[k+1],V(v[k+1],α[k+1])), (29)

Thus, overall, we obtain

H(v[k],α[k],V (v[k],α[k]))≤H(v[k+1],α[k+1],V (v[k+1],α[k+ 1])),(30)

which completes the proof. �

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical evidence demon-

strating the descriptive strength of our spatial sensing quality

measures for coverage optimization of PTZ camera networks

and the effectiveness of the proposed coverage control laws.

In order to have a more intuitive understanding of the

proposed spatial sensing quality measures in (4), we first

consider coverage optimization of a single PTZ camera over

a 10 × 10 planar environment, as illustrated at the top of

Fig. 4. If one assumes a uniform event distribution over

the environment, i.e., φ (x) = 1 for all x ∈ [0, 10]
2
, then

our coverage control algorithm reconfigures the camera,

as shown in Fig. 4(top)(b,d), to maximize area coverage



while maintaining a certain level of spatial sensing quality.

Recall from (4) that our spatial sensing models define a

trade-off between the camera’s angle of view and sensing

resolution quality, as illustrated in Fig. 3, and so our coverage

control algorithm asymptotically finds an optimal coverage

configuration which locally balances this trade-off. In the

case of a concentrated event distribution, say,

φ (x) = e
−

∥∥∥∥x−
[
7
3

]∥∥∥∥
2

, (31)

the camera, as expected, focuses on the region where the

event occurs the most for both unlimited and limited range

sensing models, as depicted in Fig. 4(top)(c,e).

To illustrate collective coverage behavior in multiple PTZ

camera networks, we present at the bottom of Fig. 4 coverage

optimization of four PTZ cameras placed at the corners of a

10× 10 square environment. As one might naturally expect,

multiple PTZ cameras can achieve better coverage perfor-

mance, possibly with lower angles of view; for example,

compare uniformly distributed event coverage performances

in Fig. 4(top)(b,d) and Fig. 4(bottom)(b,d). As seen in Fig.

4(bottom)(b,d), in the case of a uniform event distribution,

each camera observes the region around its adjacent corner

(in circular order) at an optimal coverage configuration. It

is important to observe that although the cameras in Fig.

4(bottom)(d) can observe every point in the environment at

higher angles of view, because of the trade-off between view

angle and view resolution, they do not cover the small region

at around the center of the environment. In the case of a more

complex event distribution function, for example,

φ (x) = 1 + 10

(
e
− 1

9

∥∥∥∥x−
[
8
8

]∥∥∥∥
2

+ e
− 1

2

∥∥∥∥x−
[
8
2

]∥∥∥∥
2

+ e
− 1

2

∥∥∥∥x−
[
8
4

]∥∥∥∥
2

+ e
−

∥∥∥∥x−
[
3
7

]∥∥∥∥
2)

, (32)

the cameras collectively focus in the region of the environ-

ment where events occur more often, see Fig. 4(bottom)(c,e).

V. EXPERIMENTAL VALIDATION

For experimental validation of the proposed cover-

age control algorithm, we set up a 5m (width) ×
13m (length) × 4m (height) rectangular box-shaped envi-

ronment with intrinsically and extrinsically precalibrated six

Bosch AUTODOME IP 4000 HD PTZ cameras8, mounted

on the ceiling equidistantly along the long edge, whose

(vertical) angles of view ranges from 2.5 degrees to 28

degrees and pan and tilt angle ranges are 360 and 90 degrees,

respectively. For the sake of clear visualization, we only

consider coverage control of three cameras indicated in Fig. 5

in a 5m (width)×6.5m (length)×4m (height) environment.

To indicate event locations, we use AprilTags [24], and

cameras initially perform a scanning motion to locate them.

Accordingly, we use a Gaussian mixture model to represent

event distribution at the detected tag locations, denoted by

ai ∈ R
3 for i = {1, 2}, as follows:

φ (x) = 1 +
2∑

i=1

10e
−

‖x−ai‖
2

2(0.8)2 . (33)

In Fig. 5, we present the initial and final coverage configura-

tions of the PTZ cameras, and camera images at the locally

6For all simulations, we set R = 7, κ = 3, σ = 2 and λ = 2, and
all simulations are obtained through numerical integration of the associated
coverage control law, using a fixed step size, where the computation of the
centroidal perspectives and centroidal angles of view are approximated by
discretizing the entire space by a dense 200×200 grid. Since the proposed
coverage laws are observed to yield similar optimal converage configurations
for both continuous- and discrete-time PTZ camera dynamics, we present
results only for continuous-time camera dynamics.

7 In our experiments, we set R = 4.0, σ = 1.2, κ = 15, and perform
coverage control using discrete-time camera dynamics, where centroidal
perspectives and centroidal angles of view are approximately computed by
discretizing the environment using a dense grid.

8https://us.boschsecurity.com/en/

Fig. 4. Coverage optimization of (top) a single PTZ camera and (bottom) a multiple PTZ camera network. (a) Initial camera configuration and event
distribution whose level sets are shaded darker with increasing event concentration, (b) Locally optimal area coverage configuration for unlimited range
sensing in (4a), (c) Locally optimal event coverage configuration for unlimited-range sensing in (4a) , (d) Locally optimal area coverage configuration
for limited range sensing in (4b), (e) Locally optimal event coverage configuration for limited range sensing in (4b). Please see the accompanying video
submission for an animated demonstration.6



Fig. 5. Experimental demonstration of coverage optimization of a PTZ camera network. (left) Initial configuration and event distribution (middle) Locally
optimal event coverage configuration for unlimited-range sensing in (4a) (right) Experimental setup: for ease of visualization, only three (indicated by red,
blue and green) of six Bosch AUTODOME IP 4000 PTZ cameras are actively controlled, and the camera images are collected at the optimal coverage
configuration, and the detected AprilTags are colored according to the color of the source camera. Please see the accompanying video for the full motion.7

optimal coverage configuration. In brief, while two cameras

focus on the tag locations, the remaining third camera covers

the region between them.

VI. CONCLUSIONS

In this paper, we consider the coverage optimization

problem of PTZ camera networks and propose a new prov-

ably correct simple greedy coverage control algorithm that

actively (re)configures cameras’ orientations and angles of

view (i.e., zoom levels) in order to optimally cover a given

event distribution in a convex environment. We introduce

two new visual quality measures for accurate modeling of

spatial sensing performance of cameras. We show that the

optimal camera allocation problem can be solved using conic

Voronoi diagrams that are constructed based on the newly

introduced quality measures, and we provide explicit con-

ditions on locally optimal coverage configurations in terms

of centroidal perspective and centroidal angle of the Voronoi

cell of each camera. Accordingly, for both continuous- and

discrete-time PTZ camera dynamics, we propose the “move-

to-centroidal-perspective” and “move-to-centroidal-angle-of-

view” laws that asymptotically reach a locally optimal cov-

erage configuration where the collective coverage quality of

cameras is locally maximized. The strengths of the proposed

sensing quality measures and the effectiveness of the pro-

posed coverage control laws are illustrated with numerical

and experimental results.

Work now in progress targets online vision-based

event/activity distribution estimation for coverage optimiza-

tion of PTZ camera networks and balancing coverage and

exploration in camera networks [25]. We are also exploring

the extensions of our results for nonconvex environments and

environments with visual occlusions. Our ultimate goal is to

achieve optimal coverage control in mobile (e.g., flying) PTZ

camera networks for active visual monitoring.
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