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Abstract— In this paper the coverage control problem for
mobile sensor networks is studied. The novelty is to consider an
anisotropic sensor model where the performance of the sensor
depends not only on the distance but also on the orientation to
the target. By adapting the Lloyd algorithm and assuming a
fixed and equal sensor orientation, a distributed control law is
derived. Aside from coverage, the control law also guarantees
collision avoidance between the agents. A simulation is provided
to illustrate the results obtained in this paper. Furthermore,
a numerical performance analysis to compare the anisotropic
sensors modelling to isotropic approximations is performed.

I. INTRODUCTION

Stimulated by the technological advances and the develop-

ment of relatively inexpensive communication, computation,

and sensing devices, the interest in the research area of

coordinated networked control has majorly increased over the

past years. One example is the deployment of autonomous

vehicles to perform challenging tasks such as search and re-

covery operations, manipulation in hazardous environments,

surveillance and also environmental monitoring for pollu-

tion detection and estimation. Deploying multiple agents to

perform tasks is advantageous compared to the single agent

case: It provides robustness to agent failure and allows to

handle more complex tasks.

In this paper, we consider a mobile sensing network of

vehicles equipped with sensors to sample the environment.

The goal is to drive the sensors/agents to the position such

that a given region is optimally covered by the sensors.

Some relevant works on the coverage control problem are

[1]–[6]. In [1] the agents move to the optimal configuration

which minimizes an objective function. The approach is

based on Voronoi tessellation and the Lloyd algorithm. The

same problem is considered in [2] with a more realistic

model by introducing “limited-range interactions” of the sen-

sors, i.e the sensing range is restricted to a bounded region.

The advantage of the Voronoi approach is that the control

law is distributed by its nature. Alternative approaches are

introduced in [3], [4]. In [3] the authors consider a proba-

bilistic sensing model and a density function to represent the

frequency of random events taking place over the mission

space. The authors develop an optimization problem that

aims at maximizing coverage using sensors with limited

ranges, while minimizing communication cost. A potential-

field-based approach to deployment problem in an unknown

environment is presented in [4]. Moreover, dynamic coverage
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is considered in [5]. Here, the agents move such that every

point in a given area is sensed with a pre-specified coverage

level C∗. The same problem is addressed in [6] under some

practical assumptions such as bounded sensing and actuation

capacities of the vehicles. However, in the works mentioned

above, only a uniform (isotropic) sensor model is considered.

In this paper, in contrast to the above papers, we consider

the coverage problem with an anisotropic sensor model. This

model is more realistic since most of the sensors such as

cameras, directional microphones, radars etc are anisotropic.

In this paper, one of the main objectives is to investigate

the applicability of the Voronoi based approach in [1] to

tackle the coverage problem with anisotropic sensor model.

For this reason, as a first approach we assume a specific class

of anisotropic sensors with elliptic sensing performance level

sets as one way of achieving a possibly better approximation

to sensor characteristics instead of circles as for the isotropic

case. The consideration of a general anisotropic sensor model

results in an anisotropic Voronoi tesselation which leads to

non-distributed control law, as we will discuss later. How-

ever, by assuming fixed, equal sensor orientation, the optimal

control law is shown to be decentralized. The idea of deriving

the control law for the considered anisotropic sensor model

is to transform the anisotropic problem to the isotropic one.

By the transformation properties the control law obtained

for the isotropic problem also solves the problem for the

considered anisotropic case. Simulations are performed in

order to validate the proposed approach and for comparison

to the approach with isotropic sensor models as over-/under-

approximation to truely anisotropic sensors. Numerical per-

formance analysis then indicates a design trade-off between

final costs and convergence speed w.r.t. the number of agents.

This paper is organized as follows: The problem formulation

for the anisotropic sensor model is presented in section 2.

The anisotropic Voronoi partition which is the extension

of the ordinary Voronoi partition in Lloyd algorithms and

the optimal location of the mobile sensors are derived in

section 3. In section 4 the control law for the deployment

is derived and collision avoidance is investigated. Numerical

performance analysis are provided in section 5.

II. PROBLEM FORMULATION

Let Q be a convex polytope in R2 including its interior.

φ(·) : Q → R+ is a continuous distribution density function

which represents the probability that some event takes place

in Q. Let P = (p1, ..., pn) be the location of the n identical

mobile sensors moving in the region Q. Let Θ = (θ1, ...,θn)
be the orientation/attitude of n sensors. The non-decreasing

differentiable function f (·) : R+ → R+ indicates the quality
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Fig. 1. (a) Isotropic sensor model, (b) Anisotropic sensor model

of the sensing performance of the sensor, i.e the probability

of sensing an event in Q. Cortes et. al [1] consider an

isotropic sensor with the sensing performance defined as

f (‖q− pi‖) that degrades with the distance between a point

q ∈ Q and the i-th sensor position pi. The points where the

sensing performance (or probability of sensing) is equal are

represented by a circle of radius R, and the center is the

sensor location. As shown in Fig. 1(a), points q1 and q2

with the same distance to the sensor will result in the same

sensing probability.

In this paper, anisotropic sensors are considered where the

degradation of the sensing performance is also affected by

the orientation of the sensor w.r.t the point to be sensed. The

anisotropic sensor model in this paper is considered by a

non-Euclidean distance measure as follows.

Assumption 1: The sensing performance of the

anisotropic sensor model is given by the non-Euclidean

distance measure ‖q− pi‖Li
defined as

‖q− pi‖
2
Li

= (q− pi)
T Li(q− pi), (1)

where the matrix Li is positive definite and can be decom-

posed as Li = FT
i Fi with

Fi =

[(

c
a

0

0 c
b

)(

cos θi sin θi

−sin θi cos θi

)]

(2)

where θi is the orientation of the i-th sensor, and a,b,c > 0

are the parameters.

Observe that the matrix Fi is invertible. The level sets of

sensing performance of the anisotropic sensor are given by

ellipses where the center is the sensor location as shown

in Fig. 1(b). Here, θi is the orientation of the ellipse, a,b
represent the length of major and minor axis of the ellipse

respectively. c is a scale factor that decide the sensing

performance on a certain level set.

The overall sensing cost incurred by all sensors can be

formulated as

H (P,Θ,W ) =
n

∑
i=1

∫

Wi

f (‖q− pi‖Li
)φ(q)dq, (3)

where region Wi is the dominance region of the i-th sensor

and W = (W1, ...,Wn). The challenges addressed in this paper

are

1) Find the optimal configuration such that

min
P,Θ,W

H

2) Find the control law ui that drives the mobile sensors

to the optimal configuration given the mobile sensors

dynamics

ṗi = ui. (4)

Optimal coverage is achieved by minimizing (3) w.r.t (1)

sensor location P and orientation Θ and (2) the assignment

of the dominance regions W .

III. OPTIMAL PARTITION, LOCATION

A. Anisotropic Voronoi Partitions

To minimize (3), we introduce the notion of the Voronoi

partition. The Voronoi region of a sensor is defined by all

points which are “closer” in the sense of the considered

distance measure to that sensor than to any other. For the

Euclidean distance measure the Voronoi region Vi associated

with its generator pi is defined as

Vi = {q ∈ Q|‖q− pi‖ ≤ ‖q− p j‖,∀ j 6= i}. (5)

The Voronoi partition V ∗
i of agent-i for the anisotropic case

considered in this paper is defined as follows.

Definition 1:

V ∗
i = {q ∈ Q|‖q− pi‖Li

≤ ‖q− p j‖L j
,∀ j 6= i}. (6)

This anisotropic Voronoi partition is not only determined by

the sensors position but also the sensors orientation θi as

observable from the matrix Li. As a result the anisotropic

Voronoi tesselation is no longer composed of convex poly-

topes, but of curved possibly non-convex regions. Fig. 2(a)

and Fig. 2(b) depict the examples of isotropic and anisotropic

Voronoi partition.

Lemma 3.1: The boundary between two adjacent V ∗
i and

V ∗
j as defined in (6) is a quadratic curve.

Proof: Any point q in V ∗
i ∩V ∗

j which is the boundary

of the Voronoi partitions of V ∗
i and V ∗

j satisfies ‖q− pi‖Li
=

‖q− p j‖L j
i.e. (q− pi)

T Li(q− pi) = (q− p j)
T L j(q− p j). It

is clear that this equation is quadratic in q. Therefore any

point in V ∗
i ∩V ∗

j lies on a quadratic curve.

The boundary can be represented as
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where A,B,C,D,E,K in (7) can be computed by solv-

ing (q− pi)
T Li(q− pi) = (q− p j)

T L j(q− p j). Due to the

space limitation, only A,B,C are described which will be

used later in this paper. The coefficients of (7) are :

q = (x,y), A = b2(cos 2θi − cos 2θ j)+ a2(sin 2θi − sin 2θ j),
B = a2(cos 2θi − cos 2θ j)+b2(sin 2θi − sin 2θ j), C = (a2 −
b2)(sin2θi − sin2θ j) and D,E 6= 0.

Another major difference to isotropic Voronoi tesselations

is that anistropic tesselations may contain regions without a

generator [7], i.e. a Voronoi cell of an anisotropic Voronoi

diagram is not necessarily connected. Moreover, the infor-

mation of all other sensor positions is required to compute

the anisotropic Voronoi diagrams.
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Fig. 2. (a) Isotropic Voronoi partition, (b) anisotropic Voronoi partition
given by (6). As can be seen, the regions on the right side have no generators
inside.

Fig. 3. Anisotropic Voronoi partition with equal orientation

Remark 1: Since the information of all sensor positions

is necessary to construct the anisotropic Voronoi diagrams,

the resulted control law will be non-distributed. This is

in contrast to isotropic Voronoi diagram where only the

Delaunay neighbour (agents which have adjacent Voronoi

cells) positions are required.

As mentioned above, in general i.e. for the arbitary ori-

entation of the sensors, the Voronoi approach results in

non-distributed control law. Therefore, for the remainder

of this paper, a more specific case given by the following

assumption is considered.

Assumption 2: The orientations of all sensors are equal

and fixed over time, i.e. θi(t) = θ j(t) = θ ,∀i 6= j and t ≥ 0.

This can be achieved by applying a known method (e.g [8])

for making an agreement on the orientation beforehand. This

assumption leads to the following lemma.

Lemma 3.2: From assumption 2 and definition 1, the

anisotropic Voronoi tessellation is composed of convex poly-

topes. Moreover, Fi(t) = Fj(t) = F and Li(t) = L j(t) = L

∀i 6= j and all t ≥ 0.

Proof: From the assumption 2, θi = θ j = θ , it follows

that A = B = C = 0 in (8) and furthermore D,E 6= 0. As

a result the boundary of the Voronoi cell is a straight line.

Since Q is a convex polytope, the Voronoi tessellation is also

composed of convex polytopes. From (2), it is also cleared

that Fi = F and Li = L.

One example of the anisotropic Voronoi diagram with fixed

and equal orientations is shown in Fig. 3.

B. Optimal Location

Corollary 1: The anisotropic Voronoi partition V ∗ mini-

mizes (3) w.r.t the partition W .

Proof: From definition 1 and since f is a non-

decreasing function, it is clear that the Voronoi partition V ∗

minimizes (3) w.r.t the partition W .

As the orientation is assumed to be fixed and as a result of

corollary 1,

min
P,Θ,W

H = min
P

HV ∗ .

Assume that the sensing performance f (‖q− pi‖L) =
‖q− pi‖

2
L. Then (3) can be written as

HV ∗(P) =
n

∑
i=1

∫

V ∗
i

‖q− pi‖
2
Lφ(q)dq.

In order to derive the optimal location of the sensors, the

above equation can be simplified to

HV ∗(P) =
n

∑
i=1

∫

V ∗
i

‖F(q− pi)‖
2φ(q)dq. (8)

Next, we introduce anisotropic centroidal Voronoi configu-

ration.

Definition 2: Given the set of points P in Q. CV ∗
i

is the

center of mass (centroid) of an anisotropic Voronoi partition.

A Voronoi tessellation is called an anisotropic centroidal

Voronoi configuration if

pi = CV ∗
i
,∀i;

i.e the points P serve as generators and also centroids for the

anisotropic Voronoi tessellations.

The optimal location is given by the following proposition.

Proposition 3.1: The objective function (8) is minimized

by the anisotropic centroidal Voronoi configuration .

Proof: Define q̄,zi as q̄ = Fq and zi = F pi which are

points of region and sensors in a space transformed by matrix

F called the solution space. Note that the region Q is trans-

formed by F to the convex region Qs and the minimization

of (8) in the solution space leads to the minimization in the

real physical space. Moreover, from (6) and by applying the

transformation matrix F , the anisotropic Voronoi partition V ∗
i

is transformed to the isotropic Voronoi partition (V̄i) in the

solution space defined as

V̄i = {q̄ ∈ Qs|‖q̄− zi‖ ≤ ‖q̄− z j‖,∀ j 6= i}.

By applying substitution rule for multiple variables, the

integral in (8) can be rewritten as :

H
V̄

(Z) =
n

∑
i=1

∫

V̄i

‖q̄− zi‖
2φ(q̄)

∣

∣det(F−1)
∣

∣dq̄. (9)

with Z = (z1, ...,zn). Applying the parallel axis theorem, (9)

becomes

HV̄ (Z) =
∣

∣det(F−1)
∣

∣(
n

∑
i=1

JV̄i,CV̄i
+

n

∑
i=1

MV̄i
‖zi −CV̄i

‖2),

where

MV̄ =
∫

V̄
φ(q̄)dq̄, CV̄ = M−1

V̄

∫

V̄
q̄φ(q̄)dq̄,

JV̄ ,z =
∫

V̄
‖q̄− z‖2φ(q̄)dq̄.

denote mass, centroid and polar moment of inertia of an

anisotropic Voronoi partition respectively. The local mini-
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mum is the solution of

∇H
V̄

= [...
∂HV̄

∂ zi

...]T = 0,

with the partial derivative of (9) given by

∂HV̄

∂ zi

(Z) = 2
∣

∣det(F−1)
∣

∣MV̄i
(zi −CV̄i

).

The local minimum points given by zi = CV̄i
i.e. the critical

points for HV̄ are the centroids of the Voronoi cells in the

solution space which are the centroids CV ∗
i

= F−1CV̄i
of the

anisotropic Voronoi partitions.

IV. CONTINUOUS LLOYD DESCENT FOR COVERAGE

CONTROL

A. Optimal Control for Fixed Orientation

In this section, a control law based on Lloyd algorithm to

drive the sensors to the location that minimize (3) is derived.

The strategy is to transform the control law in the solution

space into the real physical space as illustrated in Fig. 4.

Consider the sensors in real space with dynamics given in

(4). Set

ui = −k(pi −CV ∗
i
), (10)

where k is a positive gain and V ∗
i is the anisotropic Voronoi

partition and assumed to be continuously updated.

Proposition 4.1: By applying the control law in (10), the

sensors in the physical space will converge asymptotically

to the set of critical points i.e the set of anisotropic centroid

Voronoi configurations. If this set is finite, the sensors

converge to one of them.

Proof: The dynamics of the sensors in the solution

space (isotropic case) is given by

żi = ūi,

From [1], it is well-known that the control input given by

ūi = −k(zi −CV̄i
)

drives the sensors in the solution space to the centroidal

Voronoi configuration, the critical points of the objective

function (8).

By using the chain rule, the control law in the physical

space can be computed by

u = ṗi.

=
∂ (F−1zi)

∂ zi

żi.

= −k(pi −CV ∗
i
).

Consider HV ∗ as a Lyapunov function. Under the control

law (10), d
dt

HV ∗ ≤ 0. By LaSalle’s Principle, the sensors

p
i

C
Vi

∗

V
i

∗p
i

:

Fig. 5. By the proposed control law, each sensor moves towards the
centroid.

converge to the largest invariant set which is the set of

anisotropic centroid Voronoi configurations. If this set con-

sists of finite points, then the sensors converge to one of

them (see Corollary 1.2 in [1]).

Remark 2: This control law is distributed since each sen-

sor only needs the information of it’s neighbour’s position

to compute the control as observable from (10). Taking out

assumption 2 i.e. the case of fixed, unequal orientation will

lead to the same control law. However in this case the control

law will be non-distributed.

Remark 3: The control law is optimal under the constraint

of the fixed orientation. By considering the orientation as op-

timization variable (non-fixed orientation) as in the original

problem will lead to a better result i.e. lower values of H

are achieved.

B. Collision Avoidance Guaranty

Another advantage of the Voronoi approach is the implicit

collision avoidance.

Proposition 4.2: With the control law (10), if there is no

collision at t∗, there will be no collision at t > t∗.

Proof: The sensors applying the control law (10) will

move towards the centroid of its Voronoi cell as shown in

Fig. 5. From Lemma 3.2 and the continuity of φ(·), the

centroid is always inside the Voronoi cell and since the

Voronoi tessellations are nonoverlapping by construction, no

two sensors will come to the same point i.e there will be no

collision between the sensors for all t ≥ t∗ if there was no

collision at time t∗.

V. NUMERICAL PERFORMANCE ANALYSIS

The complexity of the control law which is strongly related

to the Voronoi tessellation make the analytical performance

analysis is difficult to perform. For this reason, here numer-

ical performance analysis is considered. In this section, two

kinds of simulations are presented. In a first simulation the

proposed approach is validated. Furthermore we compare the

using of anisotropic models for design versus isotropic model

approximation in a design task.

A. Convergence with Anisotropic Sensors

First we illustrate the results above through simulation. As-

sume that there are 4 mobile sensors which sensor parameters

a,b,c,θ are equal to 3,1,1,−π/2, respectively. The region

Q is a rectangle region of 5×4 unit length. Density function

φ(q) = 1, ∀q. Assume that at the initial time, pi 6= p j,∀i 6= j

where pi = (xi,yi) i.e no collision occurs. The results of

applying the control law (10) are shown in Fig. 6. Figure

6(a) and Fig. 6(b) show trajectories of the sensors in the

transformed and the real physical space respectively. The

decreasing of the objective function can be observed from
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Fig. 6. Trajectories of the sensors in (a) solution space, (b) real physical
space. The square and circle signs show the initial and final position of the
agents respectively, (c) the trajectories of the mobile sensors with isotropic
sensor model.
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Fig. 7. Cost (objective function) for anisotropic sensor in the real space.

Fig. 7. For comparison, the final configuration of the sensors

with isotropic sensor model is depicted in Fig. 6(c).

B. Anisotropic vs. Isotropic Sensor Model Approximation

In the following we compare the anisotropic sensor

modelling vs. using isotropic approximations of the true

anisotropic sensors. An important design question is how

many agents are necessary to achieve a desired control goal

and what is the influence of the agent number on other

performance criteria. In the following we will investigate

exactly this question under different modelling assumptions

for the true anistropic sensor considered in this paper.

1) Simulation goal and method: Assume that anisotropic

sensors are used to sense a given region. The goal is to

achieve a certain performance in terms of the final cost

function value (the cost of the objective function when the

agents converge to the critical points). The design task is

to choose the necessary number of agents to achieve this

goal. Therefore we will compare the cases where we use

anisotropic model of the sensor and two other cases where

the anisotropic sensor is approximated by an isotropic sensor

model. Here we consider two ways to approximate the sensor

by using isotropic model, either under-approximate it or

over-approximate the sensor as shown in Fig. 8. From simu-

lations with the corresponding sensor models we can derive

the necessary number of agents to achieve the desired final

cost function value. With these numbers we then investigate

the behavior of the ”real” system with the anisotropic sensor.

2) Simulation setting: The parameters of the anisotropic

sensors a,b,c,θ are equal to 2,1,1,−π/6, respectively. The

region Q is a square region of side length l = 10 unit length

with φ(q) = 1, ∀q. The number of agents are varied from

5 to 60 agents and the number of iterations are 500 steps.

The simulation is run once for each number of agent. Initial

position are chosen randomly from a square region of side

length 3.5 unit length in the middle of the region Q for

the different agent numbers as shown in Fig. 9. For a fixed

agent number the same initial position is used in order to

compare the different modelling approaches. The simulations

are carried out first for the case where the isotropic model is

used to (under/over)-approximate the anisotropic sensor and

when the proposed anisotropic sensor is applied.

3) Results and discussions: Figure 10 shows the influence

of number of agents to the final cost for the isotropic

and anisotropic sensor model. As expected, for the same

number of agents, the anisotropic sensor model leads to a

lower final cost than the under-approximation and higher

cost than the over-approximation isotropic model. Now the

system designed with under/over-approximation is compared

to the real one designed with anisotropic sensor model. The

comparison is made for number of agents of each sensor

model that achieve the same final cost. Here the final cost

is assumed to be 100. From Fig. 10, the number of agents

for under-approximation, over-approximation and anisotropic

sensor model which final cost equal to 100 are given by 32, 8,

22 agents respectively. The behaviour of the system designed

with anisotropic sensor model for those number of agents are

shown in Fig. 11. As expected, higher number of agents will

result to a lower final cost.

C. Number of Agents vs. Convergence Speed

Next, through the similar setting as above the influence

of the number of agents to the convergence speed of the

system is studied. The settling time is used as a metric of

the convergence speed which is defined as the number of

steps needed to achieve a value in a range of 10% of the

final cost. The simulation result of anisotropic sensor model

for different number of agents is shown in Fig. 12. It has

been shown analytically that in the one-dimensional case, the

convergence rate of Lloyd algorithm slows down as the num-

ber of generators becomes large [9]. Here numerical analysis

indicates a similar result for the two-dimensional case and the

anisotropic sensor model, i.e. large number of agents leads to

a slower convergence speed (the settling time is larger). On

the other hand, utilizing a large number of agents will lead

to a lower final cost. Hence there exists a trade-off between

the final cost and convergence speed (settling time) w.r.t the

number of agents in the system. Moreover, it will result in a

740



anisotropic

isotropic (under approximate)

isotropic (over approximate)

p
i

Fig. 8. Approximation of anisotropic sensor with isotropic sensor model.
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Fig. 9. Example of initial condition for numerical analysis.

higher robustness to agents/sensors failures since for a large

number of agents, the final cost is not significanly different

(Fig. 10). Note however that, large number of sensors are

expensive in terms of the sensors cost.

VI. CONCLUSION AND FUTURE WORKS

In this paper a first approach for the coverage control with

an anisotropic sensor model is presented. The anisotropic

sensors considered in this paper are assumed to have elliptic

sensing performance level sets. An optimal control law for

fixed and equal orientation is derived using a Voronoi based

approach with an adapted Lloyd algorithm and a gradient

descent approach. The control law is distributed and also

guarantees collision avoidance. The efficacy of the proposed

control law is confirmed by simulation. The comparison of

anisotropic and isotropic sensor model is studied through

numerical analysis. It is shown that there is a trade-off

between final cost and convergence speed w.r.t number of

agents. Currently, the problem with the orientation as opti-

mization variable and a method to make the related control

law distributed are investigated. Future work addresses the

use of more general anisotropic sensor models and a more

suitable alternative approach.
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